

The Very-Near-Site at Chooz a New Experimental Hall to Study CEvNS

T. Lasserre^{1,2}, A. Langenkamper³, C. Nones¹, J. Rothe⁴, R. Strauss⁴, M. Vivier¹, **V. Wagner**¹, A. Zolotarova¹

 ¹CEA, Centre de Saclay, DRF/Irfu, France
 ²APC, AstroParticule et Cosmologie, Universite Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cite, France
 ³Physik-Department, Technische Universität München, Germany
 ⁴Max-Planck-Institut für Physik, Germany

Magnificent CEvNS workshop, Nov 2nd-3rd 2018, Chicago

- The Chooz Nuclear Power Plant
- The Very-Near Site (VNS) @ Chooz
- NU-CLEUS @ VNS
- The BASKET Project a possible synergy with NU-CLEUS

The Chooz Nuclear Power Plant

The Chooz Nuclear Power Plant

- Operated by Electricité de France (EdF) in the Ardennes region (northern France)
- 2 reactor cores, each with max. thermal power of 4.25 GW_{th}
- Long history of v-experiments :
 - 1996-1999 host of the Chooz experiment and
 - 2003-2018 of the Double Chooz experiment
- Agreement between CEA and EdF drafted to establish experimental site for NU-CLEUS

→ existing infrastructure with office buildings

The Very-Near-Site (VNS) @ Chooz

- Campaign to characterize background at VNS started
- First measurements perfomed at surface and VNS to determine **neutron and muon attenuation** factors, further measurements planned
- Results will be used to optimize the design of a compact shielding and evaluate expected backgrounds in target detectors
- Vibration measurements planned for end of 2018

Neutron Attenuation

- Neutrons are expected to be a challenging background
- No neutrons from reactor cores expected
- Liquid scintillator cells from TUM with PSD capabilities to disciminate electronic from nuclear recoils

- Preliminary results give a neutron attenuation factor of 8
- Spectral shapes at VNS compatible with that at surface

Muon Attenuation

- Preliminary results give a muon attenuation factor of 1.4
- Use muon attenuation to estimate overburden m₀ :

$$\frac{R_{VNS}}{R_{surf}} = 10^{-1.32 \log (1 + m_0/10) - 0.26 (\log(1 + m_0/10))^2}$$

P. Theodorsson. Measurement of weak radioactivity. World Scientific, Singapore, 1996

VNS @ Chooz

Page 8

Overburden @ VNS

CEvNS Experiments @ VNS

- Technical modifications of VNS room
- Size of VNS: 24 m²

 → compact setup (<10 t)
- Expected v-flux: $10^{12} \bar{v}_e / (s \cdot cm^2)$
- CEvNS rate @ VNS 10² CaWO4 Differential count rate [d⁻¹ keV⁻¹] Li2WO4 Si 10¹ Ge Background 10⁰ 10-1 10-2 10⁻³ 10⁻¹ 10-2 10-3 Energy [keV]

- Shallow overburden: 3 m.w.e.
 - \rightarrow close to above ground conditions, high $\mu\text{-rate}$
 - \rightarrow cosmic ray hadronic component largely suppressed
 - \rightarrow muon-induced background expected to be dominant

10⁰

NU-CLEUS detectors meet specification to run at

NU-CLEUS @ VNS

- VNS : - Ca**W**O₄ crystals with energy threshold
 - < 20 $eV_{nr} \rightarrow$ small target mass to study CEvNS
 - demonstrated to run in **above ground** conditions
- On-going design and optimization of shielding
 - active muon-veto
 - passive shielding based on Pb and borated PE

see talk by R. Strauss

NU-CLEUS @ VNS

NU-CLEUS @ VNS

Muon Trigger Rate

- Monte Carlo simulation of muon veto yield an expected muon-trigger rate < 500 Hz for a 1m³ shielding
- MC validated with measured muon rate in the NUCIFER experiment

Muon-Induced Dead-Time

- Fast rise-time of NU-CLEUS detectors (100 $\mu s)$ implies a dead-time of 1 % for a 1m³ shielding
- With NU-CLEUS a muon-veto up to (2m)³ is feasible

The BASKET Project

Bolometers At Sub KeV Energy Thresholds

- R&D program to develop Li₂WO₄ bolometers at CEA and CSNSM
- First prototype (11g) shows good • bolometeric and scintillation properties
- Ongoing tests with 1g crystal and different phonon read-out to optimize energy threshold and time response
- Neutron capture on ⁶Li can be used as insitu neutron background characterization:
 - $^{6}\text{Li} + n \rightarrow ^{3}\text{H} + ^{4}\text{He},$ with $E = 4.78 \text{ MeV} + E_n$
 - n-rate & fast neutron spectroscopy
- Investigate possibility to enrich and grow large sized Li₂WO₄ crystals

2000

3000

1000

4000

Light yield, keV/

- Li₂WO₄ target detectors:
 - similar CEvNS rate as CaWO₄ expected
 - additional target may yield supplementary information on background
- Li_2WO_4 outer veto (OV):
 - γ attenuation by W
 - Neutron identification via ${}^{6}Li(n,t){}^{4}He \rightarrow$ neutron rate and spectral information

- Very-Near-Site (VNS) at Chooz is a promising experimental site for future CEvNS experiments
- On-going background and simulation campaign to fully characterize VNS
- Strong support of the EdF power plant
- Plan to install NU-CLEUS detectors at VNS as first CEvNS experiment at Chooz in 2020:
 - low energy threshold of $O(10 \text{ eV}_{nr})$
 - detector fiducialization for high background rejection
 - ~1% muon-induced dead-time thanks to fast rise time
- Consortium with Ricochet in preparation for further measurments