The Magnificent CEvNS Workshop

The Development of Low Threshold Dual Phase Argon Detector for CEvNS

Ran HAN

Beijing Institute of Spacecraft Environment and Engineering On Behalf of Dual Phase Argon Working Group (IHEP BISEE etc....)

> The Status of Dual Phase Argon Detector

> The Future Plan for Tai Shan Power Plant Measurement

2nd -3rd Nov 2018, Chicago, IL USA 1

The Dual Phase Argon Detector for Reactor CEvNS Measurement

- Easy and Cheap for Larger Volume
- Low threshold ~0.1keVee can be reached
- The lowest energy reported up to data is(6.7 keVr) for Ar recoil calibration
 - Atmospheric argon will be overwhelmed by 39Ar decay
 - Only read S2 to reach low threshold
 - SiPM readout with low radio purity and high QE
 - The Inner Stainless Steel Container will be replaced by PTFE to reduce background

The Prototype of Dual Phase Detector

- Based on the Dual Phase Detector at IHEP,
- > Original design for Xeon,
- > But we used for Argon test to study some key technology.

The Electric Field Simulation

Shaping Ring Numbers: 16Gas Gap: 8mmLiquid Gap: 106mmOuter Diameter: 180mmInside Diameter: 90mm

The Structure of TPC

The LED Calibration

398.1 / 127

 48.99 ± 0.14

 296.1 ± 4.0

 458.4 ± 1.9

 142.4 ± 2.2

9.541± 0.805

 943.8 ± 25.1

 152.3 ± 19.6

.....

2000 Area

7000 ± 2.0 89.16 ± 0.19

The Muon Events

7

Simple Geant4+NEST Simulation

- The length of gas gap and liquid gap
- Simulation the Electric Field
- Electron recombination probability and electron drift time
- Photoelectric efficiency of SiPM
- The detectable S1 light and S2 light.

The Development of Cold Readout for SiPM

	PMT	SiPM
Maximum PDE	10~40%	30~60%
Gain	10 ^{5~} 10 ⁷	10 ⁵ ~10 ⁷
Operating Voltage	~kV	<100V
Dark noise(room T)	1~50kHz	~50kHz/mm ²
Correlated noise rate	Low(<~10%)	High(10~60%)
Capacitance	~10pF	~20pF/mm ²
Radio purity	Bad	Good

Many readout options, many ASICs Trying to chose 2~3 of them to develop

From the nEXO pre-amplifier

- •Concrete components, the ASIC is under design.
- Developed for cold electronics (-104 degree)
- Has been tested by nEXO

Another 2 cold pre-amplifier One suggestions from Darkside Another one from INFN

LAB test of nEXO Cold Readout

The Next Step for Large Area SiPM Readout

- Digitizer can be done SiPM by SiPM, have good signal noise ratio, but the thermal power will be high and also the cost
- > Sum all the SiPM together, lower thermal power and cost, but bad noise ratio

The TaiShan Nuclear Power Plant

- 4.6 GW, started operation 4months ago
- Spacious room at 10 m underground
 ~31m horizontally from core
- Access by elevator 1.4x1.8 m

The Expected Events

The Planned Dual-phase Argon Detector Design

- ✓ FV: 100kg~300kg (not final decided)
- ✓ Low threshold: 0.1keV
- ✓ S2 light readout to reach low threshold
- ✓ SiPM instead PMT for low radiative
- ✓ Low radiative material: Acrylic instead stainless like DEAP-3600

Summary and Next Steps

Summary:

- Dual-Phase Argon Detector for reactor CEvNS process in TaiShan Power Plant
- Some primary study did based on Dual-Phase Detector system
- ➢ The cold pre-amplifier for SiPM
- Only S2 signal will be read to reach 0.1keV threshold
- Acrylic instead stainless

The R&D just start, The Science is ongoing ...

Next Steps:

 \geq

....

The background analysis and Shielding System design

- The detailed technique design for TPC
- The Development for Cold readout system for SiPM

