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A. Energy Levels of the Subradiant States

We derived the decay rates of the subradiant states in
the one-excitation sector. As a byproduct, their energy
levels are given as following: for the subradiant states
with kξ ≈ ξπ/(Nd) (ξ � N), we have
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for those with kξ ≈ −π/d+ ξπ/(Nd) (ξ � N), we have
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Apart from the constant part, the above expressions show
that the subradiant states have Lamb shifts proportional
to ξ2/N2. The band is parabolic and flat around the
extreme point k = 0 or k = ±π/d.

B. Hamiltonian of 1D Atom Chain in 3D Free-Space

The effective atom-atom coupling Hamiltonian is ex-
pressed as

H3D,eff = −µ0ω
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d∗i ·G(ri, rj , ω0) · dj σ†iσj , (3)

where di and ri is the dipole moment and the position of
the ith atom, respectively, and µ0 is the vacuum perme-
ability. For the case of 3D free-space, the dyadic Green’s
tensor G(ri, rj , ω) = G(ri − rj , ω) is given as
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where k0 = ω0/c. This expression can be transformed
to the wave number presentation and yields H3D,eff pre-
sented as Eq. (6) of the main text.

C. Transformation to Continuous Limit

Equation (9) of the main text is written in a discrete
notation. The continuous expression can be obtained
from the discrete notation by the mapping
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The bosonic commutation relation changes from [bi, b
†
j ] =

δi,j to [bx, b
†
y] = δ(x− y).

D. Direct construction

To see why the fermionic ansatz has the N−3 decay
rate, we introduce the two-excitation state |k1, k2〉 =∑
m<n e

ik1zm+ik2zn |em, en〉, and evaluate
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and ck1,k2,ε=g
∗
k1,ε

+ gk2,ε and |bk,k′〉=|k, k′〉+ |k′, k〉. All

these state amplitudes scale as N−1 rather than the de-
sired N−2-scaling, which is required to obtain the 1/N3-
scaling of the decay rates.

As in the one-excitation sector, we may pro-
ceed and construct superpositions of four degener-
ate states |k1, k2〉, |−k1, k2〉, |k1,−k2〉 and |−k1,−k2〉,
to |φk1 , φk2〉 =

∑
m<n φk1(zm)φk2(zn)|em, en〉, where

φk(zm) = 〈em|φk〉. Then in the expression of
HI

eff|φk1 , φk2〉, the state amplitudes on |bk1(2),εk1D 〉, but

not on |bk1+k2−εk1D,εk1D 〉, are successfully reduced to the
N−2-scaling.

To also suppress the latter, we form the superposi-
tion with the permuted state |φk2 , φk1〉. The suitable su-
perposition turns out to be “fermionic”, i.e., |Fk1,k2〉 ∝
|φk1 , φk2〉 − |φk2 , φk1〉. Different from what we have seen
in the one-excitation sector, here the “tails” cannot be
erased completely by the superposition. It means that
the Fermionic ansatz is only the leading order solution.

With reference to our concluding remarks in the main
text on the full treatment of HR

eff and HI
eff , the same

construction can be applied for the full Hamiltonian Heff ,
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where we obtain

Heff |k1, k2〉 =(ωk1 + ωk2)|k1, k2〉
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While Eq. (8) features “tails” that are neither symmetric

nor anti-symmetric, its main features, and hence the ap-
plicability of the fermionic ansatz, are captured by HI

eff

given in Eq. (6). As we show in the main text, the
“tails” |bk1+k2−εk1D,εk1D 〉 of Eq. (6) arise via the second
order terms in the Holstein-Primakoff (HP) transforma-
tion, which in turn establish the Tonks-Girardeau limit
of the Lieb-Liniger model, and hence the fermionic solu-
tions.


