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A B S T R A C T   

The miniband Aharonov-Bohm oscillations and the interminiband absorption coefficient have been considered 
theoretically for one-layer superlattices of square and rectangular symmetries, composed of cylindrical quantum 
rings in the external transverse magnetic field with a periodic vector potential by the lattice constants. The 
crossings and anticrossings of the energies corresponding to different values of quasimomentum are observed. It 
is shown that the energy gap between the minibands and the sequence of the energies in each miniband can be 
tuned by the magnetic field. The interminiband absorption coefficient qualitatively depends on the symmetry of 
the superlattice, magnetic field induction and the incident light polarization. The obtained results indicate on the 
possibility to control the electronic and optical characteristics of the devices based on quantum ring superlattices. 
Keywords: quantum ring superlattice, Aharonov-Bohm oscillations, interminiband absorption.   

1. Introduction 

Nanostructured materials in which the system of conduction elec-
trons can be considered as two-dimensional are subject of an extensive 
investigation during the last two decades. Among them graphene [1–3] 
and other atomic monolayers are of great interest. On the other hand, 
one of the promising courses of development of nowaday optoelec-
tronics is the transition to zero dimensional nanostructures, such as 
quantum dots (QDs) [4] and quantum rings (QRs) [5]. In contrast to 
QDs, QRs allow to observe experimentally the effects based on the 
quantum phase coherence such as Aharonov-Bohm effect. Intermediate 
band solar elements, heterojunction lasers and other optoelectronic 
devices based on QD and QR systems possess a number of advantages: 
temperature stability, wide spectral range, small dark current, high 
signal-to-noise ratio, etc. [6,7]. That is why the realization of ordered 
structures, such as two-dimensional superlattices (SL), composed of QDs 
[8,9] and QRs with almost the same size and shape is an important 
technological task [10,11]. This fact stimulated wide range of in-
vestigations on the effect of external fields on optoelectronic properties 
of quasi-two-dimensional electrons modulated by a periodic electro-
static potential [12–17]. 

The intraband optical absorption in QRs has attracted an enormous 

interest in recent years [18–20] because of large optical nonlinearity 
observed in these structures and potential applications in photodetectors 
and high-speed electro-optical devices [21–24]. 

Since the appearance of the works of Azbel [25] and Hofstadter [26], 
the study of electronic spectra in a two-dimensional lattice under the 
influence of a transverse (perpendicular to the lattice plane) magnetic 
field has become a field of continuous interest [14,27–34]. Recently the 
consideration of two-dimensional electrons in a spatially periodic 
transverse magnetic field or periodic magnetic potential is of special 
interest [28,32,35–37]. In Ref. [28] the static magneto-conductivity 
components are calculated depending on periodically modulated mag-
netic field for a square lattice. In Ref. [32] the electronic band structure 
of GaAs/AlGaAs superlattice in a periodic magnetic field has been 
investigated. A general scheme for synthesizing a spatially periodic 
magnetic field, or a magnetic lattice is presented in Ref. [35]. A one 
dimensional SL on graphene with periodic Kronig-Penney model of 
magnetic potential which corresponds to periodic δ-function-like mag-
netic field has been considered in Ref. [37]. The above mentioned works 
indicate on the importance to study the effect of periodic magnetic field 
on 2D electrons and on the possibility to design devices with transport 
and optical properties which can be tuned by means of spatially 
modulated magnetic field. 
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In the present work we have considered the miniband Aharonov- 
Bohm oscillations and interminiband light absorption in InAs/GaAs 
quasi-two-dimensional QR SLs with square and rectangular symmetries 
subjected to a quasi-homogeneous transverse magnetic field with 
spatially periodic vector potential. 

2. Theory 

One-electron Hamiltonian in a QR SL in the presence of a transverse 
magnetic field with vector potential A! can be written in the following 
form: 

H ¼
1
2

�
bp �

e
c

A!
� 1

mð r!Þ

�
bp �

e
c

A!
�
þ

1
2
gð r!ÞμBσzðr � A!Þz þ Vð r!Þ;

(1)  

where σz is the Pauli “z” matrix, Vð r!Þ is the periodic potential of QR SL, 
which is taken to be 0 inside the QRs and V0 outside them, mð r!Þ and 
gð r!Þ are the electron effective mass and Land�e g-factor, respectively, 
which by enough high accuracy can be taken to be equal to their values 
in the InAs inside the QRs and to their values in the GaAs outside the 
QRs, μB is the Bohr magneton. We assume that the width of the SL d is 
small enough, leading to a strong quantization in the direction perpen-
dicular to the SL’s plane. This fact allows one to consider the in-plane 
motion of the electron independent on transverse one. 

The Cartesian components of the vector potential are taken in the 
following periodic forms: 
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(2)  

where ax(y) is the lattice constant in x(y) direction, B is the magnitude of 
magnetic field induction and the summations are carried out by the 
coordinates of the QRs centers Cx and Cy. As is known the Hamiltonian 
with the vector potential of usual symmetric gauge (Ax ¼ � By/2, 
Ay ¼ Bx/2) does not commute with translation operators of the SL 
resulting to a fractal structure for the energy spectrum [26,38]. In 
contrast, the Hamiltonian (1) with vector potential (2) commutes with 
corresponding translations allowing the existence of continuous mini-
bands in k-space, which are easier to control by external factors. The 
schematic view of the distribution of vector potential given by Eq. (2) in 
a SL of square symmetry is presented in Fig. 1. It is noteworthy, that the 
magnetic flux of the considered field is 0 in each of the unite cells if one 
includes the edges of the unite sell in the calculation of flux. When the 
edges are not included the magnetic flux is BS0 (S0 is the area of the unite 
cell) as for the homogeneous magnetic field (see Appendix A). 

Due to the periodicity of the Hamiltonian (1) one can make the 
following Fourier transformations: 

ψð r!Þ ¼ S� 1ei k! r!U
k!
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where U
k
!ð r!Þ is the Bloch amplitude, k

!
is the quasimomentum, S is the 

effective area of the SL. The Fourier transforms in Eqs. (3)–(7) can be 
expressed as follows: 

V g! ¼ V0

�

δ g!;0 �
2πðR2J1ðR2gÞ � R1J1ðR1gÞÞ

S0g

�

; (8)  

m� 1
g! ¼

δ g!;0

mGaAs
þ

2πðR2J1ðR2gÞ � R1J1ðR1gÞÞ
S0g

�
1

mInAs
�

1
mGaAs

�

; (9)  

g g! ¼ gGaAsδ g!;0 þ
2πðR2J1ðR2gÞ � R1J1ðR1gÞÞ

S0g
ðgInAs � gGaAsÞ; (10)  

F1; g!;xðyÞ ¼ þð� Þ
iB
2

"
2πgyðxÞðR2

2J2ðR2gÞ � R2
1J2ðR1gÞÞ

S0g2

�

�
1

mInAs
�

1
mGaAs

�

�
δgxðyÞ ;0ðð� 1ÞnyðxÞ � δgyðxÞ ;0Þ

mGaAsgyðxÞ

3

5;

(11)  

F2; g! ¼
B2

2

�

π
�

2
R2

2J2ðgR2Þ � R2
1J2ðgR1Þ

S0g2

�
R3

2J3ðgR2Þ � R3
1J3ðgR1Þ

S0g

�

�

�
1

mInAs
�

1
mGaAs

�

þ
1

mGaAs

�

0

@ð� 1Þny δgx ;0

g2
y

þ
ð� 1Þnx δgy ;0

g2
x

þ
δ g!;0ða

2
x þ a2

yÞðπ2 � 2Þ
8π2

1

A

3

5;

(12)  

AgxðyÞ ¼ � ðþÞ
iBδgx ;0

2
ð� 1ÞnyðxÞ � δnyðxÞ

gyðxÞ
: (13) 

a

Fig. 1. (Colour on-line) Schematic view of the vector potential distribution in a 
SL of square symmetry with lattice constant a. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the Web version 
of this article.) 

V. Aziz-Aghchegala et al.                                                                                                                                                                                                                      



Physica E: Low-dimensional Systems and Nanostructures 116 (2020) 113722

3

In Eqs. (8)-(13) Ji(ξ) is the first kind Bessel function of the i-th order, 
S0 is the area of the SL’s unite cell, R1 and R2 are the inner and the outer 
radii of the QRs, respectively [39], δξ,ζ is the Kronecker delta, gx 

(y) ¼ 2πnx(y)/ax(y) is the Cartesian component of the reciprocal lattice 
vector g!, (nx(y) ¼ 0, �1, �2, …), g2 ¼ g2

x þ g2
y . For the convenience the 

Fourier transformation for the functions F!1ð r!Þ and F2ð r!Þ which figure 
in Hamiltonian after the simplification of (1) is also made as it is pre-
sented in Eqs. (6) and (7). Substituting the expressions (3)–(7) to the Ben 
Daniel-Duke’s equation Hψ ¼ Eψ for each spin polarized state (there is 
no mixing between the spin states) one can arrive to the following set of 
linear equations: 
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were EZ; g!ðBÞ ¼ g
g!� g!

0 μBσzB=2 is the Fourier transform of the Zeeman 

therm and u
↑ð↓Þ k
!

; g!
is the Fourier transform of Bloch amplitude for the 

spin up (spin down) state. The energy values and the Fourier transforms 

of Bloch amplitude for each fixed value of quasi-momentum k
!

can be 
obtained by the exact diagonalization of the set of equation (14). 

Taking into account that only the direct optical transitions between 
two minibands are allowed [40], the absorption coefficient (AC) in the 
dipole approximation can be expressed as follows: 

αðωÞ ¼ α0δsi ;sf

Z
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is the dipole matrix element of the transitions from the i-th to the f-th 
miniband, uðlÞ

sl ; k
!

; g!
is the Fourier transform of the Bloch amplitude for 

the l-th miniband corresponding to the spin polarization sl, δsi ;sf is the 
Kronecker delta for the initial and the final spin polarizations si and sf, 
α0 ¼ e2ðm2

0cdω
ffiffiffi
ε
p
Þ
� 1, ω and η! are the frequency and the vector of 

polarization of incident photon, F(E) is the Fermi-Dirac distribution 
function with chemical potential μ and absolute temperature T, m0 and e 
are the free electron mass and the charge, respectively, ϵ is the dielectric 
constant of the media, c is speed of light and the integration is carried 
out over the first Brillouin zone (FBZ). 

3. Results and discussion 

Our calculations are carried out for InAs/GaAs QR SL. The value of 
the confining potential is taken to be 0 inside the rings and 341 meV 
outside them [41]. We use the values for the electron effective mass 
inside the QRs and outside them mInAs ¼ 0.026m0 and mGaAs ¼ 0.067m0, 
respectively. Taking into account that for the considered values of pa-
rameters electron is mostly localized in the QR regions, for calculation of 
the absorption coefficient (15) we use the value for the dielectric con-
stant of InAs material ε ¼ 12.9 [42]. 

In Fig. 2 the dependencies of the miniband energies on magnetic field 
induction at fixed points in the FBZ kx ¼ ky ¼ 0, kx ¼ π/ax, ky ¼ π/ay and 
kx ¼ π/2ax, ky ¼ π/2ay, are presented for SL of square symmetry (Fig. 2a 
and b) and for SL of rectangular symmetry (Fig. 2c). Two cases of SL of 
square symmetry, namely for the values of parameters R1 ¼ 10 nm, 

R2 ¼ 30 nm, ax ¼ ay ¼ 62 nm (Fig. 2 a) and R1 ¼ 5 nm, R2 ¼ 20 nm, 
ax ¼ ay ¼ 42 nm (Fig. 2 b) have been considered. One can observe an 
oscillatory behaviour of the energy at each point of the FBZ due to 
Aharonov-Bohm effect in each QR composing the SL. Strictly speaking, 
there is no a certain value for the frequency of oscillations, because of 
the increase of the degree of electron’s localization with increasing of 
magnetic field induction. However, from the comparison of Fig. 2a and b 
it is clear that more frequent oscillations are observed for a SL composed 
of QRs with larger size (Fig. 2a), because of smaller value of B for which 
magnetic flux through each QR equals to the flux quantum φ0 ¼ hc/e. 
Crossings and anticrossings for entire minibands (see for example the 
region where the solid, dashed and dotted lines are mentioned by the 

Fig. 2. (Colour on-line) Dependence of electron energy on magnetic field in-
duction for square (a,b) and rectangular (c) QR SL for three different values of 
the quasimomentum: kx ¼ ky ¼ 0 (solid lines), kx ¼ π/ax, ky ¼ π/ay (dashed lines) 
and kx ¼ π/2ax, ky ¼ π/2ay (dotted lines). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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corresponding arrows in Fig. 2b and c) as well as Zeeman splittings (for 
instance, the splitting of the lowest two minibands mentioned by red and 
blue lines for small values of B) have been observed. The change of the 
sequence of energies with regard to the values of quasimomentum due to 
miniband crossings is also obvious (Fig. 2b). More detailed observation 
brings to light the following regularities. In the SL of square symmetry 
with lattice constants ax ¼ ay ¼ a (Fig. 2a and b) the levels corresponding 

to k
!
¼ 0 (solid lines) or kx ¼ ky ¼ π/a (dashed lines) behave similarly 

with ones for a single QR because of the vanishing group velocity in the 
center and the corners of the FBZ. Hence, it is possible to introduce a 
quantum number L for each miniband which is analogue of the angular 
quantum number for quantum states in a single QR. One can assume that 
L ¼ 0 for the first miniband and L gets positive (negative) integer values 
for the miniband energies which increase (decrease) when B increases 
starting from B ¼ 0. However this description is not valid for the energy 
levels corresponding to kx ¼ ky ¼ π/2a (dotted lines in Fig. 2b). This 
levels behave similarly with ones in a single QR far from the regions of 
minibands crossing. When passing through these regions transition of 
dotted lines between the minibands corresponding to different values of 
L takes place (for instance, in Fig. 2b the yellow dotted line in the left 
side of the perpendicular dashed line belongs to the miniband corre-
sponding to L ¼ � 1, while in the right side the same line belongs to the 
miniband which corresponds to L ¼ 1). It is noteworthy that some 
crossings of the energy levels for square SL (mentioned by arrows in 
Fig. 2b) are transformed to anticrossings for rectangular SL (mentioned 
by arrows in Fig. 2c). This transformation takes place for the levels with 
the same spin polarization. The minibands which show anticrossings 
correspond to the values of L which differ by an even number (for 
example the anticrossings mentioned by solid arrows in Fig. 2b corre-
spond to the difference of L by 2). So, the reduction of the SL symmetry 
from square to rectangular one leads to the splitting of the electronic 
minibands corresponding to the same parity of L and the same spin 
polarization. 

In Fig. 3 the AC for QR SL with square symmetry is presented for 
different polarizations of the incident photon. It is assumed here (as well 
as in Fig. 4) that the temperature is near 0 K, so the two lowest mini-
bands with opposite spin polarizations are totally filled by electrons 
while the higher minibands are empty. It means that F(Ei) ¼ 1 and F 
(Ef) ¼ 0 in Eq. (15). A Gaussian distribution function (ð1 =

ffiffiffi
π
p

ΓÞexpð �

ðℏω � ðEf ð k
!
Þ � Eið k

!
ÞÞÞ

2
=Γ2Þ) has been used instead of the Dirac 

δ-function in Eq. (15) with a very small value for the energy broadening 
parameter Γ ¼ 0.05 meV [43]. The abrupt jumps of the curves corre-
spond to the values of incident photon energy ℏω which are equal to the 
energy difference between the edges of minibands. Due to the symmetry 
of the energy dispersion surface in momentum space the AC is the same 
for all the considered values of the angle ϕ between the light polariza-
tion vector and axis x (ϕ ¼ 0, π/6, π/4, π/3 and π/2). When the magnetic 
field induction B ¼ 0 (Fig. 3 a) the 1st and the 2nd minibands as well as 
the 3rd, 4th, 5th and the 6th minibands merge. That is why the only 
transitions between two minibands (referred as 1 → 2 transitions) are 
considered. A single maximum is observed at the same value of the 
incident photon energy for all the considered directions of light polari-
zation. For B ¼ 2T only 1 → 3 and 1 → 5 transitions are allowed, because 
of the same spin polarization of the states 1, 3 and 5 (in the absence of 
the spin-orbit coupling spin is a “good” quantum number). For B ¼ 5T 
the allowed transitions are 1 → 2, 1 → 5 and 1 → 6. Comparison of Fig. 3, 
a-f shows that the allowed transitions between the minibands as well as 
the magnitude and the frequency dependence of AC can be tuned effi-
ciently by means of external magnetic field. 

Fig. 4 represents the dependencies of the AC on the incident photon 
energy for QR SL with lattice constants ax ¼ 42 nm and ay ¼ 41 nm for 
different values of magnetic field induction and different directions of 
the light polarization vector. As in the case of SL of square symmetry 
there are different transitions with non-vanishing matrix elements for 
different values of magnetic field induction. However, in contrast to SL 
of square symmetry, for some transitions there are two values of photon 
energy for which AC has obvious maxima (see Fig. 4 a, b, d and f). The 
duplication of the absorption maximum is the result of the symmetry 
reduction of the dispersion surfaces. Note that there is a single maximum 
of AC for the angles of the polarization ϕ ¼ 0 (the right maximum) and 
ϕ ¼ π/2 (the left maximum) even for the SL of rectangular symmetry. 
Interestingly, for some transitions there is a certain value of the incident 
photon energy when the AC does not depend on the light polarization 
(see Fig. 4 a, b, d, and f) and the curves corresponding to different di-
rections of polarization vector intersect. This value of photon energy 

corresponds to the section of the surface Ef ð k
!
Þ � Eið k

!
Þ by the plane of 

constant energy E ¼ ℏω which has a square symmetry in momentum 

Fig. 3. (Colour on-line) Dependence of AC on the incident photon energy at temperature near 0 K for QR SL with lattice constants of ax ¼ ay ¼ 42 nm. The considered 
values of the light polarization angle are ϕ ¼ 0, π/6, π/4, π/3 and π/2. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 
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space because only the values of k which belong to the mentioned sec-
tion contribute to AC. It is noteworthy the absence of the photon energy 
which corresponds to independence of AC on light polarization for 1 → 5 
transitions when B ¼ 2T (Fig. 4c) and for 1 → 3, 1 → 6 transitions when 
B ¼ 5T (Fig. 4e and g). The reason is that in the mentioned cases not all 

the values of k belonging to the section of Ef ð k
!
Þ � Eið k

!
Þ by constant 

energy plane contribute to the AC. 
Finally, Fig. 5 represents the dependencies of the AC on the incident 

photon energy when the temperature of system T ¼ 10 K. Here the 
values of all other parameters coincide with ones in Fig. 4 b. The value of 
the chemical potential in Fermi-Dirac distribution function F(E) in Eq. 
(15) is obtained from the following assumptions: 1. the electrons’ con-
centration does not depend on temperature due to the large gap between 
the valence and conduction bands, 2. the two lowest minibands with 
opposite spin polarizations are totally filled by electrons and all the 
higher minibands are empty at T ¼ 0 K. As in Fig. 4 b one can easily 
observe the intersection point of curves corresponding to different po-
larizations of incident photon. The comparison with Fig. 4 b indicates on 
the reduction in the magnitude and the red-shift of the AC’s maxima and 
on a considerable smearing of the curves due to the temperature effect. 

4. Conclusion 

In summary, we have considered the effect of the external magnetic 
field on the miniband Aharonov-Bohm oscillations and the intermini-
band light absorption coefficient for one-layer superlattices of square 
and rectangular symmetries composed of cylindrical quantum rings. The 
crossings and anticrossings as well as Zeeman splitting for single energy 
levels corresponding to certain values of quasimomentum as well as for 
entire minibands have been observed. It is shown that in SL of square 
symmetry the energy levels at the center or the corners of the first 
Brillouin zone behave similarly with ones for single quantum ring and 
can be described by a quantum number L which is analogy of the angular 
quantum number. However the energies at intermediate points of the 
first Brillouin zone can be bundled with certain values of L only in the 
regions far from the minibands’ crossing. The reduction of the SL sym-
metry from square to rectangular one leads to the splitting of the elec-
tronic minibands corresponding to the same parity of L and the same 
spin polarization. 

The interminiband absorption coefficient has a single maximum and 
does not depend on the incident light polarization in a superlattice of 
square symmetry. However it significantly depends on magnetic field 
induction. The effect of the light polarization on the absorption 

coefficient is significant for superlattice of rectangular symmetry. For 
some transitions there are two values of photon energy where absorp-
tion coefficient has maximum and there is a value of photon energy were 
the curves corresponding to different polarizations of incident photon 
intersect. The reduction in the magnitude and the red-shift of the ab-
sorption coefficient’s maxima and the considerable smearing of the 
absorption curves due to temperature is observed. The significant effect 
of the translational symmetry, magnetic field and the incident light 
polarization on the miniband energies and absorption coefficient makes 
possible the effective control of electro-optical characteristics of devises 
based on quantum ring superlattices. 
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644076).  

Appendix A. Derivation of the magnetic flux in the unite cell of superlattice 

Consider the flux of the magnetic field described by the vector potential (2) through the unite sell of the SL with lattice constants ax and ay: 

Φ ¼
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The first integral in the right hand side of Eq. (A1): 
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� ax=2

∂Ay

∂x
dx ¼

B
2

Zax=2

� ax=2

θ
�ax

2
� jxj

�
dx �

B
2

Zax=2

� ax=2

jxjδ
�ax

2
� jxj

�
dx

¼
B
2

�

ax � 2
Zax=2

0

xδ
�ax

2
� x
�

dx
�

¼ 0:

(A2)  

Analogically, one can show that the second term in the right hand side of Eq. (A1) is also 0 and hence Φ ¼ 0. Note, that the contribution of the edges of 
unite cell is connected with integrals in Eq. (A2) containing Dirac delta-functions and the neglection of these integrals leads to the value of magnetic 
flux Φ ¼ BS0. 
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