
Contextual linking between workflow provenance
and system performance logs

Elias el Khaldi Ahanach, Spiros Koulouzis, Zhiming Zhao
elias.el.khaldi@gmail.com, {S.Koulouzis|Z.Zhao}@uva.nl

University of Amsterdam,
Amsterdam, The Netherlands

Index Terms—scientific workflow, provenance, system logs
Abstract—When executing scientific workflows, anomalies of

the workflow behavior are often caused by different issues such
as resource failures at the underlying infrastructure. The prove-
nance information collected by workflow management systems
only captures the transformation of data at the workflow level.
Analyzing provenance information and apposite system metrics
requires expertise and manual effort. Moreover, it is often time-
consuming to aggregate this information and correlate events
occurring at different levels of the infrastructure. In this paper,
we propose an architecture to automate the integration among
workflow provenance information and performance information
from the infrastructure level. Our architecture enables workflow
developers or domain scientists to effectively browse workflow
execution information together with the system metrics, and
analyze contextual information for possible anomalies.

I. INTRODUCTION

A complex scientific workflow often consists of many
services, which are deployed on distributed infrastructures
[1]. The runtime behavior of the workflow, e.g., monitored
by the underlying infrastructure, is important for analyzing
the workflow’s provenance, in particular when the workflow
has an unexpected performance issue or failure. On the one
hand provenance (PROV)1 is often used in scientific workflows
to capture the transformation of data and therefore provide
reproducibility. On the other hand monitoring systems provide
metrics about the usage of resources, e.g., CPU usage or
memory consumption. Those metrics can be useful for work-
flow developers to investigate the workflow behavior at the
low-level resources[2]. However, the provenance and system
metrics are provided by different sources, which makes the
integrated analysis difficult and time-consuming.

However, it is very challenging to analyze the workflow
performance, due to difficulty in gathering and analyzing per-
formance metrics across distributed infrastructures. Moreover,
the workflow provenance and the system logs are provided by
Workflow Management System (WFMS) and the underlying
infrastructure, and they contain different information.

In this poster, we propose a context-aware information
integration and exploration framework for users to effec-
tively investigate possible workflow execution anomalies or
bottlenecks by combining provenance with available system
metrics.

1https://www.w3.org/TR/prov-overview/

II. RELATED WORK

The steps in scientific workflows are often implemented
as web services and hosted distributed infrastructures like
Cloud[3]. It is often hard to trace execution bottlenecks which
are caused by underlying infrastructure. Cloud infrastructures
nowadays can provide sophisticated monitoring tools for vir-
tual environments; however, those monitoring information are
often at scope of virtual machines, containers and network,
which are difficult for application developers to link with the
context of high-level workflow logic and to seamlessly analyse
casualty between them.

Prodan et al., propose a model for estimating the ideal
lowest execution time of a workflow and then compare it
with the workflow’s measured execution time [4]. The solution
relies on a Grid resource scheduler GRAM to collect the state
of each workflow task [5]. Ferreira et al, classifies the state
of each task in a workflow and apply the appropriate rule
to mitigate failures[6]; however, resource scaling were not
addressed since Grid environments assign tasks in a static
resource. Madougou et al., analysed task failures in an e-
Infrastructure, based on history of workflow activity from the
e-BioInfra platform[7]; however, the analysis only focuses on
underlying resource usage and did not connect with the higher
level workflow deception tasks. The work presented in [8]
proposes an online mechanism for detecting anomalies while
executing scientific workflows on clouds. The authors use a
framework to collect online monitoring time-series data from
workflow tasks and the infrastructure. This approach is tightly
coupled with the Pegasus WFMS which depends on specific
worker nodes to execute workflows tasks.

An effective solution is thus needed to enable workflow
users to 1)analyse the execution time of service-based scien-
tific workflows, 2)detect bottlenecks that cause workflow per-
formance degradation and 3) intuitively perform the analysis.

III. ARCHITECTURE

We propose a Cross-context Workflow Execution Analyzer
(CWEA), made the components shown in Fig. 1. The Work-
flow Context Data Retriever (WCDR) extracts the name,
start-time, and end-time of each web service call described
in the workflow from the provenance data. The Resource
Context Data Retriever (RCDR) queries the corresponding
hosts to retrieve available performance data within the web
service’s call time-ranges, using the service endpoints obtained



by the WCDR. Therefore, these two components perform the
crucial task of combining provenance and performance data.
Workflow Execution Analyzer (WFEA) identifies the most
time-consuming web services within the context of a workflow
execution. A GUI allows users to visualize the workflow
execution with the performance metrics of the underlying
resources. The CWEA may be integrated with any WFMS
that is compatible with the PROV specification.

Fig. 1. The overarchitecture of CWEA

IV. PROTOTYPE AND USABILITY

To demonstrate the usability of CWEA, we implemented a
simple REST service with three methods: 1) a lightweight
only using very little resources named LWx, 2) a CPU
intensive intended to exhaust the system’s CPU resources
called CPUx and 3) a memory intensive that makes heavy
use the system’s of memory named Memx . We deployed
that service on three Virtual Machines (VMs) (labeled A, B
and C) together with cAdvisor [9], a performance metrics
collector and Prometheus[10], a time-series database used to
store performance metrics.

On a separate VM we deployed the CWEA and its com-
ponents to gather metrics from different hosts and to perform
the visualization.

Fig. 2. Example workflow. VM A hosted tasks LW1, CPU2 and Mem2. VM
B tasks CPU1 and Mem1. VM C task CPU3.

Using the workflow in Fig. 2, the CWEA creates a number
of outputs. Fig. 3 presents the duration and execution time
of each task. We see the execution timeline of the workflow
and the time required to execute each task. In this timeline,
each task is presented by a different color bar which is
also highlighted in the resource usage graphs below. Fig. 4
visualises the CPU used by each task with the color that
corresponds to each task. Fig. 5 present the memory used
by each task. From the results presented, we see that the
most time-consuming task is the mem intensive. With this
information we can better adapt the underling infrastructure
and assign that task to a more suitable VM.

Fig. 3. Workflow execution timeline.

V. CONCLUSIONS AND FUTURE WORK

We presented a CWEA that allows developers to analyze the
execution of service-based workflows and visualize possible
bottlenecks related with the infrastructure. We demonstrated

Fig. 4. CPU usage.

Fig. 5. Memory usage.

the usage via a test workflow. However, it is important to test
larger scale workflows. The CWEA relies on the WFMS to
collect provenance data. Having performance data from many
workflow executions will enable us to make use of statistical
and AI algorithms to detect and predict possible workflow
execution failures due to errors in the resource infrastructure.

ACKNOWLEDGMENT

This work was supported by the EU’s Horizon 2020 re-
search and innovation programme under grant agreements
No. 824068 (ENVRI-FAIR), 654182 (ENVRIPLUS) and
825134(ARTICONF).

REFERENCES

[1] Z. Zhao, A. Belloum, C. de Laat, P. Adriaans, and B. Hertzberger,
“Distributed execution of aggregated multi domain workflows using an
agent framework,” in 2007 IEEE Congress on Services (Services 2007),
pp. 183–190, IEEE.

[2] S. Koulouzis, A. S. Belloum, M. T. Bubak, Z. Zhao, M. ivkovi?, and
C. T. de Laat, “SDN-aware federation of distributed data,” vol. 56,
pp. 64–76.

[3] J. Wang, A. Taal, P. Martin, Y. Hu, H. Zhou, J. Pang, C. de Laat, and
Z. Zhao, “Planning virtual infrastructures for time critical applications
with multiple deadline constraints,” vol. 75, pp. 365–375.

[4] R. Prodan and T. Fahringer, “Overhead analysis of scientific workflows
in grid environments,” IEEE Transactions on Parallel and Distributed
Systems, vol. 19, pp. 378–393, March 2008.

[5] I. Foster, “Globus toolkit version 4: Software for service-oriented
systems,” Journal of computer science and technology, vol. 21, no. 4,
p. 513, 2006.

[6] R. Ferreira da Silva, T. Glatard, and F. Desprez, “Self-healing of oper-
ational workflow incidents on distributed computing infrastructures,” in
2012 12th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (ccgrid 2012), pp. 318–325, May 2012.

[7] S. Madougou, S. Shahand, M. Santcroos, B. van Schaik, A. Benab-
delkader, A. van Kampen, and S. Olabarriaga, “Characterizing workflow-
based activity on a production e-infrastructure using provenance data,”
Future Generation Computer Systems, vol. 29, no. 8, pp. 1931 – 1942,
2013. Including Special sections: Advanced Cloud Monitoring Systems
& The fourth IEEE International Conference on e-Science 2011 e-
Science Applications and Tools & Cluster, Grid, and Cloud Computing.

[8] P. Gaikwad, A. Mandal, P. Ruth, G. Juve, D. Krl, and E. Deelman,
“Anomaly detection for scientific workflow applications on networked
clouds,” in 2016 International Conference on High Performance Com-
puting Simulation (HPCS), pp. 645–652, July 2016.

[9] “cadvisor (container advisor), official github page.” https://github.com/
google/cadvisor. Accessed: 2019-03-28.

[10] “Prometheus, an open-source systems monitoring and alerting toolkit..”
https://prometheus.io/docs/introduction/overview/. Accessed: 2019-03-
28.


