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Abstract 

Wavelength dependent EDFA gain ripple has an impact on connection’s OSNR performance. We propose a machine learning 

regression model to estimate the end to end gain ripple penalty and to increase QoT estimation accuracy.  

1    Introduction 

The emergence of Elastic Optical Networks (EONs) has 

introduced flexibility in the optical transport supporting 

heterogeneous data rates, optical spectrum channels, 

modulation formats, etc. This leads to attain higher spectral 

efficiency and capacity, while keeping the network costs as 

low as possible [1]. For reliable and efficient optical network 

planning and operation, accurate estimation of Quality of 

Transmission (QoT) before establishing the connections is 

necessary.  

Traditionally, QoT estimation is performed with some 

analytical Physical Layer Model (PLM), while, recently 

Machine Learning (ML)-based estimation [2-4] has gained a 

lot of attention. The main sources of noise accounted in these 

QoT estimators are the Amplified Spontaneous Emission 

(ASE) noise generated at both span and node amplifiers and 

the Non Linear Interference (NLI) noise, which considers fiber 

non linearities, self and cross channel interferences. Typically, 

an additional design margin is adopted and applied to the QoT 

tool to accommodate estimation errors and other uncertainty 

parameters [5]. Removing such uncertainties would allow to 

reduce the margin from the QoT tool without compromising 

the QoT estimation accuracy. By doing this, appealing 

advantages such as higher efficiency and/or lower cost can be 

achieved during the network planning and upgrading phases. 

Erbium Doped Fiber Amplifiers (EDFAs) are key devices in 

WDM and EON transport networks to ensure the required 

connection QoT level at the receivers. Nevertheless, EDFAs 

are the dominant noise source (ASE) in those networks. 

Typically, span EDFAs are operated in Automatic Gain 

Controlled (AGC) mode with near to zero tilt (first order/ 

linear correction) to get a flat gain in the C-band as shown in 

Fig. 1(a) [6]. However, although the gain tilt profile is 

maintained at zero still there are gain fluctuations/ripples 

within the gain bandwidth of EDFAs [7]. These gain ripple 

effects may be due to: i) imperfections in the gain flattening 

filters at the amplifier output; or ii) wavelength dependent 

absorption/ emission coefficients of 𝑬𝒓𝟑+ ions [8]. 

In light of the above herein, we investigate the contribution of 

the wavelength dependent EDFA gain ripple on the QoT. We 

then propose a ML regression model based on a link 

formulation that leverages monitoring data of established 

connections to estimate the gain ripple penalty for new 

connection requests. Keeping realistic simulation 

environment, we observe a related margin reduction from 

1.02dB to 0.08dB in optical signal to noise ratio (OSNR). 

2    Related Work  

Several analytical models were introduced to estimate EDFA 

wavelength dependent gain and channel power at EDFA 

output, under different channel loading conditions. The 

models range from limited accuracy and simple 

characterization to very detailed estimations, trading-off 

processing time for accuracy [9]. Still even the most detailed 

models require knowledge of certain physical parameters, that 

might be hard to measure or known in a deployed network. 

Some recent ML-based works addressed the wavelength 

dependent gain spectra estimation [10] or the power excursion 

during dynamic add/drop [11]. The dataset used for training 

those models were either i) analytical without considering 

fiber effects/NLI noise contribution, or ii) experimental, 

requiring the collection of data for each individual span EDFA, 

which practically limits the usability of these approaches. In 

[12] the gain offset of a AGC-EDFA was experimentally 

investigated and a method was derived aiming at reducing the 

gain offset up to 0.5 to 0.7dB when encompassing up to five 

cascaded EDFA spans. The scenario targeted in [12] was 

dynamic with add/drop of new/existing connections. However, 

for fixed load EDFAs, with static network conditions, the gain 

ripples effect was not explored. Moreover, optical attenuators 

were used to replace fibers in experiments and hence the 

effects of NLI noise contribution were not considered at all. In 

[10], a neural network based EDFA gain model is proposed to 

model an individual EDFA gain profile. This approach is again 

limited to per span EDFA modelling (18000 channel loading 

conditions for single EDFA).  EDFA cascading and its effect 

on gain ripples were also not considered. 

In brief, to the best of our knowledge, the behaviour of EDFA 

gain ripple penalty and its effect on QoT estimation still need 

to be investigated. Therefore, we devise an estimation tool that 

can predict EDFA gain ripple penalty for new connection 

based on training from monitored data of established ones. 
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3    Methodology and Proposed Solution 

We consider a Flexi-grid EON with Reconfigurable Optical 

Add/Drop Multiplexers (ROADMs) connected through 

uncompensated fiber links.  Each link consists of multiple fiber 

spans that terminate at an EDFA to compensate the span loss. 

We assumed that span EDFAs are operated in AGC mode with 

zero tilt having gain ripple profiles. We consider Dynamic 

Gain Equalizers that flatten the gain ripples at every ROADM 

node, so at the end of each link. To understand the trends of 

gain ripple profiles, we performed experiments on EDFAs to 

capture the gain fluctuations in the optical spectrum band of 

~1530 – 1563nm (40 channels). All EDFAs used in 

experiments were operated in AGC mode with zero tilt by pre-

adjusting their operating points. Based on collected 

experimental data, we created realistic sets of individual span 

EDFA gain profiles. We denote these gain profiles as 𝐺𝑖(λ) 

having an average gain value of 𝐺𝑖,𝑎𝑣𝑔 and wavelength 

dependent ripple, 𝐺𝑖,𝑅(λ) given by Eq. 1. 

𝐺𝑖(λ) = 𝐺𝑖,𝑎𝑣𝑔 + 𝐺𝑖,𝑅(λ)  where i represent profile index             (1)                                                          

 
Fig 1. (a) Adopted setup, (b) OSNR fluctuation of ~1dB 

observed due to the EDFA gain ripple after 5 spans. 

We assign these ripples profiles to span EDFAs and we 

emulated a static link set up in VPI Transmission Maker 

version 9.9 as shown in Fig. 1(a). We found ~1dB (see 

Fig.1(b)) of fluctuation with increasing number of spans. We 

then extended these static link simulation experiments in entire 

C-band to capture the effect of gain ripples on OSNR.  

 
Fig 2. EDFA gain ripple effect on OSNR(dB) over the C-band. 
  

Fig. 2 represents the relative OSNR variation distribution over 

40 channels in C-band with respect to flat EDFA profiles. We 

observe that with the cascade of spans (80km length used in 

simulations), the OSNR variation increases (~1dB in C-band 

as also shown in Fig. 1(b)). The trend in Fig. 2 indicates less 

fluctuation on spectrum band edge channels. This is because 

the ripple profile used contains more rapid fluctuations in the 

center, keeping 𝐺𝑖,𝑎𝑣𝑔 constant. The shape of the ripple can 

vary over longer time (aging), leading to higher peak to peak 

variations, but this is slowly time varying. So in short and 

medium term there is clear trend which makes modelling of 

these variations possible. These variations impact the accuracy 

of the QoT estimator within a margin range as described in Fig. 

2 and Fig. 7 of [13].  

If we use a physical layer model (PLM), such as the Gaussian 

Noise-GN model, the typical assumption is a flat EDFA gain 

[14] requiring a high design margins as given by Eq. 2 

𝑂𝑆𝑁𝑅𝐹𝑙𝑎𝑡(𝜆) =
𝑃𝑂 (λ)

𝐺𝑁𝑜𝑖𝑠𝑒_𝑓𝑙𝑎𝑡_𝑝  
+ 𝑑𝑒𝑠𝑖𝑔𝑛 𝑚𝑎𝑟𝑔𝑖𝑛1          (2) 

where 𝐺𝑁𝑜𝑖𝑠𝑒_𝑓𝑙𝑎𝑡_𝑝  corresponds to the “total noise”  of the path 

estimated by the PLM having no EDFA gain ripple 

information. We call it as, “ripple unaware PLM”. The penalty 

due to gain ripple fluctuations is within the design margin1 

(which is flat and equal to the worst case). In this case, we had 

to model all EDFAs in the network in a calibration face, which 

would be time consuming and would need to be repeated, 

when the ripple function changes (aging). In this work, we use 

the well accepted GN model as PLM. We extend the ripple 

unaware PLM model to capture the ripple penalties to 

ultimately reduce the required margin for new connections 

(ripple aware PLM). We considered accumulated ripple 

penalties at link ends which are then added over the path. Our 

extended ripple aware PLM estimates OSNR by Eq. 3  

𝑂𝑆𝑁𝑅𝑅𝑖𝑝𝑝𝑙𝑒(𝜆) =
𝑃𝑂 (λ)

𝐺𝑁𝑜𝑖𝑠𝑒_𝑟𝑖𝑝𝑝𝑙𝑒_𝑝 (𝜆) 
+ 𝑑𝑒𝑠𝑖𝑔𝑛 𝑚𝑎𝑟𝑔𝑖𝑛2            (3) 

where 𝐺𝑁𝑜𝑖𝑠𝑒_𝑟𝑖𝑝𝑝𝑙𝑒_𝑝 (𝜆) = 𝐺𝑁𝑜𝑖𝑠𝑒_𝑓𝑙𝑎𝑡_𝑝 + 𝐺𝑟𝑖𝑝𝑝𝑙𝑒_𝑝 (𝜆)  in this 

case is not flat but models the wavelength (λ) dependent ripple 

noise leading to lower margin (design meagin2 < design 

meagin1). To improve in this way, the accuracy of QoT 

estimation, we use monitoring information from Optical 

Performance Monitors (OPMs) assumed to be installed at the 

end of each link [15] and at the end of connections. Such 

information is used to fit per link noise ripple penalty 

functions, which in turn are used to calculate the end-to-end 

ripple penalties, 𝐺𝑟𝑖𝑝𝑝𝑙𝑒_𝑝 (𝜆). 

 
Fig 3. (a) Overall Flowchart and architecture, (b) ML-based 

penalty estimator (i.e., train/test/estimate). 
 

We assume an optical network with established connections 

and their attributes (also referred as state of network at a given 

time) denoted by P. We assume a ripple unaware PLM model 

as represented in Eq. 2, which calculates the noise of the 

established connections end-to-end as Gnoise_flat_p(P), and the 

related per link noise as Gnoise_flat_l(P). Note that P contains 

attributes for a connection such as, the traversed links, central 

wavelength etc. We also assume that we monitor the OSNR of 

the established connections and thus their noise at the path 

level Yp(P) and at the link level Yl (P) and store it in QoT tool 

database. This data serves as the ground truth, it defines the 

true 𝐺𝑁𝑜𝑖𝑠𝑒_𝑟𝑖𝑝𝑝𝑙𝑒_𝑝(𝜆), so with zero margin. The flowchart 

representing the integration between collected monitoring 

information and the ML assisted penalty estimation function is 

depicted in Fig. 3(a).  
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We denote the difference of Y and Gnoise_flat as i) El (P)=Yl (P)- 

Gnoise_flat_l (P) which is a vector with the ripple penalties at the 

end of each link, accumulated over the links, spans and ii) 

Ep(P)=Yp(P)- Gnoise_flat_p(P) which is a vector with the ripple 

penalties at connections’ end, accumulated over all used links. 

We let E be the concatenation of both penalty vectors El and 

Ep. From corresponding connections attributes, P, we extract 

per link and per path features matrices. Additionally, a bias 

term (per link) is also considered to account the monitoring 

error and for non-zero equalized ripple. The per link and per 

path features are merged into a single features matrix, X=f (P). 

Our goal is to identify the function 𝐺𝑟𝑖𝑝𝑝𝑙𝑒_𝑝 =ʘ(X)≈E that maps 

well the features matrix X to the penalty E generated due to the 

gain ripple. We rely on ML for training and fitting of X on E 

and finding the function ʘ. Assuming a new connection 

request l ∉ P, we will use the ripple unaware PLM to obtain 

the total flat noise 𝐺𝑁𝑜𝑖𝑠𝑒_𝑓𝑙𝑎𝑡_𝑝 . Then we train our model and 

obtain ʘ and use that to find the ripple noise penalty on the 

new connection 𝐺𝑟𝑖𝑝𝑝𝑙𝑒_𝑝(𝑙) =ʘ(f(l)), and estimate the total 

noise with ripple 𝐺𝑁𝑜𝑖𝑠𝑒_𝑓𝑙𝑎𝑡_𝑝 +ʘ(f(l)). The estimation error 

will be identified once we establish the connection, monitor its 

values Yp(l) and compare it to that. 
 

4     Results and Discussion 

We considered the DT topology with 12 nodes and 40 

bidirectional links whose lengths range from 48 to 458 km as 

shown in Fig 4a. We assumed 4 traffic loads of [100, 200, 300, 

400] total connections with uniformly chosen source-

destination having fixed symbol rate of 32GBaud and 

allocated 3 spectrum slots (3*12.5GHz = 37.5 GHz).  

  
 Fig 4. (a) DT 12 network topology, (b) penalty distribution. 
 

We generated and assigned per span EDFA gain profile by 

randomly applying time shifting and amplitude scaling to 

experimentally obtained gain ripple dataset, Gi(λ) (see Section 

2). We assume that we have a set of connections established 

(according to the load) and monitored. Monitoring in our 

simulations is performed with a ripple aware PLM (extended 

GN) model, which give us Y(P). We assume a stable network 

state, where we have a specific set of connections established 

and we want to establish a set of new connections. To do so 

we divide connections in two sets, 90% / 10%, the training and 

testing datasets, respectively. The training set is assumed to be 

the established connections P and the testing set the 

connections to be established. We use the ripple unaware PLM 

(GN) model to obtain Q(P) depending on the attributes P of 

the established connections. By subtracting Q and Y, we obtain 

the penalty vector E (ripple noise based penalty estimator 

block in Fig. 3b). The E vector distributions are depicted in 

Fig. 4b for 100 connections, which clearly shows the error 

values of ~1dB. The penalties are distributed in positive and 

negative sides depending upon the ripple values. 

Positive/negative penalties result in upper/lower bound for 

design margins and we call them as, “high/low margin”. We 

evaluated several ML assisted regression techniques to fit ʘ 

on E, such as linear fitting, quadratic, polynomial fitting, 

support vector machine (SVM) etc. In the presented results we 

used polynomial regressions of degree 4 that achieved 

maximum Mean Squared Error (MSE) of 4.5E-2 on predicted 

OSNR with load of 100 connections as shown in Fig. 5a. With 

increase in load from 100 to 400, max MSE converge to a 

value of ~4E-3. Results presented here are averaged over 200 

iterations at each load.  

 
Fig 5. Effect of load variation on, (a) OSNR(dB) MSE (b) 

Max. overestimation error. 
 

For the above set of simulations, the maximum used peak to 

peak ripple intensity among all span EDFAs is about ±0.5dB, 

which results in a reference margin (𝑑𝑒𝑠𝑖𝑔𝑛 𝑚𝑎𝑟𝑔𝑖𝑛1) of 

1.02dB at a load of 400 connections. Fig. 5b shows the 

maximum overestimation error on OSNR estimation, relative 

to Fig. 5a. This overestimation is the reduced estimated high 

and low margin (𝑑𝑒𝑠𝑖𝑔𝑛 𝑚𝑎𝑟𝑔𝑖𝑛2). For high margin, it is found 

to be 0.08dB, yielding a ~0.92dB margin reduction with 400 

connections. For low margin, this reduction value is ~0.75dB 

as the distribution of penalties is less for low margin side. 

 
Fig 6. New margin for different intensities of peak to peak gain 

ripple among all EDFAs with reference as ±0.5dB. 
 

We also varied the gain ripple intensity (we divided the gain 

ripple profiles by a factor of 1 to 4, resulting in peak-to-peak 

fluctuations of ±0.5dB to ±0.125dB) and estimated the high 

and low margins at a fixed load of 400 connections. We 

observe in Fig. 6, a reduction of >90% on both high and low 

margin for peak to peak intensity fluctuations of ±0.5dB. For 

low values of peak to peak ripple of ±0.125dB, high and low 

margin reduction varies from 60% to 70% respectively.  
 

5    Conclusion 

We proposed a ML method to estimate the noise penalty 

generated by EDFAs gain ripple. Leveraging that, we 

estimated the QoT accurately for new connection with >90% 

reduction in the related margin. 
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