ALMA science data management

Felix Stoehr ALMA Science Archive

credit goes to the entire ALMA team

ALMA

C. Malin

- built by ESO, NRAO, NAOJ in cooperation with Chile
- 66 antennas at 5000m elevation in the Atacama Desert
- interferometry at 84-702 GHz with 16km baselines
- full operations: 200TB/yr=6.6Mbytes/s
- Cycle 3: observing, call for Cycle 4: spring 2016

ALMA

ALMA

demands of astronomers scale faster than funding

collaboration over continents is required for the largest projects

challenges

- John Hibbard: Who does train the next generation of experts who have hands-on end-to-end expertise? Maybe there is not only room for smaller telescopes but astronomy needs those to train the next generation?
- communication/organization

science data management

success

success = science output of the community

- someone else is responsible for our success
- we have to create the best **end-to-end user-experience possible**

- ALMA will produce about the same amount of data in one year as ESO has produced in its first 50 years. (And ESO will, too!)
- LOFAR, MWA, Gaia, PanStars, LSST, SKA, Euclid, ELTs
- T. Tyson: "Astronomy is transformed from being a data-starved science to one where data is overabundant"
- multi-wavelength science: less time per wavelength regime
- astronomers do not scale: bytes/astronomer grow exponentially
- my prediction:
 - now: astronomers compete for observing time
 - future: observatories will compete for astronomers to work with their data

- technical evolution will be ahead of astronomy
 - networks, storage, CPU
- however:
 - transfers, storage, processing will need to be parallel
- code-to-data will become more and more prominent

data reduction

data reduction

- science-grade data
- pipeline
- manual data-reduction
- first science analysis

science-grade data

- ALMA policy: will provide science grade products for all raw data
- we develop a full data-reduction package CASA (python and C++)
- extreme usersupporting: face-to-face support from proposal preparation to science analysis in three contintents

science-grade data context

what do Pls do?

- workload is shifting from Pls to observatories
- more complex telescopes and more data: pipelines and science-grade data-products will become an integral part of the telescope/instrument design

science-grade data context

- deep impact on how science is done
- astronomers will become consumers of data instead of being co-producers
 - good: astronomy makes best use of astronomers, its future rare resource. \rightarrow The science output will increase.
 - risk: astronomers may not understand data limitations
- observatories will have a much larger responsibility
- in some areas: data-mining will gain importance
- it will be (even) easier to have an archival career

pipeline

- ALMA pipeline is deployed with CASA
- is data-driven and organized into tasks
- status: calibration has been accepted, imaging is in commissioning

- reprocessing? under discussion
- challenge: backwards compatibility of python code

pipeline

WebLog: Calibrator Images

slides courtesy of Liz Humphreys

pipeline

 importance of pipelines for the success of a facility can not be overestimated

- pipeline as integral part of the design of an instrument
- challenges:
 - maintenance and evolution of the pipelines
 - reprocessing
 - Most of all:
 - cost very easily underestimated

manual data-reduction

- ALMA's deliver science-grade data products principle is kept at all cost
- manual data-reduction JAO and the three ARCs until pipeline is ready
- some modes might need manual reduction also in the future
- benefits
 - helps train expert ALMA staff
 - gained knowledge can be used to improve the pipeline

manual data-reduction context

- very high cost (but also high quality)
- products can be tailored to the needs of the PI
- not complete/homogeneous products
- reprocessing is essentially infeasible

first data analysis

- ADMIT (ALMA data mining toolkit) development program
- CASA add-on, will run at JAO on all products

first data analysis

- so far most facilities describe their observations
- next frontier: first data-analysis allows to describe the science content of those observations

- PI ground-based facilities are "following" space facilities and surveys
- again: more workload and responsibility shift from scientists to observatories

quality control

quality control

- ALMA quality assessment
 - QA0: raw data quality assessment after one observation
 - QA1: trend analysis of the facility
 - QA2: data product quality assessment for one dataset using pipeline weblog
 - QA3: analysis of problems reported by users after data delivery

- QA0 and QA1are expected to be automatized
- QA2 and QA3 will remain tasks of a real person

- complete, correct, consistent, (homogenized)
- speak the language of the astronomers. Query by physical concepts

DANIEL DURAND TEST of science archives:

You know have one, when you can find your own data by only giving physical parameter constraints

- reduce interaction cost
- unscope search: give access to the full n-dimensional parameter space

future: products, CARTA, PPI, HiPS+AladinLite, VO (ObsCore, SIAPv2, TAP)

• success? → best possible end-to-end user-experience

creating a good Science Archive helps maximise the scientific return

great return-for-investment ratio

interoperable: VO

- ALMA policy: users must cite the data they use
- ESO/NRAO/NAOJ libraries track publications
- we check arXiv and contact PIs if needed before articles go into press

	MA has great interest in providing data and support in a way that enables PIs and the unity at large to advance science and to publish their findings in astronomical journals.
	While we attempt to provide data that is useful for expert and non-expert PIs, we may not be reaching this goal effectively in some cases.
	According to our records, it has been two years since the end of the proprietary period of your project, and we have been unable to identify a related publication.
	ould like to use this occasion to ask you to help us provide better data and support for Id future users of ALMA, by giving us your feedback on this very short, anonymous questionnaire.
	ibe the status of your project. the following answers
○ There is a p	oublication. (Please tell us below which journal we need to add monitoring)
A publicatio	n is in press.
	on is in preparation.
expected so	
	was complete, but the quality of the data was not good enough.
	was complete, and the quality of the data was good enough but we had problems ne data products.
	e data were complete and good enough, the expected science was not contained in the cample, the experiment was a detection experiment.
	e data were complete, good enough and the expected science was contained in the data, c field had moved on in the meantime. For example a competitor has already published lts.
Although the to analyze t	e data were complete, good enough and still relevant, no effort was available (any more) the data.
	e data were complete and good enough, still relevant and effort was available we have to a from other facilities. (Please tell us which ones)
O Personal rea	asons.
Other:	

- publication tracking is
 - essential to measure the success and
 - a crucial tool to improve operations

to make sure that the investment really gets converted into science

summary

- ALMA's has a modern science data management concept
- goal: science-grade products for all raw data
- extreme user-support
- so far ALMA is very successful
- "transformational facility"
- still a lot of work is required to develop ALMA to its full potential

summary

- success = maximizing the end-to-end user experience
- astronomers not data will be the rare resource
- more work and responsibility will shift to observatories
- the way we do science is changing
- This will be golden times for astronomers