
 Dynamic Eigenvector Centrality as a Biomarker for 

Motor Imagery Brain-Computer Interfaces 

Paula G. Rodrigues 

Engineering, Modeling and Applied 
Social Sciences Center  

Federal University of ABC 

São Bernardo do Campo, Brazil 

ORCID: 0000-0002-5770-8558 

Diogo C. Soriano  

Engineering, Modeling and Applied 

Social Sciences Center  

Federal University of ABC 
São Bernardo do Campo, Brazil 

ORCID: 0000-0002-9804-7477

Arnaldo Fim Neto 

Engineering, Modeling and Applied 
Social Sciences Center  

Federal University of ABC 

São Bernardo do Campo, Brazil 

ORCID: 0000-0002-4461-5416 

Slawomir J. Nasuto 

Biomedical Sciences and Biomedical 

Engineering Division  

University of Reading 
Reading, United Kingdom 

ORCID: 0000-0001-9414-9049

André Kazuo Takahata 

Engineering, Modeling and Applied 
Social Sciences Center  

Federal University of ABC 

Santo André, Brazil 

ORCID: 0000-0002-7701-6452 

 

 

Abstract— Brain functional connectivity relies on the 

evaluation of instantaneous similarity between different brain 

regions. This strategy has been widely applied in neuroscience 

using fMRI data in order to understand brain connectivity 

organization implicated in some of the main brain pathologies, 

such as Parkinson and Alzheimer’s disease. Recently, some 

studies have shown that the functional connectivity evaluation 

by means of graph metrics, more specifically eigenvector 

centrality, offers improved task discrimination in motor 

imagery EEG-based brain-computer interfaces. Nonetheless, 

these studies considered the connectivity as a static phenomenon 

and did not take into account the dynamic behaviour of the 

motor imagery process, which could add relevant information 

to task discrimination, by the inclusion of the preceding imagery 

(intention) and post-imagery phases. This work presents a 

classification performance comparison between dynamic 

eigenvalue centrality and dynamic power during the motor 

imagery experiment with a methodology based on a sliding 

window feature extraction with Pearson correlation as a 

measure of functional connectivity and a template matching 

classification approach, including preceding and post-motor 

imagery intervals. The results indicate that eigenvalue centrality 

can offer a promising complementary feature to classical 

bandpower for MI classification in BCI systems.   

Keywords—brain-computer interface; dynamic functional 

connectivity; motor imagery; graph; graph signal processing;  

I. INTRODUCTION  

Brain-computer interfaces (BCI) provide alternative 
communication systems that aim to directly map brain activity 
into commands for external assistive devices without the need 
for natural communication pathways [1]. Among the main 
BCIs paradigms, the motor imagery (MI) probably stands for 
as the main asynchronous framework for codifying the user’s 
intention [1], although its performance is often beset with 
technical challenges, such as exhaustive training and higher 
inter-subject variability, in contrast to e.g. steady-state 
visually evoked potentials (SSVEPs) BCIs [2], [3]. Moreover, 
MI requires a better understanding of complex physiological 
mechanisms involving a cognitive engagement for intention, 
action planning and decision-making [4]. More recently, MI 
BCIs have been suggested as an important paradigm for 
rehabilitation purposes both after stroke [5] and spinal cord 
injury [6].  

Advancing the design of motor imagery-based BCIs 
requires a better comprehension of the motor 
intention/imagery process, which includes identification of 
new biomarkers (or features) to classical event-related 
(de)synchronization (ERD/ERS) phenomena [7] for designing 
more robust classification schemes. Alternative methods for 
investigating brain activity have emerged in context of graph 
signal processing. This framework allows to evaluate the 
instantaneous similarity between different brain regions’ 
activations under specific mental tasks – the brain functional 
connectivity (FC) - or even causal relations between such 
regions – the effective connectivity [8], [9]. FC evaluation  has 
been successfully used in characterizing and diagnosing the 
main brain pathologies, including Parkinson’s disease, 
Alzheimer’s disease, Attention-Deficit/Hyperactivity 
Disorder (ADHD), or epilepsy [10]–[12]. Due to these 
achievements, FC graph analysis has also been applied for 
brain imaging modalities with better temporal resolution (e.g. 
EEG and MEG) for BCIs applications [13]–[15].  

In particular, recent works dealing with FC analysis 
devoted to BCI systems [13], [14] have shown that graph 
eigenvector centrality (EC) defines an interesting and 
computationally efficient strategy for capturing MI networks. 
However, these studies have been performed under a single 
FC evaluation for the entire MI time interval and did not 
consider the possible role of preceding MI and post-MI 
processes, which may add relevant information to the 
discrimination process by taking into account motor intention 
and post-synchronization phenomena. Besides that, the 
dynamics underlying the FC along the MI process has not 
been considered, while it may play a key role for increasing 
the classification accuracy [16], [17]. 

This work presents a performance evaluation for binary 
classifications (MI right vs. left hand) using features based on 
dynamic eigenvalue centrality and dynamic power during the 
process of MI including the preceding and post-MI phases. 
The BCI competition IV dataset 2a was used given its 
widespread use in the literature, being just the C3 and C4 
electrodes’ connectivity considered for feature extraction due 
to their relation with the MI process. Classification 
performance was obtained based on a template matching 
approach taking into account the whole dynamics of the MI 
process. 
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II. MATERIAL AND METHODS 

A. Database and EEG data processing 

A benchmark online BCI-MI database (BCI Competition 
IV - dataset 2a) containing training and evaluation datasets for 
nine subjects was analyzed. Signals were recorded with 22 
Ag/AgCl electrodes (Fz, FC3, FC1 ,FCz, FC2, FC4, C5, C3, 
C1, Cz, C2, C4, C6, CP3, CP1, CPZ, CP2, CP4, P1, PZ, P2, 
POz), sampled at 250 Hz and band-pass filtered between 0.5 
and 100 Hz, being training and evaluation datasets (six 
sessions) acquired on different days. Training and evaluation 
sessions presented 12 trials for each MI task. We considered 
only right- and left-hand imagery tasks, resulting in 24 trials 
per session and 144 throughout the experiment. These trials 
lasted around 8 s, with 3 s being related to the MI preceded by 
a cue 1 s before. Details can be found in [18]. 

During offline processing, a Common Average Reference 
(CAR) spatial filter was applied to remove common 
electrodes’ artifacts and the resulting signal was bandpass 
filtered between 8 and 30 Hz to enhance MI activity in mu and 
beta band due to frequency-dependent of ERD/ERS 
phenomenon [7]. All the processing routines were developed 
in Matlab 2015b. 

B. Dynamic Functional Connectivity 

The dynamic functional connectivity was computed by 
using a sliding window (SWD) of 0.5 s, for the entire trial 
duration (i.e. 8 s). Taking into account the 22 electrodes 
available, the pairwise connectivity was estimated by means 
of the Pearson correlation coefficient, traditionally applied in 
functional connectivity evaluation and used in [14] in the same 
dataset, and, afterwards, only the positive correlation values 
were considered in the weighted connectivity matrix. 

Eigenvector centrality (EC) was chosen to characterize the 
relationship between electrodes due to its promising 
performance [14]. This graph metric considers not only the 
network structure around a node (electrode), but also 
considers the importance of its neighbours in the network [9]. 
Thus, each point of the time series was characterized by a 
graph EC value related to the electrodes’ connectivity within 
the SWD. The definition of eigenvector centrality is presented 
in Eq. 1, in which λ is the largest eigenvalue of A and xj are 
the respective eigenvectors [19]. 
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The quality of the between-class separation based on 
individual electrodes’ eigenvector centralities was evaluated 
by the Fisher’s discriminant ratio (FDR) for each sliding 
window. FDR is defined by the ratio of the distance between 
MI class centroids over their respective dispersions (standard-
deviations) [14], [20] for training data. After certifying that the 
motor cortex electrodes provide the best class separability, 
only C3 and C4 electrodes’ attributes were considered in the 
classification due to their close relation with the MI process. 

For comparison, the bandpower evolution was computed 
using the same SWD. ERD/ERS was estimated for a better 
comparison with EC dynamics (Figure 4), but just 
instantaneous power was used as feature, since EC is not 
normalized by a baseline. For ERD/ERS evaluation, besides 
the previous band-pass filtering (8–30 Hz), the squaring of the 
amplitude samples was taken and the averaging of power 

samples across all trials was evaluated. Finally, normalization 
by the power baseline was performed as presented in [7], [17]. 

C. Classification 

For classifier training, right-hand and left-hand time-
courses templates for electrodes C3 and C4 were obtained 
both for EC and bandpower features using exclusively the 
training dataset available for each volunteer. EC template for 
each electrode was obtained using the median of the EC 
computed for each SWD along the training trials. The EC 
median time course was then smoothed by a moving average 
of 10 points. The same procedure was performed for 
bandpower template evaluation, but considering the power for 
each SWD. Figure 1 illustrates a template for the electrode C3 
for EC and bandpower approaches. 

 
Fig. 1. Time course template of electrode C3 for eigenvector centrality (A) 

and bandpower (B). RH= right hand and LH = left hand task.  

Classification was assessed on the evaluation dataset and 
was based on the minimum mean square error between a given 
trial time course of EC (or bandpower) and the respective 
(right- and left-hand) templates. This strategy considered the 
whole dynamics of the MI process by comparing the obtained 
feature for each SWD trial with a reference template for a 
given class and electrode [20]. The process is repeated for 
each volunteer and classification performance characterized 
by mean ± standard deviation. 

III. RESULTS 

Aiming to illustrate the role of motor cortex activity along 
the MI process, the FDR was computed for each volunteer 
using the training dataset to evaluate the time-course of the EC 
discrimination quality. It is noteworthy that the somatosensory 
area is essential to discriminate the mental tasks for one 
subject with a relatively-good MI performance (Fig. 2, left 
panel: period of 3 - 6 s). It can also be noted, that the increase 
of  the discrimination quality occurs ~ 0.5 s after cue 
appearance, suggesting the role of motor intention as 
previously described [16].  

 
Fig. 2. Evolution of the time course of MI class separation based on 

electrodes’ EC, measured by FDR, on training dataset. FDR time courses of 

2 subjects before MI (0 - 2 s), during cue appearance (~2 - 3 s), during (3 - 6 

s) and after MI (6 - 8 s). Notably, during MI (i.e. 3 - 6 s) good-performance 

volunteers (left panel – subject 3) exhibit higher FDR in the somatosensory 

cortex electrodes (e.g. C1, C3, C4, C6) then bad-performance volunteers 

(right panel – subject 2). 
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Visually, the left hemisphere electrodes C1, C3 and C5 
were the best for discriminating the mental tasks, followed by 
the right hemisphere electrodes C2, C4 and C6. In contrast, for 
other subjects (Fig. 2, right panel), the FDR value remained 
practically unchanged during MI in comparison to baseline 
(i.e. 0 - 2 s before MI). 

Analysis considering just C3 and C4 EEG electrodes were 
carried out to be in agreement with previous studies (e.g. [17]). 
The FDR time-course of EC and bandpower of a typical good-
performance MI volunteer (subject 3) is shown in Fig. 3. It can 
be noticed that FDR monotonically increased during the cue 
appearance, highlighting the intention of MI task. Overall, 
during cue and MI the FDR values for EC were sustained 
higher than those obtained by bandpower feature. 

 

Fig. 3. Temporal evolution of FDR for Eigenvector centrality (A) and 

bandpower (B) before (0 - 2 s), during cue appearance (~2 - 3 s), MI (3 - 6 

s) and after MI (6 - 8 s). 

Figure 4 shows the subject’ EC and ERD/ERS power time-
course templates or C3 and C4 electrodes. EC enhancement 
occurs during cue appearance in contralateral electrodes (i.e. 
C3 for right hand MI and C4 for left hand MI) in contrast to 
ipsilateral electrodes (i.e. C4 for right hand MI and C3 for left 
hand MI), in which this graph metric decrease and kept 
sustained lower than the opposite electrodes during MI. After 
the mental tasks, no discrepancy between the temporal courses 
was observed. In addition, during MI, the ERD phenomenon 
was observed as previously shown in [17] followed by ERS 
occurrence. 

 

Fig. 4. Mean EC (A and B) and ERD/ERS (C and D) time-courses 

templates for C3 and C4 electrodes after smoothing (subject 3). For each 

painel, the cue interval (2 - 3 s) of the corresponding MI (3 - 6 s) is shown. 

Table 1 shows the classification accuracy based on EC of 
C3, C4, their combination, and the bandpower. Considering 
C3 and C4 combination, the subjects with the best results - i.e. 

accuracy higher than 0.7 - for EC were 1, 3 and 8. For 
bandpower, the best subjects were 7, 8 and 9. There were no 
statistically significant differences between the approaches 
when all subjects were considered (paired t-test). 

TABLE I.  CLASSIFICATION ACCURACY FOR SUBJECTS CONSIDERING 

C3 AND C4 ELECTRODES AND THEIR COMBINATION REGARDING THE 

EIGENVECTOR CENTRALITY (EC) AND BANDPOWER (BP). MEAN ± 

STANDARD DEVIATION (SD). 

Subj. C3 C4 C3 plus C4 

 EC BP EC BP EC BP 

1 0.784 0.569 0.701 0.597 0.798 0.590 

2 0.548 0.556 0.590 0.590 0.583 0.625 

3 0.826 0.597 0.881 0.576 0.888 0.604 

4 0.645 0.556 0.639 0.694 0.631 0.660 

5 0.590 0.674 0.527 0.514 0.576 0.653 

6 0.583 0.576 0.625 0.521 0.659 0.521 

7 0.694 0.507 0.631 0.604 0.680 0.708 

8 0.763 0.597 0.715 0.743 0.770 0.750 

9 0.576 0.653 0.667 0.799 0.667 0.764 

Mean 

± SD 

0.665 ± 

0.100 

0.587 ± 

0.051 

0.664 ± 

0.099 

0.626 ± 

0.098 

0.694 ± 

0.104 

0.653 ± 

0.079 

 

In addition, aiming to investigate whether both EC and 
bandpower may provide similar information, the Pearson 
correlation coefficient of their templates for either right or left 
hands MI was calculated for C3 and C4 electrodes. Typically, 
when the subject performed the MI task in the contralateral 
electrode, for instance, the C3 for right hand MI, the templates 
were anti-correlated, whereas in ipsilateral electrode (e.g. C4 
for right hand MI) the correlation were mostly positives. 

TABLE II.  CORRELATION OF THE EC AND BANDPOWER TEMPLATES. 
RH = RIGHT HAND AND LH = LEFT HAND.  

Subj. C3 C4 

 RH MI LH MI RH MI LH MI 

1 -0.645 -0.319 0.292 -0.374 

2 -0.216 0.427 0.050 -0.029 

3 -0.676 0.361 0.475 -0.694 

4 0.076 0.421 -0.094 -0.225 

5 -0.436 0.545 0.668 -0.301 

6 -0.089 -0.008 0.338 -0.168 

7 -0.782 -0.396 0.670 0.427 

8 -0.496 0.078 -0.250 -0.600 

9 -0.555 0.175 -0.304 -0.674 

 

IV. DISCUSSION 

In the present work, we aimed at extending the previous 

results reported in [14] on graph-based method EEG analysis 

by considering dynamic functional connectivity. Indeed, this 

approach as suggested in [15], [21] may provide a  promising 

method of evaluation of the brain networks. Firstly, as 

expected, it was found that the electrodes over the 

somatosensory areas offer the best discrimination for the 

hand MI tasks. Using the C3 and C4 electrodes, the FDR 

increased within the time (~0.5 s) which may correspond to 
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movement intention as previously reported [4], and, then, 

kept higher during MI for both EC and bandpower in 

comparison to baseline period. Moreover, the temporal 

evolution of ERD/ERS was comparable to those reported to 

[17].  

During classification process, in some subjects the 

accuracy exceeded 70% (e.g. subjects 1, 3 and 8) for EC and 

bandpower, but for others, the value was lower than 55%. It 

is possible that some subjects may not be able to perform the 

MI task as demonstrated in [22], which led previous 

investigators to consider only subjects with performance 

accuracy higher than 75% [17].  

Moreover, although the accuracies found for EC and 

bandpower were not statistically different, it is reasonable to 

speculate that the information extracted by the both 

approaches are not exactly the same, since the Pearson 

correlations between the electrodes’ templates were moderate 

in most cases for the good performance subjects, and the EC 

and bandpower accuracy levels were different for some 

subjects (e.g. 1, 3 and 8). 

As a limitation of this study, we can mention the temporal 

dependency caused by the SWD and smoothing, that affects 

the accurate analysis of the transition between experimental 

phases. In addition, due to the characteristics of the MI 

experiment, it is difficult to ensure that the MI process is 

present only in the MI interval in the experimental protocol. 

Since the MI is an internal process, it is possible that some 

subjects have started the imagery soon after the cue 

appearance, which makes the analysis of the movement 

intention, or preceding MI engagement, a challenging task. 

Moreover, due to these transitions, the normality of the data 

cannot be assured. Despite that, Pearson correlation was able 

to estimate distinct functional connectivity patterns, as 

observed by the FDR and classification accuracy, justifying 

its use in this context.  

V. CONCLUSION 

This work presented an analysis of BCI-MI signals by 

means of the dynamic eigenvector centrality, which takes into 

consideration not only the information related to MI task – 

presented in the MI part of the experiment –, but also the 

dynamic related to the entire experiment, e.g. the dynamic 

transitions between the resting state and cue, etc. These 

results were compared to the dynamic power. 

Regarding temporal analysis of the EC quality, we 

noticed that the most informative region relies on the MI 

interval (3 - 6 s), as expected. Moreover, we identified an 

increase in FDR related to the cue appearance, possibly 

related to the movement intention.  

Finally, although not statistically significant, the 

classification results were promising, owing to the number of 

electrodes considered and the straightforward type of 

classification. The nature of the information extracted by the 

dynamic EC and power are likely not the same, what makes 

the combination of the approaches an interesting point for 

future investigation. 
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