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Heterogeneity

Heterogeneity

Suppose we observe a set of response variables for n statistical units,
with Y i denoting the corresponding random vector for the i-th unit

A statistical model allows us to account for the heterogeneity among
the statistical units, which may be of two types:

observed: it may be explained on the basis of the observed covariates
collected in vectors X i

unobserved: it cannot be explained on the basis of the observed
covariates (it depends on factors that are not observed/observable)

Standard statistical/econometric models (in particular when one
response variable is observed) only account for the observed
heterogeneity
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Heterogeneity

This is the case of the linear regression model (for a single response
variable):

Yi = x ′iβ + εi

x i : observed vector of covariates

β: vector of regression coefficients

εi : error term
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Heterogeneity

When Y i is a vector of more response variables for each statistical
unit, it is possible to account for the unobserved heterogeneity;
typical situations:

different response variables are considered at the same time (e.g.,
different performance indicators)

repeated observations of the same response variable at different time
occasions (longitudinal/panel data)

(1st level) units are grouped in clusters, which are 2nd level units
(multilevel data)

Almost all statistical/econometric models that account for unobserved
heterogeneity may be cast in the class of Latent Variable Models
(LVMs), among which the Latent Class (LC) model is very important

LVMs may also be used to account for measurement errors or
summarizing different measurements

Main references: Skrondal & Rabe-Hesketh (2004),
Bartholomew et al. (2011)
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Latent Variable Models

Latent Variable Models

Latent variables (U i ) are unobservable variables supposed to exist and
to affect Y i ; these may be correlated with X i

An LVM formulates assumptions on:

the conditional distribution of Y i given U i and X i , f (y i |u i , x i )
(measurement model)

the conditional distribution of U i given X i , f (u i |x i ) (structural model)

A common assumption of LVMs is that of local independence (LI),
according to which the response variables are conditionally
independent given the latent variables and the covariates:

f (y i |u i , x i ) =
J∏

j=1

f (yij |u i , x i )

J: number of response variables

yij : single element of y i
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Latent Variable Models

By marginalizing out the latent variables we obtain the manifest
distribution:

f (y i |x i ) =

∫
f (y i |u, x i )f (u|x i )du

By the Bayes theorem we obtain the posterior distribution

f (u i |x i , y i ) =
f (y i |u i , x i )f (u i |x i )

f (y i |x i )

that is used for predicting the latent variables on the basis of the
manifest variables

Estimation is typically based on the maximum likelihood approach
relying on numerical algorithms, among which the Newton-Raphson
and particularly the Expectation-Maximization (EM) are
very popular
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Latent Variable Models

LVMs may be classified according to:

type of response variables (discrete, continuous, categorical, etc.)

type of latent variables (discrete or continuous)

presence or absence of covariates (that may be included in different
ways)

LVMs based on discrete latent variables are of particular interest as
they permit:

to naturally group units in homogeneous latent clusters, also named
latent groups or latent classes (model-based clustering)

to account for the unobserved heterogeneity in a nonparametric way (it
is necessary to specify a parametric distribution for the latent variables)

The LC model is one of the most important LVMs based on discrete
latent variables and may be seen as a Finite Mixture
(FM) model for categorical response variables
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Latent Variable Models

Expectation-Maximization algorithm

This is a general approach for maximum likelihood estimation in the
presence of missing data (Dempster et al., 1977)

In our context, missing data correspond to the latent variables; then:

incomplete (observable) data: covariates and response variables (X ,Y )

complete (unobservable) data: incomplete data + latent variables
(U ,X ,Y )

The corresponding log-likelihood functions are:

`(θ) =
n∑

i=1

log f (y i |x i )

`∗(θ) =
n∑

i=1

log[f (y i |U i , x i )f (U i |x i )]

θ: overall vector of model parameters
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Latent Variable Models

The EM algorithm maximizes `(θ) by alternating two steps until
convergence (h=iteration number):

E-step: compute the expect value of `∗(θ) given the current parameter

value θ(h−1) and the observed data, obtaining

Q(θ|θ(h−1)) = E [`∗(θ)|X ,Y ,θ(h−1)]

M-step: maximize Q(θ|θ(h−1)) with respect to θ obtaining θ(h)

Convergence is checked on the basis of the difference

`(θ(h))− `(θ(h−1)) or ‖θ(h) − θ(h−1)‖

The algorithm is usually easier to implement and much more stable
with respect to the Newton-Raphson algorithm, but it
may be much slower
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Finite Mixture Model Assumptions

Finite Mixture Model

Main references: Lindsay (1995), McLachlan & Peel (2000),
Bouveyron et al. (2019)

The underlying idea is that statistical units come from different
groups, where the grouping is unobserved (latent groups or clusters)

Model assumptions:

there exist unit-specific discrete latent variables Ui , i = 1, . . . , n, with
the same finite distribution with k levels defining the groups

the groups have prior probabilities (weights) πu = p(Ui = u),
u = 1, . . . , k

for each group we have a specific conditional response distribution
f (y i |u) = f (y i |Ui = u), u = 1, . . . , k

An FM model may include or not individual covariates;
these may directly affect the measurement model or
the structural model
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Finite Mixture Model Assumptions

An advantage of FM models with respect to LVMs based on
continuous latent variables is that manifest and posterior distributions
may be explicitly computed

The manifest distribution is a weighted average of density or
probability mass functions:

f (y i ) =
k∑

u=1

f (y i |u)πu

By the Bayes theorem we obtain the posterior distribution

p(Ui = u|y i ) =
f (y i |u)πu
f (y i )

, u = 1, . . . , k ,

that is used to assign each unit to a specific latent
group on the basis of the manifest variables
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Finite Mixture Model Assumptions

Example: for a single response variable, k = 2 components exist with
Normal distribution with specific means and variances and different
weights:

Ui = 1 → Yi ∼ N(0, 1)

Ui = 2 → Yi ∼ N(3, 4)

π1 = 0.25, π2 = 0.75

Through the general rule for LVMs we obtain the manifest
distribution of Yi :

f (yi ) = 0.25 φ(yi ; 0, 1) + 0.75 φ(yi ; 3, 4)

φ(yi ;µ, σ
2): density function of the Normal distribution

with mean µ and variance σ2
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Finite Mixture Model Assumptions
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Apart from model-based clustering, an FM model is a valid approach
for density estimation given its flexibility (able to easily
reproduce skewed and multimodal distributions)
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Finite Mixture Model Assumptions

The posterior distribution of Ui may be found by the Bayes theorem:

p(Ui = 1|yi ) =
0.25 φ(yi ; 0, 1)

0.25 φ(yi ; 0, 1) + 0.75 φ(yi ; 3, 4)

p(U2 = 1|yi ) =
0.75 φ(yi ; 3, 4)

0.25 φ(yi ; 0, 1) + 0.75 φ(yi ; 3, 4)

Units are assigned to the latent groups on the basis of the Maximum
A-Posterior (MAP) rule; example:

Ui Assigned
yi 1 2 group

-3 0.400 0.600 2
0 0.673 0.327 1
2 0.093 0.907 2
4 0.000 1.000 2
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Finite Mixture Model Assumptions

The term finite mixture model may be used for the general discrete
LV approach, although it is typically used for continuous data

For continuous data, f (y i |u) are typically multivariate Normal
distributions (FM of Normal distributions) with specific mean vectors
µu and variance-covariance matrices Σu
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For categorical data we obtain the LC model that has
peculiarities in terms of assumptions and its estimation
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Finite Mixture Model Estimation

Estimation of FM models

Estimation of an FM model is based on the maximum likelihood
approach that is easily carried out through the
Expectation-Maximization (EM) algorithm

To introduce the EM algorithm it is convenient to substitute each
latent variable Ui with the (binary) indicator variables Zi1, . . . ,Zik ,
where Ui = u iff Ziu = 1 with all other variables equal to 0

Example with k = 4:

Ui Zi1 Zi2 Zi3 Zi4

1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1
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Finite Mixture Model Estimation

In this way the complete data log-likelihood is expressed as

`∗(θ) =
n∑

i=1

k∑
u=1

[Ziu log f (y i |u) + Ziu log πu]

The EM algorithm consists in alternating two steps:

E-step: compute the posterior expect value of each indicator variable
Ziu by the Bayes theorem:

ẑiu = E (Ziu|y i ) = p(Ziu = 1|y i ) = p(Ui = u|y i )

M-step: maximize function `∗(θ) with each indicator variables Ziu

substituted by ẑiu obtained at the E-step

At the M-step, an explicit solution exists for the class weights:

πu =
1

n

n∑
i=1

ẑiu, u = 1, . . . , k
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Finite Mixture Model Estimation

For the FM of Normal distributions, an explicit solution exists for the
other parameters (u = 1, . . . , k):

µu =
1∑n

i=1 ẑiu

n∑
i=1

ẑiuy i

Σu =
1∑n

i=1 ẑiu

n∑
i=1

ẑiu(y i − µu)(y i − µu)′ (homoskedastic)

Σ =
1

n

n∑
i=1

k∑
u=1

ẑiu(y i − µu)(y i − µu)′ (heteroskedastic)

In general, different starting values must be used in order to face the
problem of the multimodality of the log-likelihood function

The EM algorithm is implemented in several softwares
such as R (package mclust) and Stata
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Finite Mixture Model Estimation

In order to select the number of components (k) two criteria can be
adopted when there is no precise idea based on substantial reasons:

Akaike Information Criterion (AIC) = −2`(θ̂k) + 2×#par.

Bayesian Information Criterion (BIC) = −2`(θ̂k) + log(n)×#par.

These criteria rely on penalized versions of the log-likelihood function
(Akaike, 1973; Schwarz,1978): the selected model is that with the
minimum value of AIC (or BIC), corresponding to the best
compromise between goodness-of-fit and model parsimony

Certain authors prefer to report AIC (or BIC) with reversed sign
(search for the maximum)

BIC often selects a more parsimonious model with respect to AIC

Many other selection criteria are available and these
may be used in general (not only to select k)
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Finite Mixture Model Examples

Example 1: simulated data

Consider an FM model for n = 100 bivariate responses with k = 2
components:

Ui = 1 → Y i ∼ N(µ1,Σ1)

Ui = 2 → Y i ∼ N(µ2,Σ2)

π1 = π2 = 0.5

µ1 =

(
0
0

)
, Σ1 =

(
1.0 0.5
0.5 1

)
µ2 =

(
4
4

)
, Σ2 =

(
1.0 −0.5
−0.5 1

)

This is a heterockedatic FM model because the two
variance-covariance matrices are different
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Finite Mixture Model Examples

Data representation (blue = 1st component, red = 2nd component):
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These data are analyzed by package mclust of R
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Finite Mixture Model Examples

Model selection based on BIC (with sign reversed) in terms of k and
structure of the variance-covariance matrices (EII, VII,...):
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Two groups are indeed selected, with different
variance-covariance matrices
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Finite Mixture Model Examples

Estimated parameters:

µ̂1 =

(
−0.015
−0.058

)
, Σ̂1 =

(
1.006 0.403
0.403 0.835

)

µ̂2 =

(
4.012
4.251

)
, Σ̂2 =

(
0.869 −0.519
−0.519 1.089

)
π̂1 = π̂2 = 0.5

Posterior probabilities and clustering:

i ẑi1 ẑi2 Assigned group True group

1 1.0000 0.0000 1 1
...

...
...

...
...

70 0.0000 1.0000 2 2
...

...
...

...
...

74 0.0027 0.9973 2 2
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Finite Mixture Model Examples

Clustering representation (blue = 1st component, red = 2nd
component) with measure of uncertainty:
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Finite Mixture Model Examples

Example 2: real data

Data about all world countries regarding certain macro-economic and
demographic indicators for 2016 (source: World Bank):

Life School School
i Name Code GDP Ages expect enp ens
1 Afghanistan AFG 1793.89 43.86 65.02 NA 51.75
2 Albania ALB 11355.62 17.72 80.45 109.78 94.98
...

...
...

...
...

...
...

...
85 Italy ITA 34655.26 13.61 84.90 100.36 102.83
...

...
...

...
...

...
...

...
170 Switzerland CHE 57421.55 14.83 85.10 104.41 102.29
...

...
...

...
...

...
...

...
186 United States USA 53399.36 19.03 81.20 101.36 98.77
...

...
...

...
...

...
...

...
236 Sub-Saharan Africa

(IDA & IBRD) TSS 3482.87 42.88 62.09 97.18 42.81

Countries with at least one missing value are eliminated
so that n = 162 countries are considered
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Finite Mixture Model Examples

A model with k = 3 components and unequal variance-covariance
matrices (VEV structure) are selected by BIC

Estimated means and weights:

µ̂1 =


3428.67

39.38
64.18

104.13
49.33

 , µ̂2 =


16661.98

24.01
77.34

102.93
93.48

 , µ̂3 =


51140.18

16.67
83.23

102.22
113.31


π̂1 = 0.265, π̂2 = 0.529, π̂3 = 0.205

The estimated variances have a size that tend to increase with the
mean and, generally, with a negative correlation
between variable Ages and the other variables
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Finite Mixture Model Examples

Posterior probabilities and clustering:

Assigned
i Code ẑi1 ẑi2 ẑi3 group

2 ALB 0.006 0.988 0.007 2
...

...
...

...
...

...
85 ITA 0.000 0.199 0.801 3
...

...
...

...
...

...
170 CHE 0.000 0.000 1.000 3

...
...

...
...

...
...

186 USA 0.000 0.000 1.000 3
...

...
...

...
...

...
236 TSS 1.000 0.000 0.000 1
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Finite Mixture Model Examples

Clustering representation (red = 1st component, blue = 2nd
component, green = 3rd component):
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Latent Class Model Assumptions

Latent Class Model

Main references: Lazarfeld (1968), Goodman (1974)

It follows an FM approach that:

is suitable for categorical response variables Yij with categories labeled
from 0 to cj − 1, j = 1, . . . , J

assumes LI so that the latent variable is the only explanatory factor of
the responses

Yi1 Yi2

Ui

6

�
�
�
��

���
���

���
���

���
�:· · ·
YiJ

F. Bartolucci RISIS 2019 September 9th, 2019 30 / 47



Latent Class Model Assumptions

The conditional probability of a response configuration given the
latent class is obtained by a single product:

p(y i |u) =
J∏

j=1

ηj ,yij |u

ηj,y |u: probability that Yij = y given Ui = u

In the binary case it may be expressed using the Bernoulli probability
mass function:

p(y i |u) =
J∏

j=1

λ
yij
j |u(1− λj |u)1−yij

λj|u: probability that Yij = 1 given Ui = u corresponding to ηj,1|u

The manifest distribution becomes

p(y i ) =
k∑

u=1

( J∏
j=1

ηj ,yij |u

)
πu
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Latent Class Model Assumptions

The posterior distribution becomes

p(Ui = u|y i ) =

∑k
u=1

(∏J
j=1 ηj ,yij |u

)
πu

p(y i )
, u = 1, . . . , k

The number of free parameters is in general

#par = k − 1︸ ︷︷ ︸
πu

+
J∏

j=1

(cj − 1)︸ ︷︷ ︸
ηj,y|u

that in the binary case becomes

#par = k − 1︸ ︷︷ ︸
πu

+ kJ︸︷︷︸
λj|u
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Latent Class Model Estimation

Estimation

Estimation is based on an EM algorithm having the same structure of
that for FM models; it may be easily implemented using the binary
indicator variable representation (Ziu vs Ui )

The complete data log-likelihood is expressed as

`∗(θ) =
n∑

i=1

k∑
u=1

[
Ziu

J∑
j=1

log(ηj ,yij |u) + Ziu log(πu)

]
At the M-step an explicit solution exists for the ηj ,y |u parameters:

ηj ,y |u =
1∑n

i=1 ẑiu

n∑
i=1

ẑiuI (yij = y)

that in the binary case becomes

λj |u =
1∑n

i=1 ẑiu

n∑
i=1

ẑiuyij
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Latent Class Model Estimation

A crucial issue is still that of multimodality of the log-likelihood
function that requires the use of different starting points

Typically, apart from a deterministic initialization (depending on the
observed data), several random initializations are tried with each
probability πu and ηj ,y |u drawn from a uniform distribution from 0 to
1 and then suitably renormalized

A crucial point after estimation is that of assigning individuals to the
latent classes, which is still based on the posterior probabilities ẑiu
using the MAP rule

The same model selection criteria as for FM models (in particular AIC
and BIC) are typically adopted for model selection

The EM algorithm is implemented in several softwares
such as R (package MultiLCIRT) and Stata
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Latent Class Model Example

Example

Data are collected on 216 subjects who responded to J = 4 items
concerning the behavior in certain role conflict situations (Goodman,
1974)

Each binary response variable is equal to 1 if the interviewed
individual has a universalistic behavior and 0 if he/she has a
particularistic behavior

Data may be represented by a 24-dimensional vector of frequencies for
all the response configurations:

Yi1 Yi2 Yi3 Yi4 Frequency

0 0 0 0 42
0 0 0 1 23
0 0 1 0 6
...

...
...

...
...

1 1 1 1 20
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Latent Class Model Example

Selection of the number of classes:

k `(θ̂) #par AIC BIC

1 -543.65 4 1095.30 1108.80
2 -504.47 9 1026.94 1057.31
3 -503.30 14 1034.60 1081.86
4 -503.11 19 1044.22 1108.35

Both AIC and BIC select k = 3 latent classes

Parameter estimates:

λ̂j |u
Class (u) j = 1 j = 2 j = 3 j = 4 π̂u

1 0.003 0.023 0.006 0.101 0.200
2 0.164 0.519 0.563 0.807 0.601
3 0.548 0.922 0.736 0.928 0.199
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Latent Class Model Example

Posterior probability for each possible response configuration:

Assigned
yi1 yi2 yi3 yi4 ẑi1 ẑi2 ẑi3 class

0 0 0 0 0.894 0.105 0.001 1
0 0 0 1 0.183 0.801 0.016 2
0 0 1 0 0.040 0.946 0.013 2
0 0 1 1 0.001 0.957 0.042 2
0 1 0 0 0.150 0.793 0.057 2
0 1 0 1 0.004 0.815 0.180 2
0 1 1 0 0.001 0.865 0.134 2
0 1 1 1 0.000 0.676 0.324 2
1 0 0 0 0.105 0.860 0.035 2
1 0 0 1 0.003 0.887 0.110 2
1 0 1 0 0.001 0.919 0.080 2
1 0 1 1 0.000 0.787 0.213 2
1 1 0 0 0.002 0.693 0.305 2
1 1 0 1 0.000 0.423 0.577 3
1 1 1 0 0.000 0.512 0.488 2
1 1 1 1 0.000 0.253 0.747 3
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Extensions Inclusion of covariates

Inclusion of covariates

Two possible choices to include individual covariates collected in x i

The first is in the measurement model so that we have random
intercepts; for instance, for the LC model for binary variables we could
assume:

λij |u = p(Yij = 1|Ui = u, x i ),

log
λij |u

1− λij |u
= αu + x ′iβ, i = 1, . . . , n, j = 1, . . . , J, u = 1, . . . , k

αu: random intercepts

β: vector of logistic regression parameters

The latent variables are used to account for the unobserved
heterogeneity in addition to the observed heterogeneity;
the model may be seen as a “discrete version” of the
random-effects logit model
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Extensions Inclusion of covariates

The second is in the structural model governing the distribution of
the latent variables (via a multinomial logit parametrization):

πiu = p(Ui = u|x i ),

log
πiu
πi1

= x ′i1γu, u = 2, . . . , k

γu: vectors of regression coefficients specific for each latent class

The main interest is in the latent variable that is measured through
the observable response variables (e.g., health status) and on how this
latent variable depends on the covariates

Both extensions lead to FM/LC models that may be estimated by an
EM algorithm having a structure similar to that of the corresponding
models without covariates; particular care is necessary to obtain the
standard errors for the regression coefficients

Usual criteria may be used for model selection in terms
of number of components (k) and other assumptions
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Extensions Longitudinal data

Extension to longitudinal data

The extension of FM/LC models to the analysis of longitudinal data
is known as Latent Markov (ML) model

Main references: Wiggins (1973), Bartolucci et al. (2013), Zucchini
et al. (2016)

For individual sequences of response variables at T time occasions,
Y i = (Yi1, . . . ,YiT )′, i = 1, . . . , n, the basic version of the LM model
assumes that:

(LI) the response variables in Y i are conditionally independent given a
latent process U i = (Ui1, . . . ,UiT )′

every latent process U i follows a first-order Markov chain with state
space {1, . . . , k}, initial probabilities πu, and transition probabilities
πv |u, u, v = 1, . . . , k
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Possible interpretation

The LM model may be seen as a generalization of the LC model in
which subjects are allowed to move between latent classes

LC:

Yi1 Yi2

Ui

6
�
�
�>

���
���

���
��:

· · · YiT

LM:

Yi1 Yi2

Ui1 Ui2

6

-

6

- · · ·

· · ·

-

YiT

UiT

6
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Model parameters

Each latent state u (u = 1, . . . , k) corresponds to a class of subjects
(or latent state) in the population, and is characterized by:

initial probability:
πu = p(Ui1 = u)

transition probabilities (which may also be time-specific in the
non-homogenous case):

πv |u = p(Uit = v |Ui,t−1 = u), t = 2, . . . ,T , v = 1, . . . , k

distribution of the response variables (with categorical responses with c
categories):

ψy |u = p(Yit = y |Uit = u), t = 1, . . . ,T , y = 0, . . . , c − 1

The transition probabilities are collected in the
transition matrix Π of size k × k
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LI implies that the conditional distribution of Y i given U i is:

p(y i |u i ) = p(Y i = y i |U i = u i ) =
T∏
t=1

ψyit |uit

Distribution of U i : p(u i ) = p(U i = u i ) = πui1
∏
t>1

πuit |ui,t−1

Manifest distribution of Y i : p(y i ) = p(Y i = y i ) =
∑
u

p(y i |u)p(u)

This may be efficiently computed through suitable recursions known
in the hidden Markov literature (Baum et al., 1970, Welch 2003)
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The same tools available for FM/LC models may be used for model
estimation and selection, although the EM algorithm requires
particular care in the implementation based on certain recursions
(Baum et al., 1970, Welch 2003); package LMest in R may be used
for applications

After estimation, an important analysis is that of the prediction of the
latent states for every unit and time occasion (dynamic clustering)
that requires particular recursions (Viterbi, 1967; Juang & Rabiner,
1991)

The LM model has been extended in several directions:

multivariate longitudinal data when more response variables are
available at each time occasion

inclusion of covariates in the measurement or structural model with
different interpretations and types of analysis

multilevel longitudinal data when units are clustered
and so have a hierarchical structure
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