Introduction to Latent Class Analysis

Francesco Bartolucci

Department of Economics University of Perugia (IT) https://sites.google.com/site/bartstatistics/ francesco.bartolucci@unipg.it

Presentation at RISIS 2019 - Application of Latent Class Modelling to Research Policy and Higher Education Studies

September 9th, 2019

Outline

1 Heterogeneity

Latent Variable Models

Finite Mixture Model

- Assumptions
- Estimation
- Examples

Latent Class Model

- Assumptions
- Estimation
- Example
- 5 Extensions
 - Inclusion of covariates
 - Longitudinal data

Heterogeneity

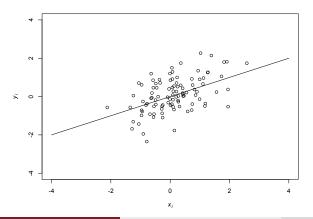
- Suppose we observe a set of response variables for n statistical units, with Y_i denoting the corresponding random vector for the *i*-th unit
- A statistical model allows us to account for the *heterogeneity* among the statistical units, which may be of two types:
 - *observed*: it may be explained on the basis of the observed covariates collected in vectors **X**_i
 - *unobserved*: it cannot be explained on the basis of the observed covariates (it depends on factors that are not observed/observable)
- Standard statistical/econometric models (in particular when one response variable is observed) only account for the observed heterogeneity

Heterogeneity

• This is the case of the *linear regression model* (for a single response variable):

$$Y_i = \mathbf{x}_i' \boldsymbol{\beta} + \varepsilon_i$$

- x_i: observed vector of covariates
- β : vector of regression coefficients
- ε_i : error term



- When **Y**_i is a vector of more response variables for each statistical unit, it is possible to account for the unobserved heterogeneity; typical situations:
 - *different response variables* are considered at the same time (e.g., different performance indicators)
 - *repeated observations of the same response variable* at different time occasions (longitudinal/panel data)
 - *(1st level) units are grouped in clusters*, which are 2nd level units (multilevel data)
- Almost all statistical/econometric models that account for unobserved heterogeneity may be cast in the class of *Latent Variable Models* (*LVMs*), among which the *Latent Class* (*LC*) *model* is very important
- LVMs may also be used to account for measurement errors or summarizing different measurements
- *Main references*: Skrondal & Rabe-Hesketh (2004), Bartholomew *et al.* (2011)

F. Bartolucci

Latent Variable Models

- Latent variables (U_i) are unobservable variables supposed to exist and to affect Y_i; these may be correlated with X_i
- An LVM formulates assumptions on:
 - the conditional distribution of \mathbf{Y}_i given \mathbf{U}_i and \mathbf{X}_i , $f(\mathbf{y}_i | \mathbf{u}_i, \mathbf{x}_i)$ (measurement model)
 - the conditional distribution of U_i given X_i , $f(u_i|x_i)$ (structural model)
- A common assumption of LVMs is that of *local independence (LI)*, according to which the response variables are conditionally independent given the latent variables and the covariates:

$$f(\mathbf{y}_i|\mathbf{u}_i,\mathbf{x}_i) = \prod_{j=1}^J f(y_{ij}|\mathbf{u}_i,\mathbf{x}_i)$$

- J: number of response variables
- y_{ij} : single element of y_i

• By marginalizing out the latent variables we obtain the *manifest distribution*:

$$f(\mathbf{y}_i|\mathbf{x}_i) = \int f(\mathbf{y}_i|\mathbf{u},\mathbf{x}_i)f(\mathbf{u}|\mathbf{x}_i)d\mathbf{u}$$

• By the Bayes theorem we obtain the *posterior distribution*

$$f(\boldsymbol{u}_i|\boldsymbol{x}_i,\boldsymbol{y}_i) = \frac{f(\boldsymbol{y}_i|\boldsymbol{u}_i,\boldsymbol{x}_i)f(\boldsymbol{u}_i|\boldsymbol{x}_i)}{f(\boldsymbol{y}_i|\boldsymbol{x}_i)}$$

that is used for predicting the latent variables on the basis of the manifest variables

• *Estimation* is typically based on the maximum likelihood approach relying on numerical algorithms, among which the Newton-Raphson and particularly the Expectation-Maximization (EM) are very popular

- LVMs may be *classified* according to:
 - type of response variables (discrete, continuous, categorical, etc.)
 - type of latent variables (discrete or continuous)
 - *presence or absence of covariates* (that may be included in different ways)
- LVMs based on discrete latent variables are of particular interest as they permit:
 - to naturally *group units in homogeneous latent clusters*, also named latent groups or latent classes (model-based clustering)
 - to account for the *unobserved heterogeneity* in a nonparametric way (it is necessary to specify a parametric distribution for the latent variables)
- The LC model is one of the most important LVMs based on discrete latent variables and may be seen as a *Finite Mixture* (*FM*) model for categorical response variables

Expectation-Maximization algorithm

- This is a general approach for maximum likelihood estimation in the presence of *missing data* (Dempster *et al.*, 1977)
- In our context, missing data correspond to the latent variables; then:
 - incomplete (observable) data: covariates and response variables (X, Y)
 - complete (unobservable) data: incomplete data + latent variables (U, X, Y)
- The corresponding *log-likelihood functions* are:

$$\ell(\boldsymbol{\theta}) = \sum_{i=1}^{n} \log f(\boldsymbol{y}_i | \boldsymbol{x}_i)$$

$$\ell^*(\boldsymbol{\theta}) = \sum_{i=1}^n \log[f(\boldsymbol{y}_i | \boldsymbol{U}_i, \boldsymbol{x}_i) f(\boldsymbol{U}_i | \boldsymbol{x}_i)]$$

• θ : overall vector of model parameters

- The EM algorithm maximizes *l*(*θ*) by alternating *two steps* until convergence (*h*=iteration number):
 - *E-step*: compute the expect value of $\ell^*(\theta)$ given the current parameter value $\theta^{(h-1)}$ and the observed data, obtaining

$$Q(\boldsymbol{ heta}|\boldsymbol{ heta}^{(h-1)}) = E[\ell^*(\boldsymbol{ heta})|\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{ heta}^{(h-1)}]$$

- *M-step*: maximize $Q(\theta|\theta^{(h-1)})$ with respect to θ obtaining $\theta^{(h)}$
- Convergence is checked on the basis of the difference

$$\ell(\boldsymbol{\theta}^{(h)}) - \ell(\boldsymbol{\theta}^{(h-1)}) \quad ext{ or } \quad \|\boldsymbol{\theta}^{(h)} - \boldsymbol{\theta}^{(h-1)}\|$$

• The algorithm is usually *easier to implement and much more stable* with respect to the Newton-Raphson algorithm, but it may be much slower **DICIC**

Finite Mixture Model

- *Main references*: Lindsay (1995), McLachlan & Peel (2000), Bouveyron *et al.* (2019)
- The underlying idea is that statistical units come from different groups, where the grouping is unobserved (*latent groups or clusters*)
- Model assumptions:
 - there exist unit-specific *discrete latent variables* U_i , i = 1, ..., n, with the same finite distribution with k levels defining the groups
 - the groups have prior probabilities (weights) π_u = p(U_i = u), u = 1,..., k
 - for each group we have a specific *conditional response distribution* $f(\mathbf{y}_i|u) = f(\mathbf{y}_i|U_i = u), u = 1, ..., k$
- An FM model may include or not *individual covariates*; these may directly affect the measurement model or the structural model

F. Bartolucci

- An advantage of FM models with respect to LVMs based on continuous latent variables is that manifest and posterior distributions may be *explicitly computed*
- The *manifest distribution* is a weighted average of density or probability mass functions:

$$f(\boldsymbol{y}_i) = \sum_{u=1}^k f(\boldsymbol{y}_i|u) \pi_u$$

• By the Bayes theorem we obtain the *posterior distribution*

$$p(U_i = u | \boldsymbol{y}_i) = \frac{f(\boldsymbol{y}_i | u) \pi_u}{f(\boldsymbol{y}_i)}, \quad u = 1, \dots, k,$$

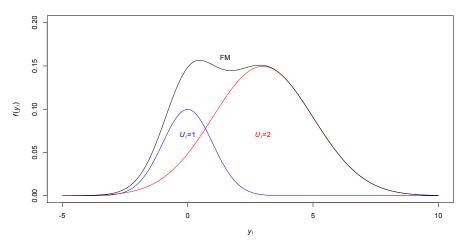
that is used to assign each unit to a specific latent group on the basis of the manifest variables

RISI

- *Example*: for a single response variable, k = 2 components exist with Normal distribution with specific means and variances and different weights:
 - $U_i = 1 \rightarrow Y_i \sim N(0,1)$
 - $U_i = 2 \rightarrow Y_i \sim N(3,4)$
 - π₁ = 0.25, π₂ = 0.75
- Through the general rule for LVMs we obtain the *manifest distribution* of *Y_i*:

$$f(y_i) = 0.25 \phi(y_i; 0, 1) + 0.75 \phi(y_i; 3, 4)$$

 φ(y_i; μ, σ²): density function of the Normal distribution with mean μ and variance σ²



 Apart from model-based clustering, an FM model is a valid approach for *density estimation* given its flexibility (able to easily reproduce skewed and multimodal distributions)

AND INNOVATION POLICY STUDIES

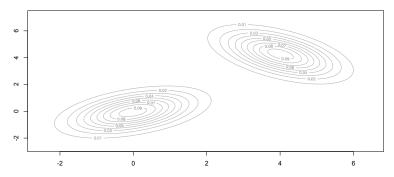
• The *posterior distribution* of U_i may be found by the Bayes theorem:

$$p(U_i = 1|y_i) = \frac{0.25 \phi(y_i; 0, 1)}{0.25 \phi(y_i; 0, 1) + 0.75 \phi(y_i; 3, 4)}$$
$$p(U_2 = 1|y_i) = \frac{0.75 \phi(y_i; 3, 4)}{0.25 \phi(y_i; 0, 1) + 0.75 \phi(y_i; 3, 4)}$$

• Units are assigned to the latent groups on the basis of the *Maximum A-Posterior (MAP) rule*; example:

	Ui		Assigned
Уi	1 2		group
-3	0.400	0.600	2
0	0.673	0.327	1
2	0.093	0.907	2
4	0.000	1.000	2

- The term *finite mixture model* may be used for the general discrete LV approach, although it is typically used for continuous data
- For continuous data, f(y_i|u) are typically multivariate Normal distributions (*FM of Normal distributions*) with specific mean vectors μ_u and variance-covariance matrices Σ_u



• For *categorical data* we obtain the LC model that has peculiarities in terms of assumptions and its estimation

Estimation of FM models

- *Estimation* of an FM model is based on the maximum likelihood approach that is easily carried out through the Expectation-Maximization (EM) algorithm
- To introduce the EM algorithm it is convenient to substitute each latent variable U_i with the *(binary) indicator variables* Z_{i1}, \ldots, Z_{ik} , where $U_i = u$ iff $Z_{iu} = 1$ with all other variables equal to 0
- **Example** with k = 4:

Ui	Z_{i1}	Z_{i2}	Z_{i3}	Z_{i4}
1	1	0	0	0
2	0	1	0	0
3	0	0	1	0
4	0	0	0	1

RESEARCH INFRASTRUCTURE FOR SCIENT AND INNOVATION POLICY STUDIES

RISI

• In this way the complete data log-likelihood is expressed as

$$\ell^*(\boldsymbol{ heta}) = \sum_{i=1}^n \sum_{u=1}^k [Z_{iu} \log f(\boldsymbol{y}_i | u) + Z_{iu} \log \pi_u]$$

- The EM algorithm consists in alternating two steps:
 - *E-step*: compute the posterior expect value of each indicator variable Z_{iu} by the Bayes theorem:

$$\hat{z}_{iu} = E(Z_{iu}|\boldsymbol{y}_i) = p(Z_{iu} = 1|\boldsymbol{y}_i) = p(U_i = u|\boldsymbol{y}_i)$$

- *M-step*: maximize function $\ell^*(\theta)$ with each indicator variables Z_{iu} substituted by \hat{z}_{iu} obtained at the E-step
- At the M-step, an *explicit solution* exists for the class weights:

$$\pi_u = \frac{1}{n} \sum_{i=1}^n \hat{z}_{iu}, \quad u = 1, \dots, k$$

RISL

• For the FM of Normal distributions, an explicit solution exists for the other parameters $(u = 1, \ldots, k)$:

$$\boldsymbol{\mu}_{u} = \frac{1}{\sum_{i=1}^{n} \hat{z}_{iu}} \sum_{i=1}^{n} \hat{z}_{iu} \boldsymbol{y}_{i}$$

$$\begin{split} \boldsymbol{\Sigma}_{u} &= \frac{1}{\sum_{i=1}^{n} \hat{z}_{iu}} \sum_{i=1}^{n} \hat{z}_{iu} (\boldsymbol{y}_{i} - \boldsymbol{\mu}_{u}) (\boldsymbol{y}_{i} - \boldsymbol{\mu}_{u})' \quad \text{(homoskedastic)} \\ \boldsymbol{\Sigma} &= \frac{1}{n} \sum_{i=1}^{n} \sum_{u=1}^{k} \hat{z}_{iu} (\boldsymbol{y}_{i} - \boldsymbol{\mu}_{u}) (\boldsymbol{y}_{i} - \boldsymbol{\mu}_{u})' \quad \text{(heteroskedastic)} \end{split}$$

- In general, different starting values must be used in order to face the problem of the *multimodality* of the log-likelihood function
- The EM algorithm is *implemented* in several softwares such as R (package mclust) and Stata

F. Bartolucci

• In order to *select the number of components* (k) two criteria can be adopted when there is no precise idea based on substantial reasons:

Akaike Information Criterion (AIC) = $-2\ell(\hat{\theta}_k) + 2 \times \# \text{par.}$ Bayesian Information Criterion (BIC) = $-2\ell(\hat{\theta}_k) + \log(n) \times \# \text{par.}$

- These criteria rely on *penalized versions* of the log-likelihood function (Akaike, 1973; Schwarz,1978): the selected model is that with the minimum value of AIC (or BIC), corresponding to the best compromise between goodness-of-fit and model parsimony
- Certain authors prefer to report AIC (or BIC) with *reversed sign* (search for the maximum)
- BIC often selects a more parsimonious model with respect to AIC
- Many other selection criteria are available and these may be used in general (not only to select k)

20 / 47

Example 1: simulated data

• Consider an FM model for *n* = 100 *bivariate responses* with *k* = 2 components:

•
$$U_i = 1 \rightarrow \boldsymbol{Y}_i \sim N(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$$

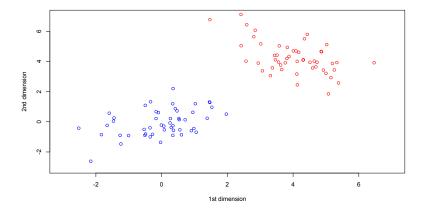
• $U_i = 2 \rightarrow \mathbf{Y}_i \sim N(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$

•
$$\pi_1 = \pi_2 = 0.5$$

$$oldsymbol{\mu}_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad oldsymbol{\Sigma}_1 = \begin{pmatrix} 1.0 & 0.5 \\ 0.5 & 1 \end{pmatrix}$$
 $oldsymbol{\mu}_2 = \begin{pmatrix} 4 \\ 4 \end{pmatrix}, \quad oldsymbol{\Sigma}_2 = \begin{pmatrix} 1.0 & -0.5 \\ -0.5 & 1 \end{pmatrix}$

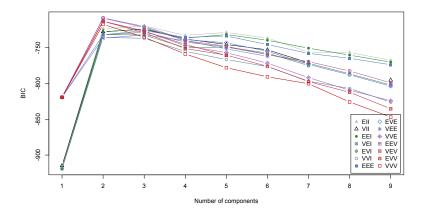
• This is a *heterockedatic FM model* because the two variance-covariance matrices are different

• *Data representation* (blue = 1st component, red = 2nd component):



• These data are analyzed by package mclust of R

 Model selection based on BIC (with sign reversed) in terms of k and structure of the variance-covariance matrices (EII, VII,...):



• *Two groups* are indeed selected, with different variance-covariance matrices

• Estimated parameters:

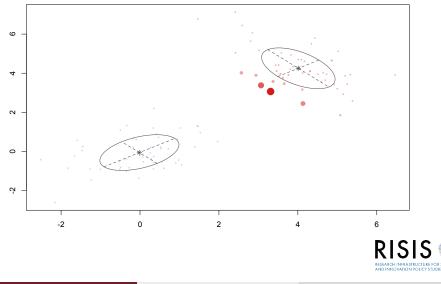
$$\hat{\mu}_1 = \begin{pmatrix} -0.015 \\ -0.058 \end{pmatrix}, \quad \hat{\mathbf{\Sigma}}_1 = \begin{pmatrix} 1.006 & 0.403 \\ 0.403 & 0.835 \end{pmatrix}$$

$$\hat{\mu}_2 = \begin{pmatrix} 4.012\\ 4.251 \end{pmatrix}, \quad \hat{\Sigma}_2 = \begin{pmatrix} 0.869 & -0.519\\ -0.519 & 1.089 \end{pmatrix}$$
 $\hat{\pi}_1 = \hat{\pi}_2 = 0.5$

• Posterior probabilities and clustering:

i	\hat{z}_{i1}	2 _{i2}	Assigned group	True group	
1	1.0000	0.0000	1	1	
÷	÷	÷	:	:	
70	0.0000	1.0000	2	2	
÷	÷	÷	:	÷	
74	0.0027	0.9973	2	2	
					AND INNOVATION POLICY STUDIES

- *Clustering representation* (blue = 1st component, red = 2nd component) with measure of uncertainty:



Example 2: real data

• Data about all world countries regarding certain *macro-economic and demographic indicators* for 2016 (source: World Bank):

					Life	School	School
i	Name	Code	GDP	Ages	expect	enp	ens
1	Afghanistan	AFG	1793.89	43.86	65.02	NA	51.75
2	Albania	ALB	11355.62	17.72	80.45	109.78	94.98
:	:	:	:	:	:	:	•
85	Italy	ITA	34655.26	13.61	84.90	100.36	102.83
:		:	:	:	:	:	:
•	•	•	•	•	•	•	•
170	Switzerland	CHE	57421.55	14.83	85.10	104.41	102.29
:	:	:	:	:	:	:	:
•	•	•	•	•	•	•	•
186	United States	USA	53399.36	19.03	81.20	101.36	98.77
:	:	:	:	:	:	:	:
•		•	•	•	•	•	•
236	Sub-Saharan Africa						
	(IDA & IBRD)	TSS	3482.87	42.88	62.09	97.18	42.81

 Countries with at least one *missing value* are eliminated so that n = 162 countries are considered

F. Bartolucci

RISIS 2019

RIS

AND INNOVATION POLICY STUDIES

26 / 47

- A model with k = 3 components and unequal variance-covariance matrices (VEV structure) are *selected by BIC*
- Estimated means and weights:

$$\hat{\boldsymbol{\mu}}_{1} = \begin{pmatrix} 3428.67\\ 39.38\\ 64.18\\ 104.13\\ 49.33 \end{pmatrix}, \quad \hat{\boldsymbol{\mu}}_{2} = \begin{pmatrix} 16661.98\\ 24.01\\ 77.34\\ 102.93\\ 93.48 \end{pmatrix}, \quad \hat{\boldsymbol{\mu}}_{3} = \begin{pmatrix} 51140.18\\ 16.67\\ 83.23\\ 102.22\\ 113.31 \end{pmatrix}$$

 $\hat{\pi}_1 = 0.265, \quad \hat{\pi}_2 = 0.529, \quad \hat{\pi}_3 = 0.205$

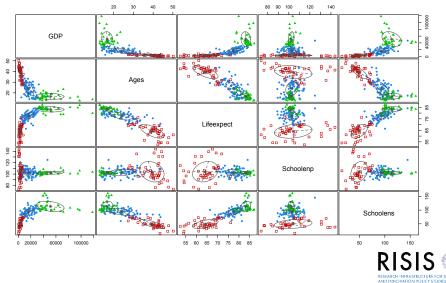
The estimated variances have a size that tend to increase with the mean and, generally, with a negative correlation between variable Ages and the other variables

• Posterior probabilities and clustering:

					Assigned
i	Code	\hat{z}_{i1}	\hat{z}_{i2}	2 _{i3}	group
2	ALB	0.006	0.988	0.007	2
÷	-	÷	÷	÷	÷
85	ITA	0.000	0.199	0.801	3
:	:	:	:	:	:
170	CHE	0.000	0.000	1.000	3
:	:	:	:	:	:
186	USA	.0.000	0.000	1.000	3
:		:	:	:	:
236	TSS	1.000	0.000	0.000	1

Examples

• *Clustering representation* (red = 1st component, blue = 2nd component, green = 3rd component):



Latent Class Model

- Main references: Lazarfeld (1968), Goodman (1974)
- It follows an FM approach that:
 - is suitable for *categorical response variables* Y_{ii} with categories labeled from 0 to $c_i - 1, j = 1, ..., J$
 - assumes LI so that the latent variable is the only explanatory factor of the responses

• The *conditional probability of a response configuration* given the latent class is obtained by a single product:

$$p(\mathbf{y}_i|u) = \prod_{j=1}^J \eta_{j,y_{ij}|u}$$

• $\eta_{j,y|u}$: probability that $Y_{ij} = y$ given $U_i = u$

 In the *binary case* it may be expressed using the Bernoulli probability mass function:

$$p(\boldsymbol{y}_i|u) = \prod_{j=1}^J \lambda_{j|u}^{y_{ij}} (1-\lambda_{j|u})^{1-y_{ij}}$$

• $\lambda_{j|u}$: probability that $Y_{ij} = 1$ given $U_i = u$ corresponding to $\eta_{j,1|u}$

• The *manifest distribution* becomes

$$p(\boldsymbol{y}_i) = \sum_{u=1}^k \left(\prod_{j=1}^J \eta_{j, y_{ij}|u}\right) \pi_u$$

RISL

• The *posterior distribution* becomes

$$p(U_i = u | \mathbf{y}_i) = \frac{\sum_{u=1}^k \left(\prod_{j=1}^J \eta_{j, y_{ij} | u} \right) \pi_u}{p(\mathbf{y}_i)}, \quad u = 1, \dots, k$$

• The number of free parameters is in general

$$\# \operatorname{par} = \underbrace{k-1}_{\pi_u} + \underbrace{\prod_{j=1}^{J} (c_j - 1)}_{\eta_{j,y|u}}$$

that in the binary case becomes

$$\# \text{par} = \underbrace{k-1}_{\pi_u} + \underbrace{kJ}_{\lambda_{i|u}}$$

Estimation

- Estimation is based on an *EM algorithm* having the same structure of that for FM models; it may be easily implemented using the binary indicator variable representation (*Z*_{iu} vs *U*_i)
- The complete data log-likelihood is expressed as

$$\ell^*(\boldsymbol{\theta}) = \sum_{i=1}^n \sum_{u=1}^k \left[Z_{iu} \sum_{j=1}^J \log(\eta_{j,y_{ij}|u}) + Z_{iu} \log(\pi_u) \right]$$

• At the M-step an *explicit solution* exists for the $\eta_{j,y|u}$ parameters:

$$\eta_{j,y|u} = \frac{1}{\sum_{i=1}^{n} \hat{z}_{iu}} \sum_{i=1}^{n} \hat{z}_{iu} I(y_{ij} = y)$$

that in the binary case becomes

$$\lambda_{j|u} = \frac{1}{\sum_{i=1}^{n} \hat{z}_{iu}} \sum_{i=1}^{n} \hat{z}_{iu} y_{ij}$$

- A crucial issue is still that of *multimodality of the log-likelihood function* that requires the use of different starting points
- Typically, apart from a deterministic initialization (depending on the observed data), several *random initializations* are tried with each probability π_u and $\eta_{j,y|u}$ drawn from a uniform distribution from 0 to 1 and then suitably renormalized
- A crucial point after estimation is that of *assigning individuals to the latent classes*, which is still based on the posterior probabilities \hat{z}_{iu} using the MAP rule
- The same *model selection criteria* as for FM models (in particular AIC and BIC) are typically adopted for model selection
- The EM algorithm is *implemented* in several softwares such as R (package MultiLCIRT) and Stata

Example

- Data are collected on 216 subjects who responded to J = 4 items concerning the behavior in certain role conflict situations (Goodman, 1974)
- Each binary response variable is equal to 1 if the interviewed individual has a universalistic behavior and 0 if he/she has a particularistic behavior
- Data may be represented by a 2⁴-dimensional vector of frequencies for all the response configurations:

Y_{i1}	Y_{i2}	Y_{i3}	Y_{i4}	Frequency
0	0	0	0	42
0	0	0	1	23
0	0	1	0	6
:	:	:	:	:
-	•	•	•	•
1	1	1	1	20

RIS

• Selection of the number of classes:

k	$\ell(\hat{oldsymbol{ heta}})$	#par	AIC	BIC
1	-543.65	4	1095.30	1108.80
2	-504.47	9	1026.94	1057.31
3	-503.30	14	1034.60	1081.86
4	-503.11	19	1044.22	1108.35

• Both AIC and BIC select k = 3 latent classes

• Parameter estimates:

		$\hat{\lambda}$				
Class(u)	j = 1	<i>j</i> = 2	<i>j</i> = 3	<i>j</i> = 4	$\hat{\pi}_{u}$	
1	0.003	0.023	0.006	0.101	0.200	
2	0.164	0.519	0.563	0.807	0.601	D IOIO
3	0.548	0.922	0.736	0.928	0.199	RISIS
						RESEARCH INFRASTRUCTURE FO AND INNOVATION POLICY STUD

• *Posterior probability* for each possible response configuration:

							Assigned
y _{i1}	y _{i2}	Уіз	Yi4	\hat{z}_{i1}	\hat{z}_{i2}	\hat{z}_{i3}	class
0	0	0	0	0.894	0.105	0.001	1
0	0	0	1	0.183	0.801	0.016	2
0	0	1	0	0.040	0.946	0.013	2
0	0	1	1	0.001	0.957	0.042	2
0	1	0	0	0.150	0.793	0.057	2
0	1	0	1	0.004	0.815	0.180	2
0	1	1	0	0.001	0.865	0.134	2
0	1	1	1	0.000	0.676	0.324	2
1	0	0	0	0.105	0.860	0.035	2
1	0	0	1	0.003	0.887	0.110	2
1	0	1	0	0.001	0.919	0.080	2
1	0	1	1	0.000	0.787	0.213	2
1	1	0	0	0.002	0.693	0.305	2
1	1	0	1	0.000	0.423	0.577	3
1	1	1	0	0.000	0.512	0.488	2
1	1	1	1	0.000	0.253	0.747	3

Inclusion of covariates

- Two possible choices to include individual covariates collected in x_i
- The first is in the *measurement model* so that we have random intercepts; for instance, for the LC model for binary variables we could assume:

$$\lambda_{ij|u} = p(Y_{ij} = 1 | U_i = u, \mathbf{x}_i),$$

$$\log \frac{\lambda_{ij|u}}{1 - \lambda_{ij|u}} = \alpha_u + \mathbf{x}'_i \beta, \quad i = 1, \dots, n, \ j = 1, \dots, J, \ u = 1, \dots, k$$

- α_u : random intercepts
- β : vector of logistic regression parameters
- The latent variables are used to account for the *unobserved heterogeneity* in addition to the observed heterogeneity; the model may be seen as a "discrete version" of the random-effects logit model

F. Bartolucci

• The second is in the *structural model* governing the distribution of the latent variables (via a multinomial logit parametrization):

$$\pi_{iu} = p(U_i = u | \mathbf{x}_i),$$

$$\log \frac{\pi_{iu}}{\pi_{i1}} = \mathbf{x}'_{i1} \boldsymbol{\gamma}_u, \quad u = 2, \dots, k$$

• γ_u : vectors of regression coefficients specific for each latent class

- The *main interest is in the latent variable* that is measured through the observable response variables (e.g., health status) and on how this latent variable depends on the covariates
- Both extensions lead to FM/LC models that may be *estimated* by an EM algorithm having a structure similar to that of the corresponding models without covariates; particular care is necessary to obtain the *standard errors* for the regression coefficients
- Usual criteria may be used for *model selection* in terms of number of components (*k*) and other assumptions

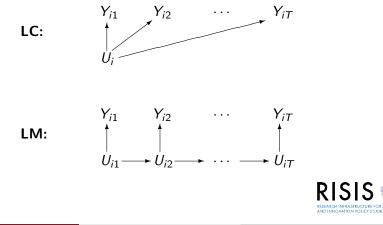
F. Bartolucci

Extension to longitudinal data

- The extension of FM/LC models to the analysis of longitudinal data is known as *Latent Markov (ML) model*
- *Main references*: Wiggins (1973), Bartolucci *et al.* (2013), Zucchini *et al.* (2016)
- For individual sequences of response variables at T time occasions, $\mathbf{Y}_i = (Y_{i1}, \dots, Y_{iT})'$, $i = 1, \dots, n$, the basic version of the LM model assumes that:
 - (*LI*) the response variables in **Y**_i are conditionally independent given a latent process **U**_i = (U_{i1},..., U_{iT})'
 - every latent process U_i follows a *first-order Markov chain* with state space {1,..., k}, initial probabilities π_u, and transition probabilities π_{v|u}, u, v = 1,..., k

Possible interpretation

• The LM model may be seen as a *generalization of the LC model* in which subjects are allowed to move between latent classes



Model parameters

- Each latent state u (u = 1, ..., k) corresponds to a *class of subjects* (or latent state) in the population, and is characterized by:
 - initial probability:

$$\pi_u = p(U_{i1} = u)$$

• *transition probabilities* (which may also be time-specific in the non-homogenous case):

$$\pi_{v|u} = p(U_{it} = v|U_{i,t-1} = u), \quad t = 2, \dots, T, \ v = 1, \dots, k$$

• *distribution of the response variables* (with categorical responses with *c* categories):

$$\psi_{y|u} = p(Y_{it} = y|U_{it} = u), \quad t = 1, ..., T, \ y = 0, ..., c - 1$$

 The transition probabilities are collected in the transition matrix **Π** of size k × k RISIS CURE FOR SCIENCE AND INNOVATION POLICY STUDIES

F. Bartolucci

• LI implies that the *conditional distribution* of **Y**_i given **U**_i is:

$$p(\boldsymbol{y}_i|\boldsymbol{u}_i) = p(\boldsymbol{Y}_i = \boldsymbol{y}_i|\boldsymbol{U}_i = \boldsymbol{u}_i) = \prod_{t=1}^{I} \psi_{y_{it}|u_{it}}$$

- Distribution of \boldsymbol{U}_i : $p(\boldsymbol{u}_i) = p(\boldsymbol{U}_i = \boldsymbol{u}_i) = \pi_{u_{i1}} \prod_{t>1} \pi_{u_{it}|u_{i,t-1}}$
- Manifest distribution of \mathbf{Y}_i : $p(\mathbf{y}_i) = p(\mathbf{Y}_i = \mathbf{y}_i) = \sum_{\mathbf{u}} p(\mathbf{y}_i | \mathbf{u}) p(\mathbf{u})$
- This may be *efficiently computed* through suitable recursions known in the hidden Markov literature (Baum *et al.*, 1970, Welch 2003)

RISIS CONTRACTION POLICY STUDIES

• The same tools available for FM/LC models may be used for *model* estimation and selection, although the EM algorithm requires particular care in the implementation based on certain recursions (Baum *et al.*, 1970, Welch 2003); package LMest in R may be used for applications

- After estimation, an important analysis is that of the *prediction of the latent states* for every unit and time occasion (dynamic clustering) that requires particular recursions (Viterbi, 1967; Juang & Rabiner, 1991)
- The LM model has been extended in several directions:
 - *multivariate longitudinal data* when more response variables are available at each time occasion
 - *inclusion of covariates* in the measurement or structural model with different interpretations and types of analysis
 - *multilevel longitudinal data* when units are clustered and so have a hierarchical structure

44 / 47

F. Bartolucci

RISIS 2019

References

- Akaike, H. (1973). Information theory as an extension of the maximum likelihood principle. In: B. N. Petrov and F. Csaki, eds., *Second International Symposium on Information Theory*, 267–281. Akademiai Kiado, Budapest.
- Bartholomew, D. J., Knott, M., and Moustaki, I. (2011). Latent variable models and factor analysis: A unified approach. John Wiley & Sons, Chichester, UK.
- Bartolucci, F., Bacci, S., and Gnaldi, M. (2015). *Statistical Analysis of Questionnaires: A Unified Approach Based on R and Stata*. Chapman and Hall/CRC, Boca Raton, FL.
- Bartolucci, F., Farcomeni, A., and Pennoni, F. (2013). Latent Markov Models for Longitudinal Data. Chapman and Hall/CRC press, Boca Raton, FL.
- Bartolucci, F., Lupparelli, M., and Montanari, G. E. (2009). Latent Markov model for longitudinal binary data: An application to the performance evaluation of nursing homes. *The Annals of Applied Statistics*, **3**:611–636.
- Bartolucci, F., Pandolfi, S., and Pennoni, F. (2017). LMest: An R package for latent Markov models for longitudinal categorical data. *Journal of Statistical Software*, 81(4).
- Bartolucci, F., Pennoni, F., and Vittadini, G. (2011). Assessment of school performance through a multilevel latent Markov Rasch model. Journal of Educational and Behavioral Statistics, 36:491–522.

References

- Baum, L. E., Petrie, T., Soules, G., and Weiss, N. (1970). A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. *Annals of Mathematical Statistics*, **41**:164–171.
- Bouveyron, C., Celeux, G., Murphy, T. B., and Raftery, A. E. (2019). Model-Based Clustering and Classification for Data Science: With Applications in R. Cambridge University Press, Cambridge, UK.
- Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. *Journal of the Royal Statistical Society, Series B*, **39**:1–38.
- Goodman, L. A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. *Biometrika*, **61**:215–231.
- Juang, B. H. and Rabiner, L. R. (1991). Hidden Markov models for speech recognition. *Technometrics*, **33**:251–272.
- Lazarsfeld, P. F. and Henry, N. W. (1968). *Latent Structure Analysis*. Houghton Mifflin, Boston.
- Lindsay, B. G. (1995). *Mixture Models: Theory, Geometry and Applications*. In NSF-CBMS regional conference series in probability and statistics. Institute of Mathematical Statistics and the American Statistical Association.
- McLachlan, G. and Peel, D. (2000). *Finite Mixture Models*. Wiley, New York.

References

- Skrondal, A. and Rabe-Hesketh, S. (2004). Generalized Latent Variable Modeling: Multilevel, Longitudinal, and Structural Equation Models. Chapman and Hall/CRC, Boca Raton, FL.
- Rasch, G. (1961). On general laws and the meaning of measurement in psychology. *Proceedings of the IV Berkeley Symposium on Mathematical Statistics and Probability*, **4**:321–333.
- Schwarz, G. (1978). Estimating the dimension of a model. *The Annals of Statistics*, **6**:461–464.
- Scrucca, L., Fop, M., Murphy, T. B., and Raftery, A. E. (2016). mclust 5: clustering, classification and density estimation using Gaussian finite mixture models, *The R Journal*, **8**:205-233.
- Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. *IEEE Transactions on Information Theory*, 13:260–269.
- Welch, L. R. (2003). Hidden Markov models and the Baum-Welch algorithm. *IEEE Information Theory Society Newsletter*, **53**:1–13.
- Wiggins, J. S. (1973). *Personality and Prediction: Principles of Personality Assessment.* Addison-Wesley Pub. Co.

 Zucchini, W., MacDonald, I. L., and Langrock, R. (2016). Hidden Markov Models for Time Series: an Introduction Using R. Chapman and Hall/CRC.