
How to use the CSO Classifier in other domains

Angelo A. Salatino, Francesco Osborne
Knowledge Media Institute, The Open University, MK7 6AA, Milton Keynes, UK

{firstname.lastname}@open.ac.uk

Abstract. Being able to characterise research papers according to their topics
enables a multitude of high-level applications such as i) categorise proceedings
in digital libraries, ii) semantically enhance the metadata of scientific
publications, iii) generate recommendations, iv) produce smart analytics, v)
detect research trends, and others. In our recent work, we designed and developed
an unsupervised approach to automatically classify research papers according to
an ontology of research areas in the field of Computer Science. This approach
uses well-known technologies from the field of Natural Language Processing
which makes it easily generalisable. In this article, we will show how we can
customise the CSO Classifier and apply it to other fields of Science.

Keywords: Scholarly Data, Digital Libraries, Bibliographic Data, Ontology,
Text Mining, Topic Detection, Word Embeddings, Science of Science.

1 Introduction

Being able to characterise research papers according to their topics enables a multitude
of high-level applications such as i) categorising proceedings in digital libraries [1], ii)
enhancing semantically the metadata of scientific publications, iii) generating
recommendations [2], iv) producing smart analytics [3], v) detecting research trends [4,
5], and others.

In our recent work, we designed and developed the CSO Classifier 1 [6], an
unsupervised approach to automatically classify research papers according to an
ontology of research areas in the field of Computer Science. This approach uses well-
known technologies from the field of Natural Language Processing which makes it
easily generalisable. In this article, we will show how we can customise the CSO
Classifier and apply it to other fields of Science. In particular, we will briefly introduce
the CSO Classifier in Section 2, then in Section 3 we will describe the main field-
dependent components, such the Computer Science Ontology, and the pre-trained
word2vec model, and finally, in Section 4 we will show how to integrate knowledge
from other fields in the classifier.

2 CSO Classifier

The CSO Classifier is an application that takes as input the text from abstract, title, and
keywords of a research paper and outputs a list of relevant concepts from the Computer
Science Ontology (CSO). It consists of two main components: (i) the syntactic module
and (ii) the semantic module. Figure 1 depicts its architecture. The syntactic module

1 GitHub repository for the CSO Classifier — https://github.com/angelosalatino/cso-
classifier

parses the input documents and identifies CSO concepts that are explicitly referred to
in the document. The semantic module uses part-of-speech tagging to identify
promising terms and then it exploits word embeddings to infer semantically related
topics. Finally, in a further post-processing module, the CSO Classifier combines the
results of these two modules and enhances them by including relevant super-areas.

Figure 1: Framework of CSO Classifier (from [6]).

More information about CSO Classifier and how it was developed can be found in [6].

3 External sources

The CSO Classifier takes advantage of two main external sources: i) the Computer
Science Ontology (CSO) and ii) a pre-trained word embedding (word2vec) model. The
Computer Science Ontology is currently used across all the modules within the CSO
Classifier. Indeed, both syntactic and semantic modules use it as a controlled list of
topics. The post-processing module uses the superTopicOf relationship to include
broader topics that have been inferred from the previous two modules. This allows us
to obtain a wider context for the analysed research papers and enable further high-level
analytics.

The pre-trained word2vec model, instead, is solely used by the semantic module to
support the semantic inference of CSO concepts starting from the identified entities
within the metadata. We devote the following subsections to describe more in detail
those sources.

3.1 The Computer Science Ontology

The Computer Science Ontology is a large-scale ontology of research areas that was
automatically generated using the Klink-2 algorithm [7] on a dataset of 16 million
publications, mainly in the field of Computer Science. Differently, from other solutions
available in the state of the art, CSO includes a much larger number of research topics,
enabling a granular characterisation of the content of research papers, and it can be
easily updated by running Klink-2 on recent corpora of publications.

The current version of CSO [8] includes 14K semantic topics and 162K
relationships. The main root is Computer Science; however, the ontology includes also
a few secondary roots, such as Linguistics, Geometry, Semantics, and others.

The CSO data model 2 is an extension of SKOS 3 . It includes eight semantic
relationships (in bold are the relationships that the classifier uses):

• superTopicOf, which indicates that a topic is a super-area of another one (e.g.,
Semantic Web is a super-area of Linked Data).

• relatedEquivalent, which indicates that two topics can be treated as
equivalent for the purpose of exploring research data (e.g., Ontology Matching
and Ontology Mapping).

• preferentialEquivalent, this relation is used to state the main label for topics
belonging to a cluster of relatedEquivalent. For instance, the topics ontology
and ontologies will both have their preferentialEquivalent set to ontology.

• rdfs:label, this relation is used to provide a human-readable version of a
resource’s name.

• contributesTo, which indicates that the research output of one topic
contributes to another.

• rdf:type, this relation is used to state that a resource is an instance of a class.
For example, a resource in our ontology is an instance of a topic.

• owl:sameAs, which lists entities from other knowledge graphs from the
Linked Open Data Cloud (DBpedia, Freebase, Wikidata, YAGO, and Cyc)
that refer to the same concepts.

• schema:relatedLink, which links CSO concepts to related web pages that
either describes the research topics (Wikipedia articles) or provide additional
information about the research domains (Microsoft Academic).

The Computer Science Ontology is available through the CSO Portal 4 , a web
application that enables users to download, explore, and provide granular feedback on
CSO at different levels. Users can use the portal to rate topics and relationships, suggest
missing relationships, and visualise sections of the ontology. More information about
CSO and how it was developed can be found [8].

3.2 Word Embedding model (Word2vec)

We applied the word2vec approach to a collection of text from the Microsoft Academic
Graph (MAG) 5 for generating word embeddings. MAG is a scientific knowledge base
and a heterogeneous graph containing scientific publication records, citation
relationships, authors, institutions, journals, conferences, and fields of study. It is the
largest dataset of scholarly data publicly available, and, as of December 2018, it
contains more than 210 million publications.

We first downloaded titles, and abstracts of 4,654,062 English papers in the field of
Computer Science. Then we pre-processed the data by replacing spaces with
underscores in all n-grams matching the CSO topic labels (e.g., “digital libraries”
became “digital_libraries”) and for frequent bigrams and trigrams (e.g.,

2 CSO Data Model - https://cso.kmi.open.ac.uk/schema/cso
3 SKOS Simple Knowledge Organization System - http://www.w3.org/2004/02/skos
4 Computer Science Ontology Portal - https://cso.kmi.open.ac.uk
5 Microsoft Academic Graph - https://www.microsoft.com/en-us/research/project/microsoft-

academic-graph/

“highest_accuracies”, “highly_cited_journals”). These frequent n-grams were
identified by analysing combinations of words that co-occur together, as suggested in
[9] and using the parameters shown in Table 1. Indeed, while it is possible to obtain the
vector of an n-gram by averaging the embedding vectors of all its words, the resulting
representation usually is not as good as the one obtained by considering the n-gram as
a single word during the training phase.

Finally, we trained the word2vec model using the parameters provided in Table 2.
The parameters were set to these values after testing several combinations.

Table 1: Parameters used during the collocation words analysis and for the word2vec model.

collocations
(grams)

min-
count

5

threshold
10

Table 2: Parameters used for training the word2vec model.

word2vec

method
skipgram

emb.
size

128

window size
10

negative
5

max
iter.

5

min-count
cutoff

10

After training the model, we obtained a
gensim.models.keyedvectors.Word2VecKeyedVectors object6 weighing 366MB.

The size of the model hindered the performance of the classifier in two ways. Firstly,
it required several seconds to be loaded into memory. This was partially fixed by
serialising the model file (using python pickle7, see version v2.0 of CSO Classifier,
~4.5 times faster). Secondly, when processing a document, the classifier needs to
retrieve the top 10 similar words for all tokens, and compare them with CSO topics. In
general, accessing the model to retrieve the most similar words does not require a large
amount of time, and indeed the Gensim8 library is already optimised to perform such
operation in the most efficient way. However, this process becomes quite expensive —
in terms of time — when processing research papers, since the classifier performs
multiple accesses to the model. This multiple access to the model actually requires
several seconds to be completed, therefore becoming a bottleneck for the classification
process.

To this end, we decided to create a cached model (token-to-cso-combined.json)
which is a dictionary that directly connects all token available within the vocabulary of
the model with the CSO topics. This strategy allows us to quickly retrieve all CSO
topics that can be inferred by a particular token. In the next section, we show more in
detail the structure of this cache.

6 Download pre-trained model from here— https://cso.kmi.open.ac.uk/download/model.p
7 Python object serialization — https://docs.python.org/3/library/pickle.html#module-
pickle
8 Gensim Library — https://pypi.org/project/gensim/

3.2.1 token-to-cso-combined file
As already mentioned, this is a JSON file that contains a large dictionary, which
functions as a look-up table between the different possible tokens used when training
the word2vec model and its semantically similar CSO concepts.

To generate this dictionary/file, we collected all the different words available within
the vocabulary of the model. Then iterating on each word, we retrieved its top 10 similar
words from the model, and we computed their Levenshtein similarity against all CSO
topics. If the similarity was above 0.7, we created a record which stored all CSO topics
triggered by the initial word.

In particular, for each word in our model, we created a key entry within our cached
dictionary, as the entry "digital_libraries" shown in the example below. The value of
such entry is a list of matched CSO concepts. Each item of this list contains: i) one of
the top similar words according to the model (wet), ii) the label of the CSO topic most
similar to wet (topic), iii) the Levenshtein similarity between the topic and the similar
word wet (sim_t), and iv) the cosine similarity between the vector representation of the
key concept and the top similar word (sim_w). This large dictionary is then exported
into a JSON file: token-to-cso-combined.json.

1. "digital_libraries": [
2. {
3. "topic": "digital_libraries", # CSO Topic
4. "sim_t": 1.0, # Lev. Sim.ty between CSO Topic and Word Emb. Token
5. "wet": "digital_libraries", # Word Embedding Token
6. "sim_w": 1 # Cosine Sim.ty between key and Word Embedding Token
7. },
8. {
9. "topic": "digital_library",
10. "sim_t": 1.0,
11. "wet": "digital_library",
12. "sim_w": 0.893683910369873
13. },
14. {
15. "topic": "digital_collections",
16. "sim_t": 1.0,
17. "wet": "digital_collections",
18. "sim_w": 0.8221904039382935
19. },
20. {
21. "topic": "institutional_repositories",
22. "sim_t": 1.0,
23. "wet": "institutional_repositories",
24. "sim_w": 0.789232611656189
25. }
26.]

4 Use the CSO Classifier in other domains

In order to use the CSO Classifier in other domains of Science, it is necessary to replace
the two external sources mentioned in the previous section. In particular, there is a need
for a comprehensive ontology or taxonomy of research areas, within the new domain,
which will work as a controlled list of research topics. In addition, it is important to
train a new word2vec model that fits the language model and the semantic of the terms

in this particular domain. In the next subsections, we will show how to integrate
knowledge from other fields of Science within the CSO Classifier.

4.1 Ontology or taxonomy of research topics

Alternative ontologies or taxonomies of research topics, from other domains, will
replace the Computer Science Ontology. In general, a simple — and structureless —
list of topics can be a good starting point to replace the CSO. However, we have
evidence that a taxonomical structure of topics can definitely improve the results of the
classifier. As previously mentioned, CSO consists of several semantic relationships and
only four of them are actually used by the CSO Classifier:

• klink:broaderGeneric (which is the legacy relationship for superTopicOf)
• klink:relatedEquivalent (which is the legacy relationship for

relatedEquivalent)
• klink:primaryLabel (which is the legacy relationship for

preferentialEquivalent)
• rdfs:label

The function load_cso() in the misc.py file parses the CSV file containing the CSO
ontology and for each row (triple: {subject, predicate, object}) it fills the content of the
final cso object, if the predicate is among the previously mentioned relationships.

The Python object loaded in memory is structured as follows:

1. cso = {
2. 'topics': topics, # the list topics
3. 'broaders': broaders, # the list of broader topics for a given topic
4. 'narrowers': narrowers, # inverse of broaders, the list of narrower topics

for a given topic
5. 'same_as': same_as, # all the siblings for a given topic
6. 'primary_labels': primary_labels, # all the primary labels of topics, if

they belong to clusters
7. 'topics_wu': topics_wu, # topic with underscores
8. 'primary_labels_wu': primary_labels_wu # primary labels with underscores
9. }

On their turn, all these sub-entities, such as topics, broaders, narrowers, and others,

are also dictionaries.
The sub-object topics contains a list of topics and each key is connected to a dummy

flag always set to true. This is mainly used to check if a topic exists in the ontology.
The sub-object broaders connects all topics with its super-topics. Each key is a topic

in the ontology, which has at least one super-topic, and the value contains a list of all
its super-topics.

The sub-object narrowers connects all topics with its sub-topics. Each key is a topic
in the ontology, which has at least one sub-topic, and the value contains a list of all its
sub-topics.

The sub-object same_as connects all topics with its related equivalent topics. Each
key is a topic in the ontology, which has at least one equivalent topic, and the value
contains a list of all its equivalent topics. This object is logically complete. For instance,
if a topic A is relatedEquivalent to B — and therefore B relatedEquivalent to A, —
there will be both keys A and B respectively having values B and A, as shown in the
example below.

1. {
2. ...,
3. "same_as": {
4. "A": [B],
5. "B": [A],
6. ...
7. },
8. ...
9. }

The sub-object primary_labels connects related equivalent topics with its preferred

label, which is unique for the whole cluster, please refer to the preferentialEquivalent
relationship above. Each key is a topic in the ontology, which belongs to a related
equivalent cluster of topics, and the value contains the preferred label.

The sub-object topics_wu is similar to the sub-object topics. The only difference is
that the key is a topic in the ontology with its tokens glued by an underscore, and the
value contains the actual label of the topics.

The sub-object primary_label_wu is similar to the sub-object primary_labels.
Each key is a topic that belongs to a cluster of related equivalent topics, but its tokens
are glued with an underscore. The value contains the preferred label with its tokens also
glued by an underscore.

Here follows a reduced example of the final cso object:

1. {
2. "topics": { # each key (topic) is connected to a dummy flag (always true).

This is used to quickly check the existence of a topic
3. "world wide web": true,
4. "wordnet": true,
5. "word sense disambiguation": true,
6. ...
7. },
8. "broaders": { # each key (topic) is connected to the list of all its super

topics
9. "artificial intelligence": [
10. "computer science"
11.],
12. "neural network": [
13. "machine-learning",
14. "machine learning",
15. "machine learning techniques",
16. "machine learning methods",
17. "machine learning algorithms",
18. "machine learnings"
19.],
20. ...
21. },
22. "narrowers": { # each key (topic) is connected to the list of all its sub

topics
23. "computer science": [
24. "artificial intelligence",
25. "robotics",
26. "computer vision",
27. "hardware",
28. "computer operating systems",
29. "computer networks",
30. "bioinformatics",
31. "software engineering",
32. "information technology",

33. "data mining",
34. "information retrieval",
35. "computer programming",
36. "human computer interaction",
37. ...
38.],
39. ...
40. },
41. "same_as": { # each key (topic) is connected to the list of all its similar

topics
42. "semantic web": [
43. "semantic web applications",
44. "semantic web technologies",
45. "semantic technologies",
46. "semantic web technology",
47. "semantic technology"
48.],
49. "human robot interaction": [
50. "human-robot interaction",
51. "human robot interactions"
52.],
53. ...
54. },
55. "primary_labels": { # each key (topic) is connected to its preferred label
56. "context- awareness": "context-awareness",
57. "context awareness": "context-awareness",
58. "context-awareness": "context-awareness",
59. "architecture designs": "architecture designs",
60. "software architecture design": "architecture designs",
61. "architecture design": "architecture designs",
62. ...
63. },
64. "topics_wu": { # each key (topic with underscore) is connected to its topic

original topic
65. "zero_forcing": "zero forcing",
66. "zero_moment_point": "zero moment point",
67. "z-scan": "z-scan",
68. "yag": "yag",
69. "xpath": "xpath",
70. ...
71. },
72. "primary_labels_wu": { # each key (primary label with underscore) is connected

to its original label
73.
74. "context-_awareness": "context-awareness",
75. "context_awareness": "context-awareness",
76. "context-awareness": "context-awareness",
77. "architecture_designs": "architecture_designs",
78. "software_architecture_design": "architecture_designs",
79. "architecture_design": "architecture_designs",
80. ...
81. }

82. }
This cso object is then employed as it is throughout the whole classification process.

Therefore, when using another ontology of research topics it would be important to
populate this object maintaining the described structure.

4.2 Word2vec model

The newly trained word2vec model will replace the model that the CSO Classifier is
currently using. This will need to be trained on a corpus of research papers that fits the
new domain of application. Our word embedding model was trained using titles and
abstracts from Microsoft Academic Graph in the field of Computer Science.
Considering that MAG covers also several other areas of Science, it can be easily re-
used to generate the corpus for training the new model. However, depending on the
field there can be further available sources that can be used to train the word2vec model,
such as PubMed for the field of medicine. One might also think to train a model on the
whole MAG corpus, which includes over 300M publications covering the different
fields, that would be general enough to suit also other fields. However, we have no
evidence on how this one-size-fits-all model would actually perform compared to an
ad-hoc one, customised and trained for the individual field.

Regarding the size of the corpus, we are not aware of the minimum amount of text
needed to train a good word2vec model. This would be subject to further evaluation.

Here follows a sample of Python code for training the word2vec model using the
Gensim library:

1. from gensim.models import word2vec
2.
3. ##
4. # READ SENTENCES
5. sentences = read_sentences(file="corpus.txt")
6. ##
7.
8. ##
9. #PARAMETHERS
10. model_name='cso-classifier'
11. SIZE=128
12. WINDOW=10
13. MIN_COUNT=10
14. ##
15.
16. print("\n-------------------------------------\nCreating model...")
17. model = word2vec.Word2Vec(sentences, size=SIZE, window=WINDOW, min_count=MIN_COUNT

, max_vocab_size=None, trim_rule=None, sg=1)
18. print("\n-------------------------------------\nSaving model...")
19. model.wv.save_word2vec_format(model_name + "[" + str(SIZE) + "-" + str(WINDOW) +

"]_sg.bin", binary=True)

4.3 Cached model

The cached model, as already mentioned, is a light-weight representation of the
word2vec model. Compared to the trained model, it can be quickly loaded into memory
and it almost instantly allows to retrieve the relevant CSO topics associated with a
particular word. In order to build this cached model, it is necessary to complete the
training phase of the word2vec model first.

Here we provide the Python code we used to create such cached model:

1. #!/usr/bin/env python3
2. # -*- coding: utf-8 -*-
3. """
4. Created on Mon Mar 4 22:52:14 2019
5. @author: angelosalatino

6. """
7.
8. import Levenshtein.StringMatcher as ls
9. import json
10.
11. ########## This is for loading CSO and our model. !! Change the following to lines

to replace them with your ontology and word2vec model.
12. import misc as misc
13. cso, model = misc.load_ontology_and_model()
14. ##########
15.
16. min_similarity = 0.94 #
17. word_similarity = 0.7 # similarity of words in the model
18. top_amount_of_words = 10 # maximum number of words to select
19.
20. output = {}
21. i=0
22. for wet, _ in model.vocab.items():
23.
24. i+=1
25. if(i%1000 == 0):
26. print(i, len(output))
27.
28. output[wet]=[]
29.
30. similar_words = []
31. similar_words.append((wet,1)) #Appending the gram with max similarity
32.
33. similarities = model.most_similar(wet, topn=top_amount_of_words)
34. similar_words.extend(similarities)
35.
36. for wet2, sim in similar_words:
37. if sim >= word_similarity:
38. topics = {}
39. topics = [key for key, _ in cso['topics_wu'].items() if key.startswith

(wet2[:4])]
40. for topic in topics:
41. m = ls.StringMatcher(None, topic, wet2).ratio() #topic is from

cso, wet is from word embedding
42. if m >= min_similarity:
43. try:
44. output[wet].append({"topic":topic,"sim_t":m,"wet":wet2,"si

m_w":sim})
45. except KeyError:
46. print(wet)
47.
48. # now saving the cached model
49. with open('token-to-cso-combined.json', 'w') as outfile:
50. json.dump(output, outfile, indent=4)

5 Conclusions

In this article, we showed how we can use the CSO Classifier for classifying research
papers in other fields of Science. In particular, we showed that to migrate to other
domains it is important to identify a new taxonomy or ontology of research areas that
can characterise their topical structure, and a corpus of research papers that will be used
to train a new word2vec model. These steps are necessary but might not be sufficient.
Although we believe that the structure of CSO Classifier is highly general, which makes

it easy to apply to other fields, there might be some variables which value will be subject
to further evaluation.

If you plan to use the CSO Classifier, either in Computer Science or in other fields,
please do get in touch with us. We would like to keep a record of potential users and
provide further support.

References

1. Salatino, A.A., Osborne, F., Birukou, A., Motta, E.: Improving Editorial Workflow and
Metadata Quality at Springer Nature. In: The Semantic Web – ISWC 2019. Springer
Verlag (2019).

2. Thanapalasingam, T., Osborne, F., Birukou, A., Motta, E.: Ontology-Based
Recommendation of Editorial Products. In: International Semantic Web Conference
2018. , Monterey, CA (USA) (2018).

3. Mccallum, a., Mann, G.S., Mimno, D.: Bibliometric impact measures leveraging topic
analysis. Proc. 6th ACM/IEEE-CS Jt. Conf. Digit. Libr. (JCDL ’06). (2006).

4. Chang, Y.W., Huang, M.H., Lin, C.W.: Evolution of research subjects in library and
information science based on keyword, bibliographical coupling, and co-citation
analyses. Scientometrics. 105, 2071–2087 (2015).

5. Salatino, A.A., Osborne, F., Motta, E.: AUGUR: Forecasting the Emergence of New
Research Topics. In: Joint Conference on Digital Libraries 2018, Fort Worth, Texas. pp.
1–10 (2018).

6. Salatino, A.A., Osborne, F., Thanapalasingam, T., Motta, E.: The CSO Classifier:
Ontology-Driven Detection of Research Topics in Scholarly Articles. In: TPDL 2019:
23rd International Conference on Theory and Practice of Digital Libraries. Springer.

7. Osborne, F., Motta, E.: Klink-2: Integrating Multiple Web Sources to Generate
Semantic Topic Networks. In: The Semantic Web - ISWC 2015. pp. 408–424 (2015).

8. Salatino, A.A., Thanapalasingam, T., Mannocci, A., Birukou, A., Osborne, F., Motta,
E.: The Computer Science Ontology: A Comprehensive Automatically-Generated
Taxonomy of Research Areas. Data Intell. (2019).

9. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Distributed Representations of Words and
Phrases and their Compositionality. In: Advances in neural information processing
systems. pp. 3111–3119 (2013).

