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Abstract—We study a queueing system operated with packet
level coding. More specifically, we derive a closed-form approx-
imation for the queueing delay as well as an expression for the
decoding delay of a system operated with systematic network
coding. Unlike previous works, the delay is considered on a per-
packet basis rather than per-block, thus taking into account the
low-latency property of systematic codes. Furthermore we study
the trade-off between the coding gain and the decoding delay for
finite block lengths.

I. INTRODUCTION

Today’s communication networks are demanded to provide
reliable, high data-rate and ubiquitous services. In particular,
matching requirements of Quality of Service (QoS) such as
delay and packet loss rate (PLR) plays a main role in satisfying
the Quality of Experience (QoE) figures of merit demanded by
each user for the different services being offered.

The massive deployment of mobile networks brings about
an intrinsic channel unreliability due to fading, which often can
not be compensated at the physical layer due to lack of up-
to-date information about the channel state at the transmitter.
This is common in networks with large propagation delays
such as mobile satellite networks. A possible approach to
overcome packet losses over unreliable links is the application
of packet erasure codes. Systematic codes are particularly
appealing since they can significantly decrease the decoding
delay with respect to non-systematic codes. This is thanks to
the fact that a systematic packet that is received correctly is
readily available to the upper layers and, thus, does not need
to wait for the whole code block to be received, unlike non-
systematic codes1. Thanks to such characteristic, systematic
packet level codes have been considered in several standards
such as 3GPP, DVB-H and DVB-SH [1].

The drawback of packet level codes is the increase in delay,
which is particularly significant in case of high probability
of packet loss and when long code blocks are used. There
are well established results in the performance of codes for
erasure channels. Among such results is the possibility to
asymptotically achieve the channel capacity (given by the
complement to 1 of the packet erasure rate) as the code block
length goes to infinity. However, the interaction of delay and
packet loss rate for queueing systems in which packet level
codes of finite length are used is still subject of intensive
studies.

1This is the case if in-order reception is not required, which is assumed in
this paper

In particular, network coding (NC) has been extensively
investigated over the last decade as a complementary tool
to improve the robustness of data communication over error-
prone links [2] and to improve the reaction of those higher
layer protocols (e.g., TCP) that are more sensitive to packet
erasures [3]. Additionally, network coding has been also in-
vestigated in hybrid Automatic Repeat reQuest (ARQ) strate-
gies [4], so that additional redundancy is generated in case
the decoding procedure at the receiver is not successful. The
performance benefits of ARQ could be penalised by large
latencies which are typical, for instance, of geostationary
satellite systems.

Several studies address the problem of delay and packet
loss resulting from the use of network coding as done in [5].
Reference [6] addresses the problem in terms of network
flow optimisation for multicast sessions; a similar problem
is addressed in [7] where the QoS requirements are the
inputs for a routing problem optimisation. The case of network
coding applied to service classes is considered in [8] where a
queue model is introduced to analyse the delay performance.
The study of the buffer occupation during coding operations
is explored in [9], which develops a theoretical framework
to discuss the performance implications in terms of packet
loss and delay. In [10] a queueing model for random linear
network coding (RLNC) is proposed under the assumption of
Bernoulli arrivals and considering feedback from the receiver.
A similar problem is addressed in [11]. In [12] and [13]
the delay analysis for a multicast system using RLNC is
presented, while a duplex communication model is studied
in [14] and [15]. In [16] a delay analysis within a RLNC
approach for streaming application and feedback from the
receivers is carried out. In [17] systematic network coding is
applied in time division duplexing channels, showing a reduced
complexity with respect to traditional RLNC while achieving
the same asymptotic performances in terms of PLR. In all
these works the block decoding delay is used as performance
metric. In [17], in which a systematic code is considered, the
delay is derived on a per-block basis, and the systematicity
of the code is only introduced to decrease complexity rather
than decrease the delay. Moreover, in most of these works
the transmitter keeps sending redundancy until all packets are
decoded, leveraging on feedback from the receiver and leading
to a reliable (i.e., error free) system.

Unlike most of these works, we consider systematic net-
work coding, in which each packet is transmitted before the
encoding takes place. The main difference of our work with



respect to the previous ones, and particularly [17], is that a
per-packet delay rather than block decoding delay is used
as performance metric. This particularly suits the study of
systematic codes, since the main advantage of such code is the
fact that packets correctly received do not experience further
delays apart from queueing, transmission and propagation.
No feedback is assumed from the receiver. Another novel
element in our model is the fact that redundancy packets are
generated and transmitted back-to-back once all systematic
packets within a block have been transmitted. The transmission
of redundancy in queueing systems is usually modeled in
literature adopting the model of server with vacation, which
has been extensively studied. The novel part in our model lies
in the fact that the vacation period starts deterministically after
all systematic packets in a block have been transmitted, i.e.,
it is periodic in the number of systematic packets transmitted.
Note that such periodicity can not be observed in the time
domain due to the random inter-arrival times of the packets,
which makes the analysis non trivial. This makes the system
different from an M/G/1 and from an M/G/1 with vacation.
We derive an approximated expression on the queueing delay,
which gives interesting insights on the behavior of the system
and allows for a deep understanding of the impact of important
parameters such as code block length, code rate and network
load, on the delay. Furthermore, we study the joint behaviour
of delay and PLR for generic code block sizes and rates.

The remainder of this paper is structured as follows. In
Section II the system model is presented. Section III illustrates
the proposed theoretical model, describing the delay and packet
loss analysis. A numerical validation and evaluation of the
derived analytical formulas is presented in Section IV. Finally,
Section V summarises the main outcome of this study and
gives an outlook of the possible extensions of this work.

II. SYSTEM MODEL

Let us consider a queueing system with Poisson arrivals at
rate λ packets per second. Packet lengths and link transmission
speed are assumed to be fixed, which implies a deterministic
transmission (service) time. We denote the service time as
Ttx = 1

µ , where Ttx is the transmission time for a packet
on the physical link and µ is the service rate measured in
packets per seconds. At the beginning of transmissions the
transmitter sends out the first K packets upon arrival and then
generates and transmits N −K redundancy packets. Once the
redundancy transmission has finished, the next K systematic
packets are transmitted and so on. Redundancy packets are
created applying RLNC over an extended Galois field of size
2n on the K systematic packets. n is assumed to be large
enough such that the receiver can decode with high probability
the whole block of K source packets upon reception of any
K packets among the N transmitted. We call a set of K
systematic packets for which redundancy is generated an NC
block. Although the system considered resembles an M/G/1
(or M/D/1, since the service time is deterministic) queue with
vacations, there is a subtle difference that impedes the applica-
tions of the well known formulas for the delay of such systems
[18]. The difference lies in the fact that in the considered
system the server goes on vacation mode and stays in such
mode for a deterministic period corresponding to N − K
transmission slots of duration Ttx after exactly K packets are
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Fig. 1. Transmitter side. Packets arrive according to a Poisson arrival process
with rate λ packets per second. A packet is transmitted as soon as it reaches the
head of the queue. Transmission time is fixed and equal to Ttx. Every K = 3
systematic packets transmitted, the server (transmitter) switches to a second
queue where N −K = 2 redundancy packets are generated and transmitted
back to back. The rate of the system in the picture is R = K/N = 2/3.
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Fig. 2. Channel and receiver side. If a systematic packet is received (on the
right) its decoding delay is equal to zero. If an erasure occurs on a systematic
packet (center of the picture) the decoding delay for that packet is equal to
the block delay. Since no feedback is allowed in the system there is a nonzero
probability that an erased packet can not be decoded. In this case the decoding
delay for the erased packet is that needed for the transmission of an NC block.

transmitted, while in a traditional system with vacation the
vacation period starts at the end of each busy period and has
a duration which is a random variable drawn according to
some probability distribution. Although many variants of the
model of server with vacation have been studied in the past
[19] [20], up to our knowledge the system considered here
has not yet been characterized in depth. The model for the
transmitter side is depicted in Fig. 1. The channel between the
transmitter and the receiver is modeled as en erasure channel
with erasure probability ε = 1 − p. If a systematic packet is
correctly received (i.e., there is no erasure) it does not incur in
any decoding delay. On the other hand, if a packet is lost, the
receiver needs to receive enough redundancy in order to decode
the whole block to which the erased packet belongs. In this
case the decoding delay is equal to the block decoding delay.
Since no feedback is allowed in the system and finite length
code blocks are considered, there is a non zero probability that
a packet can not be decoded. In this case the decoding delay is
equal to the time needed for the transmission of a whole block
of N packets. The block diagram for channel and receiver is
shown in Fig. 2.

III. DELAY ANALYSIS

We define the total delay as the time between the arrival of
a packet in the transmitter queue and the instant in which it is
either received correctly at the receiver or it is not received
correctly but all the redundancy has been transmitted. We
denote the average total delay as

Dtot =W +G, (1)

where W is the average delay introduced by the transmitter
side, while G is the delay introduced by the receiver side. W
accounts for queueing delay and transmission delay, while G
accounts for propagation delay and decoding delay.



A. Transmitter Side

In order to derive the delay introduced by the transmitter
side we follow the approach used in [21, Section 3].

Let us consider the instant in which packet i enters the
queue at time t finding Ni(t) packets standing between itself
and the server, plus an additional packet that is currently being
served. The waiting time in the queue for packet i (Wi) is given
by [21]

Wi = Si +

i−1∑
j=i−Ni(t)

Xj + Ii, (2)

where Si is the residual service time of the packet being
served, Xj = Ttx is the service time for packet j and Ii is
the time needed to send the amount of redundancy relative to
the packets already in the queue (or eventually the residual
redundancy for the previous block) that will be transmitted
before i. Ii depends on whether, at arrival time t, the packet at
the server is a systematic or a redundancy packet. It is difficult
to derive an exact expression for the waiting time in the queue
due to the fact that the number of packets in the queue at a
given instant and the position of the packet being served (either
systematic or redundancy, if any) within its NC block are not
independent. To see this, consider the case in which a packet
arrives while the last packet of a redundancy block is being
served. During the past (N−K−1)Ttx seconds no systematic
packet has being served. This increases the likelihood to find
more packets in the queue with respect to the case in which a
packet arrives while the K-th systematic packet of a block is
being served, since in this case the last K−1 packets processed
by the server were systematic. Taking this into account, in the
following we derive an approximated expression for the delay.

The amount of redundancy an arrival i would find is made
up of two parts. One depends only on the number of packets
already in the queue and is equal to (N − K)

⌊
Ni(t)
K

⌋
. The

second part depends on whether the packet being served (if
any) at the time of arrival is systematic or is a redundancy one
as well as on the position of the packet in the NC block (i.e.,
the position in the K-packets block to which a packet belongs).
Let us derive an approximation for the second part in case a
systematic packet is found at arrival. To see that the second
term depends on the position of the packet under service, let
us consider a simple example in which a new arrival i finds, at
time t, a systematic packet at the server and Ni(t) = 1 packets
standing between itself and the server. Let us also assume that
K = 3, and thus (N − K)

⌊
Ni(t)
K

⌋
= 0. In this case, if i

is the last packet of its NC block, it will not experience any
queueing delay due to redundancy, i.e., it will be transmitted
right after the packet standing in front of him. On the other
hand, if the newly arrived packet occupies the first position in
an NC block, it will have to wait for the transmission of the
packet in front of him, which is the last one of the previous NC
block, plus the redundancy of the previous block. Averaging
across the packet positions within an NC block and assuming
that these are independent of the number of packets in the
queue2, the second term of the delay due to redundancy in

2This is in general not the case and is assumed here only to derive a closed
form approximation.

case a systematic packet is being served at arrival time t can
be approximated as:

Isys
i (t) ' Ttx(N −K)

mod (Ni(t),K) + 1

K
(3)

mod(x, y) being the rest of the division between x and y.
The approximation stems from the fact that, as previously
mentioned, Ni(t) and the position of the packet under ser-
vice within its own block are not independent. The term
mod (Ni(t),K)+1

K in the equation takes into account the par-
ticular phase in the NC block of the arriving packet. The
derivation is straightforward once one notices that, on average,
an arriving packet has the same probability (1/K) of being in
any of the K possible positions within its NC block. By the
property Poisson Arrivals See Time Averages (PASTA), the
probability of finding the server occupied with a systematic
packet is equal to the utilization factor of the server ρ = λTtx
[18]. Thus with probability ρ the second term of the delay due
to redundancy is (approximately) given by Eqn. (3).

Let us now consider the case in which an arrival i arrives
while the server is busy with a redundancy packet, which
happens with probability ρ (1/R− 1) 3. The second term of
the delay due to redundancy is:

I red
i (t) = Ttx

N −K − 1

2
. (4)

Plugging equations (3) and (4) into Eqn. (2), including the
delay term (N −K)

⌊
Ni(t)
K

⌋
due to redundancy and recalling

that Xj = Ttx we have :

Wi ' Si + Ttx

[
Ni(t) + (N −K)

(⌊
Ni(t)

K

⌋
+

+ ρ
mod (Ni(t),K) + 1

K

)
+ ρ

(
1

R
− 1

)
N −K − 1

2

]
≤ Si + Ttx

[
Ni(t) + (N −K)

(
Ni(t)

K
+ ρ

1

K

)
+ ρ

(
1

R
− 1

)
N −K − 1

2

]
= Si + Ttx

[
Ni(t) + (N −K)

Ni(t)

K
+ ρ

(
1

R
− 1

)
N −K + 1

2

]
.

(5)

Taking the limit for i→ +∞ of the expectation at both sides
of Eqn. (5) we get:

W = lim
i→+∞

E{Wi}

' Si + Ttx

[
NQ + (N −K)

NQ
K

+ ρ

(
1

R
− 1

)
N −K + 1

2

]
,

(6)

where NQ = limi→+∞E{Ni(t)} is the average number of
packets in the queue. Using the fact that, by Little’s theorem,
NQ = λW [18], Eqn. (6) can be written as:

W '
S + Ttxρ

2

(
1
R − 1

)
(N −K + 1)

1− ρ
R

, (7)

3This can be easily proved taking into account that the ratio of time the
server is occupied with redundancy packets to the time it is occupied with
systematic packets is equal to (N −K)/K = (1/R)− 1.



where R = K/N is the rate of the network code. In order to
calculate the residual service time S we use a procedure similar
to that used in [21] to derive residual service time for a system
with vacancy. Let us define r(τ) as the residual service time at
time τ and let us fix an instant t in which the last redundancy
packet of a block has just completed the service. The number
of packets in the system in this type of instants constitutes
an embedded Markov chain since the system is completely
described by such number. The temporal average of the service
time in [0, t] is:

1

t

∫ t

0

r(τ)dτ =
1

t

M(t)∑
i=1

1

2
X2
i +

1

t

V (t)∑
i=1

1

2
X2
i

=

[
M(t)

t
+
V (t)

t

]
T 2

tx

2

=

[
M(t)

t
+

(N −K)

K

M(t)

t

]
T 2

tx

2
, (8)

where M(t) and V (t) are the number of systematic and
redundancy packets transmitted in [0, t], respectively. Note
that, since in t the redundancy transmission for a block has
just finished, M(t) is an integer multiple of K while V (t) is
an integer multiple of N −K. Taking the limit for t→∞ at
both sides of Eqn. (8) we obtain:

lim
t→∞

1

t

∫ t

0

r(τ)dτ = lim
t→∞

M(t)

t

N

K

T 2
tx

2
=
λ

R

T 2
tx

2
. (9)

The second equality in Eqn. (9) is valid in the stable region,
since the average throughput M(T )/t must be equal to the
average arrival rate λ. If the time average can be replaced by
the statistical average, we have S = λ

R
T 2

tx
2 which, plugged into

Eqn. (7), leads to the following approximation for the queueing
delay at the transmitter side

W ' Ttxρ

2R

1 + (1−R)(N −K + 1)

1− ρ
R

. (10)

It is interesting to note that Eqn. (10) assumes the same
expression of the delay in an M/D/1 queue if the rate R is
set to one, which confirms the intuition that, if no redundancy
is transmitted, the system behaves exactly as an M/D/1 queue.
Note also that this is no longer valid if non-systematic network
coding is used. It is also worth noting that, according to Eqn.
(10), the (approximate formula for the) delay depends not only
on the rate R, but also on the absolute number of redundancy
packets transmitted per NC block N −K.

B. Receiver Side

The delay G at the receiver side includes the propagation
delay and the decoding delay. The propagation delay is a
fixed term equal to Tpr accounting for the time needed for
each transmitted packet (systematic or redundancy) to reach
the receiver. The decoding delay is the delay that affects a
systematic packet in case it is not received correctly. If the
packet is erased, the receiver will have to wait for enough
redundancy to be received in order to recover the whole block.
For the assumptions made on the code (large field size), the
amount of redundancy needed to decode a lost packet is equal,
with high probability, to the number of systematic packets that
have been lost. Since the redundancy is transmitted after the

systematic packets, the k-th packet of a block will have to
wait for the arrival of the K − k remaining packets before
the redundancy starts to be transmitted. This implies that on
average the decoding delay seen by a packet depends on the
position of the packet in the block. We indicate the delay for
packet in position k as Dk. The average decoding delay is
then:

D =
1

K

K∑
k=1

Dk. (11)

We model the channel between the transmitter and the receiver
as an erasure channel with erasure probability 1− p. As usual
practice in queue analysis, we assume the system is operated
within the stable region, i.e., NQ <∞. In this case the arrival
rate, modified to take into account the redundancy, λ/R, is
equal to the rate packets are served by the transmitter, which
coincides with the arrival rate at the receiver. However, the
arrival process at the receiver is no longer Poisson, since the
minimum interarrival time seen by the receiver is Ttx, which is
the time needed by the transmitter to send a packet. In case of
redundancy packets the interarrival time is exactly Tsys = Ttx,
since redundancy packets are transmitted back-to-back. If the
packets are systematic, on the other hand, the interarrival time
depends on whether there are packets in the transmitter queue
or not.

An upper bound on the average interarrival time between
two systematic packets can be obtained by assuming that
there is no packet waiting in the queue when the first packet
is transmitted. In this case the interarrival time Tsys is the
maximum between Ttx and a random variable exponentially
distributed with mean value 1

λ . The derivation is trivial and
thus not reported here. The interarrival times for systematic and
redundancy packets Tsys and Tred can thus be upper bounded
as:

Tsys ≤ Ttx

[(
1− e−ρ

)
+ e−2ρ +

e−2ρ

ρ

]
Tred = Ttx.

An upper bound on the average decoding delay for packet in
position k is given by Eqn. (12). Note that in Eqn. (12) the
j-th term in the first sum(

K + j − 2

K − 1

)
pK−1(1− p)j−1, (13)

represents the probability to decode exactly K − 1 packets
from the first K−1+ j−1 transmitted and is multiplied by p
to take into account the fact that the additional delay after all
systematic packets are transmitted is exactly j ·Ttx if and only
if the K-th correctly received packet is the j-th redundancy
packet. Finally, the average delay at the receiver side is:

Gc = Tpr +
1

K

K∑
k=1

Dk. (14)

C. PLR Analysis

Assuming an asymptotically large field size is used for
the coefficients of the RLNC the PLR coincides with the
probability to lose a systematic packet in the physical channel



Dk ≤ (1− p)

[
Tsys · (K − k) + Tred ·

N−K∑
j=1

j

(
K + j − 2

K − 1

)
pK−1(1− p)j−1p+ Tred · (N −K)

K−1∑
t=0

(
N − 1

t

)
pt(1− p)N−t−1

]
. (12)

conditioned to receiving less than K packets out of the
remaning N − 1, which is given by Eqn. (15):

PLR = (1− p)
K−1∑
j=0

(
N − 1

j

)
pj(1− p)N−1−j . (15)

This result can be extended to the case of finite field size by
applying the results in [22].

As a remark, we point out that the interdependency between
the delays in equations (10) and (11) and the PLR in Eqn. (15)
is hidden in the dependence on K, R and p.

IV. NUMERICAL RESULTS

With the results presented so far it is possible to determine
an approximated region in the PLR-delay plane in which the
system can operate. Note that the region we derive is an
approximation due to the approximations used in the delay
derivation. In the “achievable”, by means of network coding
we can reduce the PLR experienced by a QoS class at the price
of an additional delay, caused by increased queueing delay
and encoding/decoding in case of loss. In the following we
present numerical results derived from the analysis carried out
in Section III. Both the propagation delay and the transmission
delay are set to 10 ms.

In Fig. 3 the analytical approximation for the queueing
delay W is plotted against the system utilization factor ρ. In
the same figure the actual queueing delay obtained through
Monte Carlo simulation is also plotted. It can be seen how
the approximation is pretty tight for low system loads, while
it gets less tight as the load increases. This is due to the fact
that, as it can be seen from Eqn. (4), ρ multiplies the term
that has been approximated by excess, which implies that the
difference with the actual value of the delay increases with
ρ. Note that, although in this specific case the approximated
expression leads to an upper bound, this is not in general the
case. In the same figure the delay of an M/D/1 queue is also
plotted. The arrival rate of the M/D/1, indicated as λeq in the
figure, has been increased to λ/R (rather than λ) in order
to make a fair comparison with the network-coded system. It
is interesting to note how, even though the average number of
packets processed by the network-coded system and the M/D/1
is the same, the delay in the NC system is much larger. This
is due to the fact that the redundancy is transmitted back to
back, keeping the server busy and increasing the waiting time
in the queue, while in the M/D/1, since the incoming traffic is
purely Poisson, packet arrivals are spread more evenly across
time. Such difference also indicates that approximating (more
precisely, bounding from below) the delay in a system with
systematic NC using an M/D/1 model may not be accurate
depending on the degree of precision sought.

In Fig. 4 we show the derived approximation on the total
delay Dtot plotted against ρ/R for two different packet loss
rates on the channel, namely ε = 10−1 and ε = 10−3. It is
interesting to see how the total delay diverges as ρ→ R. This
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Fig. 3. Queueing delay W plotted against the system utilization factor ρ.
The curve of the analytical approximation, the Monte Carlo simulation and the
delay of an M/D/1 queue are shown. The arrival rate of the M/D/1, indicated
as λeq in the figure, has been increased to λ/R in order to compensate for
the redundancy in the network-coded system. Ttx = 0.01 seconds, K = 60
and R = 2/3 were used.

is due to the fact that the expression of the queueing delay,
given by Eqn. (10), has a pole in ρ/R = 1. At low ε the delay
is mainly due to the time spent in the queue, since little losses
are experienced on the channel and thus the receiver does not
need to wait for the redundancy packets (which, we recall, is
due to the systematicity of the code). If ε is high, instead, there
is an increase in the delay due to the losses, which forces the
receiver to wait for the non systematic packets transmitted at
the end of the block. The situation is exacerbated at low loads,
as the time needed to receive a whole block is longer due to
the relatively large interarrival time of packets at the receiver.
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Fig. 4. Total delay (approximation) plotted against ρ/R for two different
packet loss rates on the channel ε, namely ε = 10−1 and ε = 10−3. The
plot was obtained fixing K = 20, R = 0.9 and varying the load λ.

In Fig. 5 the total delay Dtot is plotted against the PLR.
The plot was obtained fixing K = 100 and varying the rate
R in the range [0.7, 1]; the packet loss rate at the physical
layer has been set to 20%. For larger values of R the PLR
diminishes while the delay increases; the area to the right of the



dotted curve represents the region that is “achievable” through
network coding. The packet loss rate at the physical layer (ε =
1 − p) is also shown with a thick vertical red line; a system
without packet level coding would be forced to operate on such
line. In order to see the impact of the block size K, in Fig.
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Fig. 5. Delay plotted against the packet loss rate. The plot was obtained
fixing K = 100 and varying the rate R in the range [0.7, 1]. The packet loss
rate at the physical layer has been set to 20% and is also shown in the figure.
For larger values of R the PLR diminishes while the delay increases.
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Fig. 6. Delay vs packet loss rate for different values of K. The plot was
obtained by varying the code rate R in the range [0.7, 1]. The continuous grey
line is the curve at constant R = 0.7. The packet loss rate on the channel
ε = 1− p was set to 20%.

6 the delay vs packet loss rate for four different values of K
is shown. The plot was obtained by varying the coding rate in
the range [0.7, 1] for all values of K. For ease of reading we
plot the curve (continuous grey line) that joins all points at rate
R = 0.7. It can be seen that the delay increases with K. This is
due to the losses over the channel that force the receiver to wait
for a whole block to decode a lost packet. On the other hand,
it can be seen how the longer block length allows to achieve
much better performance in terms of PLR as far as the code
rate R is low enough. Finally, note that the PLR used in the
figure is quite high (20%), which justifies the relatively high
delays observed. The expressions we derived in the previous
section can be used as a starting point to tune the code rate at
the transmitter in order to find a good trade off between delay
and PLR according to the desired QoS requirements.

V. CONCLUSIONS

We derived an approximated expression for the per-packet
delay of a queueing system operated with systematic net-
work coding and studied the trade-off between coding gain
and decoding delay for finite-length blocks. A closed form
expression has been derived for the approximation of the
queueing delay which gives insight on the effect of important
system parameters on the queueing delay. The approximation
is quite tight at low system loads for the considered setups.
The decreased PLR is provided at the cost of a slightly higher
delay. In this respect we derived an approximated “achievable”
region in the PLR-delay plane; this gives hints on whether
the QoS requirements of a specific class of traffic can be
fulfilled by applying systematic network coding. Currently we
are working towards the extension of the work to the case of
multiple classes of services and multiple links, as well as on
the optimization of the system parameters.
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