
This project has received funding from the European Union’s Horizon 2020 

Research and Innovation Programme Under Grant Agreement Number 732667 Copyright ©2017 RECAP Project  

RELIABLE CAPACITY PROVISIONING AND ENHANCED REMEDIATION FOR 

DISTRIBUTED CLOUD APPLICATIONS 

 

 

 

 

 

Accompanying Document for 

Deliverable D5.3: Artificial Data Traces  

and Workload Generator Models 

Work Package 5. Data Collection, Visualisation and Analysis 

 

  



RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 2 

 

 

Title: Artificial Data Traces and Workload Generator Models 

Author(s): 

Jörg Domaschka (UULM), Rafael Garcia (IMDEA), Thang Le Duc 

(UMU, TIETO), Mark Leznik (UULM), P-O Östberg (UMU), Sergej 

Svorobej (DCU), Linus Närvä (Tieto), Héctor Humanes (SATEC), 

Miguel Ángel López (SATEC) 

Editor(s): 
Jörg Domaschka (UULM), Mark Leznik (UULM), Rafael Garcia 

(IMDEA) 

Reviewed By: Paolo Casari (IMDEA), Keith Ellis (INTEL) 

Document Nature: Report 

Date: 30/09/2019  

Dissemination Level: Public 

Status: FINAL 

Copyright: 
Creative Commons Attribution No Derivative Licences (CC BY-ND 

4.0) 

 

Revision History 

Version Editor (s) Date Change 

0.1 
Thang Le Duc 

(TIETO) 
24/06/2019 Initial ToC 

0.2 Rafael García 

(IMDEA) 

8/22/2019 Introductory chapter. IMDEA’s contribution. 

0.3 Mark Leznik 

(UULM) 

27/08/2019 Added section of GAN-based Workload 

Generation 

0.3.1 Thang Le Duc 

(TIETO) 

30/08/2019 Draft of Traffic Propagation based Workload 

Generation 

0.3.2 Sergej Svorobej 

(DCU) 

03/09/2019 Simulation System Model Data Sets 

0.3.3 Linus Närvä, 

Thang Le Duc 

(TIETO) 

03/09/2019 Workload data traces for Use Case A and 

Use Case D1 

0.4 Rafael García 

(IMDEA) 

05/09/2019 Consolidated release candidate. 

0.4.1 Jörg Domaschka 

(UULM) 

11/09/2019 Restructuring and alignment with Data 

Management Plan 

http://recap-project.eu/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 3 

0.5 Jörg Domaschka 

(UULM) 

15/09/2019 Compiled new version 

0.5.1 Jörg Domaschka 

(UULM) 

19/09/2019 Reworked Tieto section and Simulation 

section 

0.5.2 Linus Narva 

(TIETO) 

18/09/2019 Clarification and in-depth description of Tieto 

section 

0.5.3 Thang Le Duc 

(TIETO) 

19/09/2019 Introduction of Section 4.2 and Reworked 

section 4.4 

0.5.4 Héctor Humanes 

(SATEC) 

19/09/2019 Data sets C1 and C2 

0.6 Jörg Domaschka 

(UULM) 

20/09/2019 Compiled new version 

0.6.1 Sergej Svorobej 

(DCU) 

20/09/2019 Updated Section “5.1.4 Example Data Set” 

0.6.2 Rafael García 

(IMDEA) 

20/09/2019 Formatting, Chapter contributions IMDEA 

0.6.3 Linus Närvä 

(TIETO) 

23/09/2019 Clarifications on input models for use case A 

workload traces, and a description of 

abbreviations in the measurements. 

0.6.4 Minas 

Spanopoulos 

23/09/2019 Improvements to section 5.2 

0.6.5 Mark Leznik 

(UULM) 

23/09/2019 Complied new version 

0.7 Jörg Domaschka 

(UULM) 

23/09/2019 Released for internal review 

0.7.1 Jörg Domaschka 

(UULM) 

24/09/2019 Polishing of text 

0.7.2 Keith Ellis (INTEL) 24/09/2019 Reviewed 

0.7.3 Paolo Casari 

(IMDEA) 

24/09/2019 Reviewed 

0.7.4 Mark Leznik 

(UULM) 

24/09/2019 Description of GAN data sets 

0.8 Jörg Domaschka 

(UULM) 

24/09/2019 Compiled new version 

0.9 Jörg Domaschka 

(UULM) 

30/09/2019 Removed section 5, composed release draft. 

0.9.1 Paolo Casari 

(IMDEA) 

01/10/2019 Approval and typos 

1.0 Jörg Domaschka 01/10/2019 Final version 

http://recap-project.eu/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 4 

Executive Summary 

The objective of the WP5 – Data Collection, Visualization and Analysis of RECAP is to provide the 

necessary tools for managing and refining the data needed for the rest of the work packages. This 

includes the collection as well as the generation of data.  

Within this work package, Task 5.3 Artificial Workload Generation is responsible for the generation 

of a collection of datasets with artificial workloads, that complement the real data traces collected 

from industrial partners. Moreover, because publicly available workload data is scarce we provide 

the data as public data sets. 

This document is a companion report to Deliverable D5.3 which is of type “dataset”. The aim of 

the report is to describe the collection of datasets that constitute D5.3 and the mathematical 

techniques (structural time series models, generative adversarial networks, and workload based 

on traffic propagation) by which one can artificially generate and/or augment such datasets. 

The datasets described include real data traces collected by industrial partners and artificial data 

traces generated by the use of statistical models and neural networks. Each published data set 

can be used by the scientific and industrial community as a starting point for the modelling and 

experimental validation of distributed edge and cloud applications, facilitating the repeatability of 

the results. 

An overview of all data sets published by the project is available at https://data.recops.eu/d53/. 

  

http://recap-project.eu/
https://data.recops.eu/d53/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 5 

Table of Contents 

Revision History ..................................................................................................................................... 2 

Executive Summary .............................................................................................................................. 4 

Table of Contents .................................................................................................................................. 5 

Table of Figures ..................................................................................................................................... 7 

1 Introduction, purpose and scope ................................................................................................. 8 

1.1 Related Work ......................................................................................................................... 8 

1.2 Structure of this Document .................................................................................................. 9 

2 Use Case Overview ...................................................................................................................... 10 

2.1 Use Case A: Infrastructure and Network Management .................................................... 10 

2.2 Use Case B: Big Data Analytics Engine .............................................................................. 10 

2.3 Use Case C: Edge/Fog Computing for Smart Cities .......................................................... 10 

2.4 Use Case D.1: Virtual Content Delivery Networks ............................................................. 11 

3 Workload Data Traces ................................................................................................................ 12 

3.1 Use Case A Infrastructure and Network Management ..................................................... 12 

3.1.1 Testbed description .................................................................................................... 12 

3.1.2 Data set A.1: Traffic loop ............................................................................................ 13 

3.1.3 Data set A.2: Traffic model ......................................................................................... 15 

3.1.4 Data set A.3: City Simulator ........................................................................................ 17 

3.1.5 Measurement descriptions ........................................................................................ 18 

3.2 Use Case B Big Data Analytics Engine ............................................................................... 27 

3.3 Use Case C Edge/Fog Computing for Smart Cities ........................................................... 27 

3.3.1 Data Set C.1: Traffic Pattern ...................................................................................... 27 

3.3.2 Data Set C.2: SAT-IoT Load ......................................................................................... 28 

3.4 Use Case D1 Virtual Content Delivery Networks ............................................................... 29 

4 Artificial Workload Generation ................................................................................................... 31 

4.1 Structural Models based Workload Generation ................................................................ 31 

4.1.1 Background ................................................................................................................. 31 

4.1.2 Approach ...................................................................................................................... 31 

4.1.3 Data Set STS.1 ............................................................................................................ 32 

4.1.4 Data Set STS.2 ............................................................................................................ 33 

4.2 Regression-Model-based Workload Generation (Data Set RGM) .................................... 33 

4.3 GAN-based Workload Generation ...................................................................................... 34 

4.3.1 Background ................................................................................................................. 34 

4.3.2 Approach ...................................................................................................................... 35 

4.3.3 Limitations ................................................................................................................... 37 

http://recap-project.eu/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 6 

4.3.4 Data Set GAN.1 vCDN Univariate Locations .............................................................. 38 

4.3.5 Data Set GAN.2 vCDN Univariate Downsampled Location ....................................... 39 

4.3.6 Data Set GAN.3 vCDN Multivariate Locations ........................................................... 39 

4.3.7 Data Set GAN.4 vCDN Multivariate Downsampled Locations .................................. 40 

4.3.8 Data Set GAN.5 Correlated CPU-Network Load ......................................................... 41 

4.3.9 Data Set GAN.6 Correlated Network Load................................................................. 42 

4.4 Traffic Propagation based Workload Generation .............................................................. 42 

4.4.1 Background ................................................................................................................. 42 

4.4.2 Approach ...................................................................................................................... 42 

4.4.3 Data Set TRG ............................................................................................................... 44 

5 Conclusion ................................................................................................................................... 46 

6 References .................................................................................................................................. 47 

 

  

http://recap-project.eu/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 7 

Table of Figures 

Figure 1 High-level view on testbed set-up........................................................................................ 12 

Figure 2 Simulated Workload for a Search Engine ........................................................................... 32 

Figure 3 An exemplary GAN architecture........................................................................................... 35 

Figure 4 The processing pipeline for generating artificial workload data ....................................... 35 

Figure 5 Generator network layout and data flow ............................................................................ 36 

Figure 6 Discriminator network layout and data flow ....................................................................... 36 

Figure 7   10 randomly sampled series from a CPU utilization log .................................................. 37 

Figure 8 Generated samples during the first epoch ......................................................................... 39 

Figure 9 Generated samples during the 500th epoch ..................................................................... 39 

Figure 10 Several multivariate time series generated by the GAN, showing vCDN caches for three 

locations with discrete timesteps .............................................................................................. 40 

Figure 11. Example of network structure/topology .......................................................................... 44 

Figure 12. Network (and population) model of the city of Umeå, Sweden. .................................... 44 

 

http://recap-project.eu/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 8 

1 Introduction, purpose and scope 

The objective of the WP5.- Data Collection, Visualization and Analysis of the RECAP project is to 

provide the tools required to collect, manage and refine the data needed for the work packages 

WP6 (workload modelling), WP7 (simulation) and WP8 (application modelling). Task 5.3 Artificial 

Workload Generation is responsible for the generation of a collection of datasets with artificial 

workloads that complement the real data traces collected from industrial partners. 

The goal of Task 5.3 is to gather and refine workloads representative of distributed cloud and edge 

computing applications. These workloads have been used not only for simulation purposes, but 

also for the evaluation of systems deployed on real infrastructures (testbeds and live systems). 

Part of the delivered traces are in the track of being published as OpenData assets to fill the current 

lack of data on cloud infrastructure behaviour and to provide a starting point for modelling and 

experimental repeatability. The progress of publication of all assets in presented in this document 

as well as the respective DOIs are accessible under https://data.recops.eu/d53/. 

1.1 Related Work 

For development, evaluation and profiling, researches often rely on artificial data (Amlan Kar, 

2019). This can be attributed to a lot of factors. Often times simple artificial data eases the 

development of an algorithm, allowing for quick prototyping before moving forward to production 

data. Artificial ground truth measurements where original ground truth data is not available can be 

generated for evaluation and testing purposes. In machine learning applications, artificial data is 

used for pre-training models first to achieve better accuracy, before moving to real data. 

In the research field of and around cloud computing, monitoring virtual and physical infrastructure 

data is crucial for the purposes of load balancing, load prediction and designing of smart 

provisioning algorithms. The provisioning of such data sets is time consuming and delays the start 

of the actual task (such as designing a new algorithm) so that the use of already existing data is 

beneficial for many commercial and academic (research) projects. 

Yet, the amount of available data set is very limited: Google has released a large trace of 

anonymized cluster job logs1. Yahoo has released search data (albeit with users being exposed in 

the process2); and Alibaba has published 270 GB of Open Source Data related to their data 

centres3. This shortage of open, publicly available data sets can be explained on the one hand by 

the effort of curating and releasing the data, but even more by reasons of commercial sensitivity 

and privacy of users and customers. This holds more as researchers were able to re-construct 

privacy sensitive information from multiple publicly available data sets, none of which contained 

sensitive information in itself (Narayanan & Shmatikov, 2006). 

In order to improve the situation, RECAP has made an effort to release as many traces from live 

systems as possible. Yet, as with other data sets, the overall amount of traces that can be made 

public, is limited as described above. 

The generation of artificial data offers the ability to not only create data sets representing the 

original one in terms of its (statistical) properties, but also supplementing missing data for various 

applications in a process called imputation (Bokde, Beck, Álvarez, & Kulat, 2018). In the current 

                                                      
1 https://github.com/google/cluster-data  
2 https://www.nytimes.com/2006/08/09/technology/09aol.html  
3 https://github.com/alibaba/clusterdata  

http://recap-project.eu/
https://data.recops.eu/d53/
https://github.com/google/cluster-data
https://www.nytimes.com/2006/08/09/technology/09aol.html
https://github.com/alibaba/clusterdata


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 9 

age of statistical analysis and machine learning, the specific user data is of no particular interest. 

Rather, data sets reflecting the statistical properties of the user mass are of far more value and 

interest, since they offer the possibility of performing e.g. efficient classification and predictions 

tasks. 

Hence, the generation of artificial data sets offer several advantages for both researchers and 

companies alike. These range from guarding user privacy, to the ability to generate arbitrary 

amounts of data mirroring production behaviour. For that reason, the data sets released with D5.3 

include artificial datasets generated to yield the same statistics as the original datasets the data 

models were trained on. 

1.2 Structure of this Document 

The remaining chapters of the document are as follows:  

Chapter 2 Use Case Overview repeats a shorted use case description taken from the initial 

requirements document (D3.1). 

Chapter 3 Workload Data Traces provides a description of the data traces that have been collected 

from the real infrastructures of the industrial partners, and that have been made public as a 

scientific source. They follow the data format presented in previous deliverables (D5.1) (D5.2). 

Chapter 4 Artificial Workload Generation contains an introduction and relevant references to the 

underlying models that have been used to generate the artificial workload data traces, together 

with a description of the published workloads that have been generated. 

Chapter 6 summarises the document and concludes the report. 

  

http://recap-project.eu/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 10 

2 Use Case Overview 

In order to keep this document self-contained and put the data presented in Sections 3 and 4, in 

context, this section repeats the description of the use cases from (D3.1) that are the base of all 

data sets. 

2.1 Use Case A: Infrastructure and Network Management 

As a provider of solutions and services for telecommunications systems as well as a provider of 

applications for various industry verticals, Tieto focuses on offering new innovative solutions 

leveraging on the possibilities enabled by 4G-and-beyond mobile technologies in conjunction with 

fog/cloud computing. This includes solutions for industry verticals like eHealth, eCommerce and 

automotive. Tieto’s use case will demonstrate through the output of RECAP how the profiling and 

simulation of infrastructure, network functions and service function characteristics can be 

automated to ensure the desired QoS for the different networks managed by Tieto. Potential 

solutions would aim at providing support for on-demand service provisioning and capacity 

allocation of end-to-end services (automatic infrastructure deployment), and support for 

observability of the system run-time behaviour (monitoring). As part of this use case, Tieto will also 

provide access for the project to Tieto’s testbed, which simulates how a common physical 

infrastructure spanning over multiple data centres with different characteristics can provide end-

to-end communication and content services for different categories of horizontal content services 

(network slices) with different QoS requirements. 

2.2 Use Case B: Big Data Analytics Engine 

The search for an innovative solution to an existing problem is time-consuming and resource-

intensive. Moreover, it involves tedious documentation reviews, and leads to non-systematic new 

product development, where a comprehensive and visual understanding of the emerging 

technologies and topics of interest is missing. The mission of Linknovate.com is to facilitate the 

discovery of emerging technologies, the tracking of competitor and partner activities, as well as to 

enable users to connect with subject matter experts behind those technologies. Hence, 

Linknovate.com is an innovative technology to help strategists, technologists, and any other kind 

of innovators when accessing new, not well understood, technology-enabled markets, and when 

taking new product development decisions. In particular, it supports them with keeping track of 

development and innovation despite the exponential growth of innovation and research data and 

shrinking time to market, as it enables data-driven decision-making and trend forecasting. 

For that purpose, Linknovate.com generates insight by aggregating large amounts of research and 

scientific data, by using data mining and data analytics techniques. As of 2017, this is based on 

20 million documents, over 30 million expert profiles, over 2 million entity profiles, and more than 

200 million innovation topics. Technology-wise, Linknovate.com uses a distributed architecture 

composed of several nodes deployed in the cloud. In order to keep reduced response times when 

request peaks occur, Linknovate currently over-provisions nodes in the cloud. This is a clear source 

of inefficiency, which can be optimised in order to reduce costs and energy consumption. Dynamic 

provisioning together with the co-location of nodes and users is therefore the main challenges to 

be addressed with this use case. 

2.3 Use Case C: Edge/Fog Computing for Smart Cities 

Arguably, the current cloud computing paradigm does not provide an appropriate solution for large-

scale IoT scenarios like smart cities. Smart city services can be spatially, time and/or privacy 

http://recap-project.eu/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 11 

sensitive. Having an approach that hauls data through data networks to be stored and processed 

in large centralised data centres whereby processed outputs are moved back again to be 

consumed by city infrastructure, interested entities and authorities simply does not stack up.  

Fog/edge computing looks to address this challenge in devising new approaches that allow data 

produced in a local context to be stored and processed as close as possible to that context 

(Challenges and Software Architecture for Fog Computing, IEEE Internet Computing, vol 21, no 2, 

p 44-53, 2017).  

Use Case C centres around the SATEC aim of an IoT Data Management System based on the fog 

computing paradigm. Specifically, Use Case C aims to demonstrate the capabilities of RECAP for 

automating the reallocation of resources close to the Edge/ Fog computing in order to reduce the 

latency for SATEC customers, and demonstrate cost savings /ease of management of resources 

for data centre operators. The goal is to integrate the mechanisms, techniques, key concepts, etc. 

generated by RECAP in prototypes that inform and/or are encompassed in the IoT Data 

Management System. 

2.4 Use Case D.1: Virtual Content Delivery Networks 

Network Functions Virtualisation (NFV) replaces physical network appliances with software running 

on servers. BT has two NFV use cases: Virtual Content Distribution Networks (vCDN) and “Cloud 

Connect Intelligence” that are detailed in the following. 

Content Distribution Networks (CDNs) offer a distribution service to content providers that puts 

content on caches closer to the content consumers or end-users. A network operator such as BT 

is likely to have hardware from several CDN operators deployed at strategic points in its network. 

This creates several potential issues: it is hard to organise sufficient physical space (in exchange 

buildings for instance) to support all the CDN operators; a lot of energy is needed to power and 

cool all the equipment; a lot of physical effort is needed when a new CDN operator arrives or an 

existing one disappears. Such factors make it attractive to consider a Virtual CDN (vCDN) approach 

that aims to replace the multiple customised physical caches with a standard server and storage 

running multiple virtual applications per CDN operator.  

RECAP will provide BT and CDN operators with the tools to plan the optimum location and amount 

of resources required to deploy the vCDN systems and infrastructure just in time to optimise CDN 

performance and resource utilisation.  

http://recap-project.eu/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 12 

3 Workload Data Traces 

This section introduces the data sets that have been collected as part of the work in the project 

and that have been released as open data. Following the use case oriented nature of the project, 

this chapter is organised around the use cases as well as (D3.1) (D3.2). 

The data sets as well as their descriptions differ largely in size and detail. This is an immediate 

consequence of the considerations about which data and information can be released, and their 

commercial sensitivity. Furthermore, it is a consequence, of the complexity of the individual 

scenarios used to create the respective data traces. 

3.1 Use Case A Infrastructure and Network Management 

For use case A, we provide three different data sets (A.1, A.2, A.3). They all stem from a series of 

experiments run over the TIETO testbed, as presented in (D4.3) and comprise performance metrics 

for virtualised service function chains from the telecommunications domains under various types 

of simulated user behaviour, e.g., movement. This setup is described in Section 3.1.1. 

In order to generate the data sets, different behaviour drivers are used, named Traffic loop, Traffic 

model, and City simulator. They vary regarding their expressiveness and hence also with respect 

to the complexity of the scenarios they can create. The data sets generated from these drivers are 

presented in Section 3.1.2, Section 3.1.3, and Section 3.1.4. 

More detailed data sets are available in the project, but remain disclosed due to commercial 

sensitive information4. 

3.1.1 Testbed description 

The TIETO testbed comprises a set of physical servers managed by OpenStack, cf. (D4.3). 

Applications are run on that testbed as sets of Virtual Machines. For the creation of profiling data 

in the scope of the project, TIETO’s NFVSim benchmark suite has been used. 

 

Figure 1 High-level view on testbed set-up 

                                                      
4 Contact information of TIETO: Johan Forsman, johan.forsman@tieto.com  

http://recap-project.eu/
mailto:johan.forsman@tieto.com


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 13 

NFVSim emulates behaviour in the core and the edges of LTE networks, and hence creates an 

impact on the LTE services (application components) residing between core and edge. Figure 1 

illustrates the overall set-up of NFVSim. For the generation of the data sets described in this 

document, the LTE application sitting in the centre consists of four components, all with a scaling 

factor of one: (i) a serving gateway (SGW); (ii) a packet data network gateway (PGW); (iii) eNodeB 

(control-plane), (iv) eNodeB (user-plane). 

The LTE application resides between the traffic generator for the uplink (UESim)5 and the traffic 

generator for the downlink (CNSim)6 that both feed data into the LTE service chain. It is important 

to understand that the traffic generators (UESim and CNSim) generate the workload on the NFVSim 

application by pushing traffic into the system. Yet, they do not decide themselves which data to 

generate. 

The decision of which data to generate, and when, is the task of the traffic behaviour drivers that 

send instructions to UESim (e.g., create UE, release UE) and CNSim (e.g., set data rate). The three 

traffic generators used in the scope of this document vary with respect to their flexibility and 

complexity. 

3.1.2 Data set A.1: Traffic loop 

Scope: This data set has been generated with the Traffic loop tool, a simple tool that allows the 

user to implement scripted traffic scenarios and run them in NFVSim. Due to the high level of 

control given over the traffic volumes and number of users, Traffic loop datasets are useful to 

profile different workload aspects. For instance, the test case 1000_voice_calls was used to profile 

the resources consumed by a single end-user-service (voice call). Other cases include capacity 

tests and similar. This data set captures simple traces of hard coded tests that expose a low level 

of dynamicity compared to the traces that are based on the Traffic model (cf. Section 3.1.3) and 

City Sim (Section 3.1.4). 

The Traffic loop dataset is by far the smallest data set for this use case due to its limitations (which 

is mainly that it is very time consuming to write extensive Traffic-loop tests). The Traffic-loop dataset 

also tends to focus on idealized scenarios, e.g. constant traffic rate, square wave shaped traffic 

rate etc.  

Infrastructure: The data was generated using the TIETO testbed connected to the Traffic loop traffic 

behaviour driver, cf. Section 3.1.1. 

Methodology: To generate the data set, one run of the Traffic-loop suite was executed. This run 

covers multiple scenarios, some of which are nested in sub-scenarios. Overall, the following 

scenarios have been executed: 

 traffic_1cells_10000ues: A test that displays some dynamicity (albeit hard-coded) and 

in total sets up 10000 UEs. All UEs connect to the same cell. 

 traffic_6cells_10000ues: Very similar to the previous test but uses six cells instead of 

just one. UEs are equally distributed over the cells. 

                                                      
5 UE: user equipment. 
6 CN: core network 

http://recap-project.eu/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 14 

 1000_im: Sets up 1000 UE's that constantly use the instant-messaging (IM) end-user-

service7 (similar to the one used in the city simulator). There's no dynamicity and only one 

cell is used. UEs just set up, consume, and uses a constant rate of traffic until the end of 

the experiment. 

 1000_voice_calls: Similar to 1000_im but uses the voice end-user-service instead of IM. 

 1000_voice_plus_data: Similar to 1000_im and 1000_voice but uses the voice+data end-

user-service instead of IM 

 traffic_pyramid_10_steps_a_20_sec: This scenario deals with a step-wise increase and 

decrease in traffic and number of connected UEs. In the first ten steps, traffic volumes are 

gradually increased. Once they have reached the maximum, traffic volumes start to decline 

over 10 steps until they are back at zero. The plot of network traffic as well as number of 

connected UEs resembles a pyramid. Only one cell is used. 

 traffic_alternating_10_peaks_a_20_sec: This scenario creates alternating traffic 

volumes and number of connected UEs. The network traffic volume as well as the number 

of connected UEs resembles a square wave when plotted. Only one cell is used. 

The dataset was collected via the RECAP monitoring pipeline using Logstash and InfluxDB, cf. 

(D5.2) deployed in the TIETO testbed. The files containing the dataset have been exported from 

the InfluxDB database. 

[deployment] 
recap-cnsim [ACTIVE]: compute-4.domain.tld 
recap-uesim [ACTIVE]: compute-4.domain.tld 
recap-sgw [ACTIVE]: compute-3.domain.tld 
recap-pgw [ACTIVE]: compute-3.domain.tld 
recap-enb-upf [ACTIVE]: compute-1.domain.tld 
recap-venb [ACTIVE]: compute-1.domain.tld  

Listing 1 Structure of trafficloop__meta.txt. 

name,  time,    event, run_id,  test_case 
testloop, 1566894968855000000, begin, 8504,  suite_all 
testloop, 1566894968918000000, begin, 27673,  init_testbed 
testloop, 1566894989482000000, end, 27673,  init_testbed 
testloop, 1566894989539000000, begin, 17307,  traffic_6cells_10000ues 
testloop, 1566895294779000000, end, 17307,  traffic_6cells_10000ues 
testloop, 1566895294846000000, begin, 18573,  tear_down_testbed 
testloop, 1566895305178000000, end, 18573,  tear_down_testbed 
testloop, 1566895305243000000, begin, 22811,  init_testbed  

Listing 2 Structure of trafficloop_data__scenarios.csv 

Data format: The data set is delivered as a zipped file that contains several files and directories. 

The root directory contains a file trafficloop__meta.txt (cf. Listing 1) and a directory 

trafficloop_data. trafficloop__meta.txt provides the mapping from virtual machines and the 

services they host to physical servers. The services in the file map to the names of the services in 

                                                      
7 More accurately, traffic corresponding to the service as Traffic loop has no concept of end-user services. 

Just traffic volumes. The City simulator on the other hand has concepts of end-user-services and the number 

of traffic volumes given in the three end-user-service oriented tests correspond to those in the City simulator. 

Also note that the service voice+data is modelled as a single end-user-service. 

http://recap-project.eu/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 15 

Section 3.1.1 as follows: recap-cnsim  CNSim, recap-uesim  UESim, recap-enb-upf  eNodeB 

user plane, recap-venb  eNodeB data plane, recap-sgw  SGW, recap-pgw  PGW. 

The directory contains a set of csv files with timeseries data as well as a file 

trafficloop_data__scenarios.csv file. This file contains start and end times of events that 

occurred during the run (e.g., the start of individual scenarios, cf. Listing 2) and hence can be used 

to separate the different test cases in the time series files. The format of the CSV files with time 

series is subject to Section 3.1.5. 

Use in the project: Data generated with traffic loop has been used to complement City simulator 

data to characterize workload associated with specific traffic volumes and end-user services, 

cf. (D8.3). It will be used as well in the Use Case A validation as a complement to City simulator, 

cf. (D3.3). 

3.1.3 Data set A.2: Traffic model 

Scope: This data set has been generated with the Traffic model tool, a tool that enables dynamic 

stochastic models for traffic generation and runs them in NFVSim. Traffic model uses stochastic 

models to simulate UE behaviour. However, as the models are very simple (compared to the City 

Simulator case) the traffic patterns become redundant in longer runs (hours). The Traffic-model 

dataset positions itself between the City Simulator dataset and the Traffic-loop dataset both in 

terms of complexity and of dataset size. 

Infrastructure: The data was generated using the TIETO testbed connected to the Traffic model 

traffic behaviour driver, cf. Section 3.1.1. 

Methodology: To generate the data set, two runs of the Traffic model tool were executed, one 

lasting 1 hour and one that lasts 12 hours. The mathematical/stochastic models that have been 

used are as follows: 

 Parameters that specify the scale of the system, i.e. the number of cells, UEs, etc. 

 A set of traffic classes that define service characteristics (packet sizes, packet rates, etc) 

and a frequency which is a weight that represents the probability of traffic within the class, 

relative to the other traffic classes. 

 A list of periods. Periods control UE attach/detach rates and are used to control the traffic 

volumes over time. At least one must be specified. Once the list of periods has been 

iterated, traffic-model will restart from the beginning of the list. 

 The input model used in these tests (input.json) are provided with the traces. 

The dataset was collected via the RECAP monitoring pipeline using Logstash and InfluxDB, cf. 

(D5.2) deployed in the TIETO testbed. The files containing the dataset have been exported from 

the InfluxDB database. 

http://recap-project.eu/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 16 

[deployment] 
recap-cnsim [ACTIVE]: compute-4.domain.tld 
recap-uesim [ACTIVE]: compute-4.domain.tld 
recap-sgw [ACTIVE]: compute-3.domain.tld 
recap-pgw [ACTIVE]: compute-3.domain.tld 
recap-enb-upf [ACTIVE]: compute-1.domain.tld 
recap-venb [ACTIVE]: compute-1.domain.tld 
 
[trafficmodel] 
test case: sample-model.json 
runtime: 12 h  

Listing 3 Structure of trafficmodel-12h__meta.txt. The structure of trafficmodel-1h__meta.txt is similar. 

{ 
    "runtime": "10m", 
    "avg_packet_size": 11200, 
 
    "total_users": 100000, 
    "max_concurrent_users": 10000, 
    "max_per_cell": 1200, 
    "active_users": 0, 
 
    "number_of_cells": 9, 
 
    "periods": 
    [ 
        { "name": "standard", "ue_attach_rate": 0.35, "ue_release_rate": 1.0, "duration": "1m" }, 
        { "name": "quiet", "ue_attach_rate": 0.01, "ue_release_rate": 100.0, "duration": "1m" } 
    ], 
 
    "traffic_classes" : 
    [ 
        { 
            "type": "voice", 
            "ue_hold": 90, 
            "dl_packet_size": 476, 
            "ul_packet_size": 476, 
            "dl_rate": 33, 
            "ul_rate": 33, 
            "frequency": 0.54 
        },  

Listing 4 Head of input.json the traffic model tool config file for specifying statistical properties of the run. 

name,   time,    event, run_id, test_case 
trafficmodel-1h, 1566828730450000000, begin, 22623, trafficmodel_sample_model 
trafficmodel-1h, 1566832330450000000, end, 22623, trafficmodel_sample_model  

Listing 5 Structure of trafficmodel-1h_data__scenarios.csv. The trafficmodel-12h_data__scenarios.csv is similar. 

Data format: The data set is delivered as two zipped files, one for the 1h run and one for the 12h 

run. Each of the zip files contains several files and directories. The root directory contains a file 

trafficmodel-<run>__meta.txt, <run> with being either 1h or 12h, cf. Listing 3. These files 

provide the same information as trafficloop__meta.txt in Section 3.1.2, and additionally specify 

the length of the run and reference input.json defining the model to be used as input (cf. Listing 

4). 

In addition, the zip file per data set contains a directory trafficmodel-<run>_data. This directory 

hosts a set of csv files with timeseries data as well as a file trafficmodel-

<run>_data__scenarios.csv file. This file contains start and end times of events that occurred 

during the run (e.g., the start of testbed set-up or the start of the actual scenario, cf. Listing 5) and 

hence can be used to separate the different test cases in the time series. The format of the CSV 

files with time series is subject to Section 3.1.5. 

http://recap-project.eu/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 17 

Use in the project: Reference dataset to which the City Simulator dataset can be compared to. 

3.1.4 Data set A.3: City Simulator 

Scope: The city simulator drives traffic behaviour by utilizing an agent-based modelling of citizens 

that navigate through a city and utilize mobile services. It is by far the most extensive driver since 

its models operates on the basis of individual. This allows for the highest degree of dynamicity. 

Infrastructure: The data was generated using the TIETO testbed connected to the Traffic model 

traffic behaviour driver, cf. Section 3.1.1. 

Methodology: The data has been created in two long runs of City simulator. One run was active for 

44 hours, and the other for 35 hours. Using a simulation speed-up factor of 4, this corresponds to 

a simulation time of seven and five days respectively. Both runs cover the same scenario starting 

on 5th June 2018 at 21:00 and using a population model of the city of Umeå in Northern Sweden8. 

This model incorporates information about the topology (streets, rivers, …) of the city, its areas 

(residential area, educational area, industrial area, office area), and population information such 

as population density and their statistical communication preferences. In addition, it introduces a 

topology for a mobile network. Based on this information, it generates artificial, but realistic 

patterns of movement over the city. For instance, employees will move to industrial and office 

areas during the day, while students will move to university and children to school. 

The dataset was collected using the RECAP monitoring pipeline using Logstash and InfluxDB, cf. 

(D5.2) deployed in the TIETO testbed. The files containing the dataset have been exported from 

the InfluxDB database. 

[deployment] 
recap-cnsim [ACTIVE]: compute-4.domain.tld 
recap-uesim [ACTIVE]: compute-4.domain.tld 
recap-sgw [ACTIVE]: compute-3.domain.tld 
recap-pgw [ACTIVE]: compute-3.domain.tld 
recap-enb-upf [ACTIVE]: compute-1.domain.tld 
recap-venb [ACTIVE]: compute-1.domain.tld 
 
[citysim] 
scenario: umea (no event) 
time scale factor: 4 
throughput scale factor: 1 
simtime start time: 2018-06-05 21:00:00  

Listing 6 Structure of citysim-35h__meta.txt. The structure of citysim-44h__meta.txt is similar. 

name,  time,    event, run_id, test_case 
citysim-35h, 1567172767178000000, begin, 2190, init_testbed 
citysim-35h, 1567172787930000000, end, 2190, init_testbed 
citysim-35h, 1567173038000000000, begin, 15545, citysim_umea_scenario 
citysim-35h, 1567300938000000000, end, 15545, citysim_umea_scenario  

Listing 7 Structure of citysim-35h_data__scenarios.csv. The structure of citysim-44h_data__scenarios.csv is similar. 

                                                      
8 This population model has been created based on a data set from Umeå municipality. This data contains 

information on where people live and work and cell placement in the city. We cannot share this data set due 

to privacy reasons. 

http://recap-project.eu/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 18 

Data format: The data set is delivered as two zipped files, one for the 44h run and one for the 35h 

run. Each of the zip files contains several files and directories. The root directory contains a file 

citysim-<run>__meta.txt, <run> with being either 44h or 35h, cf. Listing 6. These files provide 

the same information as trafficloop__meta.txt in Section 3.1.2, and additionally specifies 

attributes of the simulation including the model to be used as input, scaling factors for time and 

load, as well as the simulation start time. The model data provides information of initialized end-

user services, UE to Cell connectivity, UE attaches, etc. It is described in detail in Section 3.1.5 

(measurements prefixed with citysim).  

In addition, the zip file per data set contains a directory citysim-<run>_data. This directory 

contains a set of csv files with time series data as well as a citysim-<run>_data__scenarios.csv 

file. This file contains start and end times of events that occurred during the run (e.g., the start of 

testbed set-up or the start of the actual simulation, cf. Listing 7) and hence can be used to separate 

the different test cases in the time series. The format of the CSV files with time series is subject to 

Section 3.1.5. This data set contains the same types of csv files as the data sets in Sections 3.1.2 

and 3.1.3, this data set also contains time series data of City simulator itself. For the sake of 

coherence, this aspect of the data set is also presented in Section 3.1.5. 

Use in the project: The city simulator allows us to simulate dynamics spanning over network 

geography and user behaviour. Datasets generated with this tool will be used to drive the traffic in 

the Use Case A validation. 

3.1.5 Measurement descriptions 

This section explains the schema and semantics of the csv files of the data sets presented in 

Section 3.1.2, Section  3.1.3, and Section  3.1.4. All files contain time series data and follow the 

same structure illustrated in Listing 8. 

name,   time,  metric1-name, metric2-name, …,  tag1-name,  … 
metricset-name, timestamp, metric1-value, metric2-value, …, tag1-value, … 
metricset-name, timestamp, metric1-value, metric2-value, …, tag1-value, … 
metricset-name, timestamp, metric1-value, metric2-value, …, tag1-value, … 
metricset-name, timestamp, metric1-value, metric2-value, …, tag1-value, …  

Listing 8 Structure of CSV files containing measurement time series 

The file starts with a header line denoting the name of the column. Each further line starts with the 

name of the metric set that the measurement in this line belongs to. The second column contains 

the timestamp the measurement was taken. Further columns either contain the values measured 

for specific metrics or the values of tags that have been set for the measurement. As described in 

(D5.1), tags represent meta-information attached to a measurement. Their main purpose is to 

enable the grouping of measurements with the same meta-data. 

Table 1 presents an overview of CSV files used in the different data sets. It shows that all types of 

files are used in all three data sets, with the exception of files with file names starting with 

“citysim”.These can only be found in the City simulator data set from Section 3.1.4. 

A significant detail is that the City Simulator and NFVSim handle packets per second (pps) and 

packet sizes differently. The City Simulator keeps track of pps and packet sizes of individual end-

user-services as seen in the citysim.service_initialized metric set (Table 20). Before the traffic is 

generated, the pps and packet sizes from the City Simulator will be translated to the corresponding 

values in NFVSim, such that the total traffic volume is the same. 

http://recap-project.eu/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 19 

Table 2 to Table 23 describe the content of the files, identifying the columns used, their 

type (metric or tag) and a brief description of the metric semantics in cases where this is not self-

explanatory. A more detailed discussion on system metrics and tags is available in (D5.1). Table 2 

lists some of the abbreviation used. 

  

http://recap-project.eu/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 20 

Table 1 Overview of CSV files used by the data sets 

file name description Traffic 

loop 

Traffic 

model 

City 

sim 

host.cpu.csv Metrics for cpu consumption 

on physical and virtual layer, 

as shown in Table 3. Measured 

through Metricbeat. 

✓ ✓ ✓ 

host.diskio.csv Metrics for io load on physical 

and virtual layer, as shown in 

Table 4. Measured through 

Metricbeat. 

✓ ✓ ✓ 

host.filesystem.csv Metrics for file system load on 

physical and virtual layer, as 

shown in Table 7. Measured 

through Metricbeat. 

✓ ✓ ✓ 

host.memory.csv Metrics for memory load on 

physical and virtual layer, as 

shown in Table 6. Measured 

through Metricbeat. 

✓ ✓ ✓ 

host.network.csv Metrics for network load on 

physical layer, as shown in 

Table 7. Measured through 

TIETO proprietary tool. 

✓ ✓ ✓ 

vm.app.cell_counter.csv Counter metrics for cells as 

show in Table 8. 
✓ ✓ ✓ 

vm.app.cell_timer.csv Timer metrics for cells as 

shown in Table 10. 
✓ ✓ ✓ 

vm.app.ctrl_meas.csv Statistics for mobility 

management entity (MME) as 

shown in Table 12. 

✓ ✓ ✓ 

vm.app.ctrlplane_traffic.csv Statistics on control plane 

traffic as shown in Table 13. 
✓ ✓ ✓ 

vm.app.global_counter.csv Global counter metrics as 

show in Table 14. 
✓ ✓ ✓ 

vm.app.uesim_user_stats.csv Statistics on set-up UEs as 

shown in Table 16. 
✓ ✓ ✓ 

vm.app.userplane_traffic.csv Statistics on user plane traffic 

as shown in  

Table 17. 

✓ ✓ ✓ 

vm.network.csv Metrics for network load on 

physical layer, as shown in 

Table 18. Measured through 

Metricbeat. 

✓ ✓ ✓ 

citysim.cell_datarate_change.csv 

Statistics on CitySim as shown 

throughout Table 19, Table 20, 

Table 21, Table 22, Table 23 

   
citysim.service_initialized.csv   ✓ 
citysim.ue_attach.csv   ✓ 

citysim.ue_release.csv   ✓ 

citysim.user_traffic.csv   ✓ 

 

  

http://recap-project.eu/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 21 

 

Table 2: Abbreviations in the measurement description. 

Abbreviation Full Name 

RRC Radio Resource Control 

UECNTX UE Context 

ERAB Enhanced Radio Access Bearer 

S1SIG S1 Signalling 

UPC User Profile Component 

RACH Random Access Channel 

NAS Non-Access Stratum 

MME Mobility Management Entity 

 

Table 3 host.cpu 

Point Type Description 
cores metric Number of cores of the entity (VM or server) 
hostname tag Name of the host 
idle metric Idle CPU metric 
iowait metric IOwait CPU metric 
irq metric IRQ CPU metric 
machine_uuid tag UUID that identifies the VM instance or server instance 
metric_layer tag Metric layer, either virtual for data from with a VM or 

physical for data from a host. 
nice metric Nice CPU metric 
softirq metric Softirq CPU metric 
steal metric Steal CPU metric 
system metric System CPU metric 
test_id tag Identifier for the testbed deployment 
user metric User CPU metric 

 

Table 4 host.diskio 

Point Type Description 
devicename tag Identifier of the measured io device  
hostname tag Name of the host 
io metric  
machine_uuid tag UUID that identifies the VM instance or server instance 
metric_layer tag Metric layer, either virtual for data from with a VM or physical for 

data from a host. 
read_bytes metric  
read_count metric  
read_time metric  
test_id tag Identifier for the testbed deployment 
write_bytes metric  
write_count metric  
write_time metric  

 

  

http://recap-project.eu/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 22 

Table 5 host.filesystem 

Point Type Description 
available_space tag  
devicename tag Device the file system resides on 
file_count metric  
free_files metric  
free_space metric  
machine_uuid tag UUID that identifies the VM or server instance 
metric_layer tag Metric layer, either virtual for data from with a 

VM or physical for data from a host. 
mountpoint tag Mount point of the file system 
test_id metric Identifier for the testbed deployment 
total_space metric  
used_space metric  
hostname tag Name of the host 

 

Table 6 host.memory 

Point Type Description 
actual_free metric  
actual_used metric  
free metric  
hostname tag Name of the host 
machine_uuid tag UUID that identifies the VM instance or server instance 
metric_layer tag  
swap_free metric  
swap_total metric  
swap_used metric  
test_id tag Identifier for the testbed deployment 
total metric  
used metric  

 

Table 7: host.network 

Point Type Description 
devicename tag Name of the network device (e.g. eth0) 
hostname tag Name of the host 
in_bytes metric Accumulated number of received bytes 
in_drops metric Accumulated number of received dropped packets 
in_errors metric Accumulated number of received packet errors 
in_packets metric Accumulated number of received packets 
machine_uuid tag UUID that identifies the server instance 
metric_layer tag Metric layer (always physical in this measurement) 
out_bytes metric Accumulated number of sent bytes 
out_drops metric Accumulated number of sent packets dropped 
out_errors metric Accumulated number of sent packet errors 
out_packets metric Accumulated number of sent packets 
test_id Tag Identifier for the testbed deployment 

 

http://recap-project.eu/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 23 

Table 8: vm.app.cell_counter 

Point Type Description 
cell_id tag Local Cell Id of the cell. This Value should be unique in NFVSim 
Counter tag Identifier for the counter, ie. counter type (cf. Table 9) 
hostname tag Name of the VM 
machine_uuid tag UUID that identifies the vm instance 
test_id tag Identifier for the testbed deployment 
Value metric Counter value 

 

Table 9: Counter types used in vm.app.cell_counter 

Counter name Description 

RRC.ConnEstabAtt RRC protocol statistics 
RRC.ConnEstabSucc 

RRC.ConnEstabFail 

RRC.ConnMax 

UECNTX.RelReq UECNTX statistics 
UECNTX.RelSuccNbr 

ERAB.EstabInitAttNbr ERAB statistics 
ERAB.EstabInitSuccNbr 

ERAB.EstabInitFailNbr 

ERAB.UsageNbrMax 

S1SIG.ConnEstabAtt S1SIG Statistics 
S1SIG.ConnEstabSucc 

 

Table 10: vm.app.cell_timer 

Point Type Description 
cell_id tag Local Cell Id of the cell. This Value should be unique in 

NFVSim 
high_usec metric Highest sampled value in microseconds 
hostname tag Name of the vm 
low_usec metric Lowest sampled value in microseconds 
machine_uuid tag UUID that identifies the vm instance 
mean_usec metric Mean of sampled values in microseconds 
samples metric Number of samples 
test_id tag Identifier for the testbed deployment 
timer tag Identifier for the timer, cf. Table 11 

 

Table 11: Timer types used in vm.app.cell_timer 

Counter Description 
RRC.ConnEstabTimeMean Monitors duration of RRC Connection establishments. 
ERAB.EstabTimeMean Monitors duration of ERAB establish time 

 

  

http://recap-project.eu/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 24 

Table 12: vm.app.ctrl_meas 

Point Type Description 
hostname tag Name of the vm 
machine_uuid tag UUID that identifies the vm instance 
mme_bytes_rec metric Accumulated bytes received by MME 
mme_bytes_sent metric Accumulated bytes sent by MME 
mme_pkt_rec metric Accumulated packets received by MME 
mme_pkt_sent metric Accumulated packets sent by MME 
test_id tag Identifier for the testbed deployment 

 

Table 13: vm.app.ctrlplane_traffic 

Point Type Description 
hostname tag Name of the VM 
machine_uuid tag UUID that identifies the VM instance 
rxBytes metric Accumulated received number of Bytes 
rxPackets metric Accumulated received number of packets 
test_id tag Identifier for the testbed deployment 
txBytes metric Accumulated transmitted number of bytes 
txPackets metric Accumulated transmitted number of packets 

 

Table 14: vm.app.global_counter 

Point Type Description 
counter tag Name/type of the counter (cf. Table 15) 
hostname tag Name of the vm 
machine_uuid tag UUID that identifies the VM instance 
test_id tag Identifier for the testbed deployment 
value metric Value of the counter 

 

Table 15: Counter types used in vm.app.global_counter 

Counter Description 

ENB.CreateUpfBearer Counters to monitor UPF Bearer creation and releases in the 

ENodeB ENB.ReleaseUpfBearer 

MME.InitialCtxSetupReq MME (Mobility Management Entity) Setup and releases of 

different resources MME.ErabSetupReq 

MME.UeCtxReleaseReq 

UPC.CreateUpfBearer Counters to monitor UPF Bearer creation & releases in the UPC 
UPC.ReleaseUpfBearer 

UESIM.RachTrans Various statistics on resource management from the UE’s. 
UESIM.RachTrans 

UESIM.RachRetrans 

UESIM.RachSuccess 

UESIM.RachFailures 

UESIM.RrcConnReq 

UESIM.RrcConnRej 

UESIM.NasAttachReq 

UESIM.NasDetachReq 

UESIM.NasAttachComplete 

 

http://recap-project.eu/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 25 

Table 16: vm.app.uesim_user_stats 

Point Type Description 
hostname tag Name of the vm 
machine_uuid tag UUID that identifies the VM instance 
setup_ues metric Number of setup UEs at the point in time 
test_id tag Identifier for the testbed deployment 

 

Table 17: vm.app.userplane_traffic. 

Point Type Description 
hostname tag Name of the VM 
machine_uuid tag UUID that identifies the VM instance 
rxBytes metric Received number of bytes (accumulative) 
rxPackets metric Received number of packets (accumulative) 
test_id tag Identifier for the testbed deployment 
txBytes metric Transmitted number of bytes (accumulative) 
txDrops metric Transmitted number of packet drops (accumulative) 
txPackets metric Transmitted number of packets (accumulative) 

 

Table 18 vm.netwok 

Point Type Description 
devicename tag Name of the measured network device 
hostname tag Name of the VM 
in_bytes metric  
in_drops metric  
in_errors tag  
in_packets metric  
machine_uuid metric UUID that identifies the VM instance 
metric_layer metric Metric layer, either virtual for data from with a VM or 

physical for data from a host. 
out_bytes metric  
out_drops metric  
out_errors metric  
out_packets metric  
test_id metric Identifier for the testbed deployment 

 

  

http://recap-project.eu/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 26 

Table 19: citysim.cell_datarate_change 

Point Type Description 
local_cell_id tag Local Cell Id (This is unique for all cells in the City Simulator) 
num_active_users metric Number of active users within the cell 
num_users metric Number of users within the cell 
rate_dl metric Downlink rate in packets per second 
rate_ul metric Uplink rate in packets per second 
run_id tag Run identifier (see test_event.test_meta) 
test_case tag Identifier of the testcase 

 

Table 20: citysim.service_initialized 

Point Type Description 
dl_packet_size metric Downlink packet size for service 
dl_pps metric Downlink packets per second for service 
duration metric Duration of the service 
label tag Label of service (e.g. Voice, IM) 
run_id tag Run identifier (see test_event.test_meta) 
test_case tag Identifier to the testcase 
ue_id tag Identifier of the UE 
ul_packet_size metric Uplink packet size of service 
ul_pps metric Uplink packets per second for service 

 

Table 21: citysim.ue_attach 

Point Type Description 
cell_id tag Local Cell Id (This is unique for all cells in the City Simulator) 
run_id tag Run identifier 
test_case tag Identifier to the testcase. 
ue_id tag Identifier of the UE 

 

Table 22: citysim.ue_release 

Point Type Description 
run_id tag Run identifier 
test_case tag Identifier to the testcase 
ue_id tag Identifier of the UE 

 

Table 23: citysim.user_traffic 

Point Type Description 
num_active_users metric Total number of active users 
num_users metric Total number of users 
rate_dl_bps metric Total downlink rate in bits per second 
rate_dl_pps metric Total downlink rate in packets per second  
rate_ul_bps metric Total uplink rate in bits per second 
rate_ul_pps metric Total uplink rate in packets per second 
run_id tag Run identifier 
test_case tag Identifier to the testcase  

 

http://recap-project.eu/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 27 

3.2 Use Case B Big Data Analytics Engine 

Scope: This data set shows request/response metrics of Linknovate’s production web server. The 

data set, being based on a production web server, can be used to characterize web server 

workloads and for the evaluation and development of forecasting models for web based network 

traffic. 

Infrastructure: The data has been collected from an nginx web server in the Azure cloud (D3.1), 

the frontend of the production system. 

Methodology: The data set is based on raw data coming from the web server. Due to privacy, 

security and commercial sensitivity, data has been anonymised and aggregated to a granularity of 

30 minutes. Any information on potential users such as IP addresses has not been collected. 

Date,   Count 

2017-04-06 13:00:00, 492 

2017-04-06 13:30:00, 1984 

2017-04-06 14:00:00, 2055 

2017-04-06 14:30:00, 2220  

Listing 9 First few lines of the CSV file containing the Use Case B data set. 

Data format: The publish time series represents a subset of two months of monitoring data. The 

file is in CSV format (cf. Listing 9) and contains the time interval to which the row refers (time) and 

the number of user requests the web server had during the interval (count). 

Use in the project: This data set has been used in RECAP for the creation of a workload prediction 

model for the use case (D6.2). 

3.3 Use Case C Edge/Fog Computing for Smart Cities 

Use Case C develops a middleware for running IoT applications in Cloud/Edge environments. The 

application used for demonstrating the features of this application is centred around traffic 

management in Smart Cities. Therefore, the use case generates two types of data sets. The first is 

a simulated traffic pattern, while the second is the load on the application when running the traffic 

pattern. 

3.3.1 Data Set C.1: Traffic Pattern 

Scope: This dataset contains simulated traffic data. It describes the number of cars circulating in 

a large city including their current GPS position. By assuming that each car is sending real-time 

telemetry information from a collection of sensors, this dataset could be used for the simulation 

and evaluating of IoT and Edge computing middleware, and in particular, the design of novel 

communication protocols between the edge layer and the cloud layer, the development of 

algorithms for the optimal location of data traces and services, and the evaluation of the energy 

consumption of edge services vs cloud services. 

Infrastructure: SUMO9 simulator  

                                                      
9 https://sourceforge.net/projects/sumo/files/sumo 

http://recap-project.eu/
https://sourceforge.net/projects/sumo/files/sumo


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 28 

Methodology: The dataset is based on the TAPAS Cologne scenario10 that describes the traffic 

within the city of Cologne (Germany) for a whole day. These original files correspond to the network 

topology (as a graph but also with position of streets and intersections) and the traffic data (for 

each vehicle, starting point and time, and route followed). 

These files and the SUMO simulator are used to obtain the dataset files with traffic simulation in 

Cologne during 4 hours with a granularity of 1 second running the following command:  

 sumo.exe -c cologne.sumocfg -b 3200 -e 17600 --fcd-output report.xml 

Here “cologne.sumocfg” is the traffic data file downloaded from the TAPAS Cologne web site, the 

numbers 3200 and 17600 are the beginning and end simulation time in seconds, and --fcd-

output report.xml is the destination file where the dataset are stored. Finally, the xml file is 

converted to a csv representation. 

lat,lon,destLat,destLon,zone,ip,port,speed,weather,id,co2emission,coemission,fuelConsumption,timestamp 
50.9778308936;7.03258484956;50.9858141858;6.94423488734;East;134.60.64.103;1883;0.036;Clouds;38750_
38750_359_0;262400.0;16400.0;10000.0;09/07/19 7:00:01 
50.9462158176;7.04923870706;50.9300651242;6.95666132456;East;134.60.64.103;1883;0.036;Clouds;34652_
34652_352_0;262400.0;16400.0;10000.0;09/07/19 7:00:01 
50.9456300072;6.95759197605;50.9162896095;6.98778940178;Cen-
ter;134.60.64.101;1883;0.036;Clouds;47094_47094_364_0;262400.0;16400.0;10000.0;09/07/19 7:00:01 
51.0331586941;6.89152220117;50.9516156516;6.85875491961;North-
West;134.60.64.106;1883;0.036;Clouds;50313_50313_368_0;262400.0;16400.0;10000.0;09/07/19 7:00:02  

Listing 10 Structure of CSV files containing measurement time series 

Data format: The dataset consists of a single csv file with more than two million rows (cf. Listing 

10), each one showing amongst others the id of the vehicle and its position at each second of the 

simulation. In detail the columns in the CSV file have the following semantics: lat, current latitude 

coordinate of the car; lon, current longitude coordinate of the car; destLat, destination latitude of 

the car; destLon), destination longitude of the car; zone, city area where the car is located; ip, IP 

address of the server that handles the requests for a given car. Full ip is obfuscated for security 

reasons; port, destination port of the server; speed, speed of the car; weather, the current weather; 

id, id of the car; co2emission, current emission of CO2 of the car; coemission, current emission of 

CO of the car; fuelConsumption, instant fuel consumption of a car; timestamp, timestamp of the 

telemetry message. 

Use in the project: This dataset is injected into the SAT-IoT platform and serves as an input for the 

Use Case C experiments and validations. It also serves as a workload mechanism to obtain the 

dataset C.2. 

3.3.2 Data Set C.2: SAT-IoT Load 

Scope: This dataset contains the load on the Use Case C sample application, when applying the 

traffic pattern from data set C.1. 

Infrastructure: For creating the data set, the Use Case application is rolled out on the UULM 

testbed (D4.3). 

                                                      
10 https://sourceforge.net/projects/sumo/files/traffic_data/scenarios/TAPASCologne 

http://recap-project.eu/
https://sourceforge.net/projects/sumo/files/traffic_data/scenarios/TAPASCologne


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 29 

Methodology: The dataset is generated by injecting the dataset C.1 into the SAT-IoT Platform in 

order to generate some workload into the system. Depending on the number of cars running into 

the city, their distribution and requests, the load of the system vary over the time.  

The load is monitored using Netdata tool11 and captured every 30 seconds through a specific 

purpose monitoring component deployed in the SAT-IoT platform. Then data is fed into the RECAP 

monitoring chain. The dataset C.2 has been generated using the following process: 

1. Stop all processes in the server that may interfere with the metric collection such as system 

updates, file transfers… etc.  

2. Data set C.1 starts to be injected into the platform. 

3. Specific Metrics service starts to log the metrics. 

4. The process continue until all the data set has been injected. It lasts around 2 hours. 

Data format: The load measured is two hours long and contains the main server metrics: CPU 

Usage percentage, disk in usage, disk out usage, used RAM, free RAM, network traffic in, network 

traffic out, timestamp. The overall format is identical to the data set provided in Section 3.1.3 and 

has the semantics as discussed in Section 3.1.5. 

3.4 Use Case D1 Virtual Content Delivery Networks 

Scope: The data represents the traffic of downloading contents from the caches to serve user 

requests in BT’s Content Delivery Network (CDN). The data has been sampled with an interval of 

20 minutes and is measured in Bits Per Second. 

Infrastructure: Data collected and distributed to RECAP for this use case comes from three caches 

located in inner-core nodes of the BT network in London, UK. 

Methodology: Data was continuously collected from 2016 up to time of writing (September 2019) 

and provided to RECAP for workload analysis and modelling. However, due to proprietary 

information, only portions of data traces from 2016 to 2017 are publicly open.  

The exact time stamps are blurred to hide commercially sensitive information. For further data 

traces, researchers can contact BT via contact information provided below12. 

Further due to proprietary reasons, data points are divided by a peak value to give a relative traffic 

measure hiding the absolute traffic level. In addition, peaks have been cropped to 0.85 to hide 

commercially sensitive information. 

Datetime, Location A, Location B, Location C 

0,  0.022889678, 0.023970027, 0.009318701  

1200000, 0.019705819, 0.019692336, 0.007955174 

2400000, 0.018054977, 0.016038835, 0.00729537 

3600000, 0.015558753, 0.01426691, 0.006146824  

Listing 11 First few lines of the CSV file containing the Use Case D1 data set. 

Data format: This data set is published a single CSV file (cf. Listing 11). Each data entry in the file 

is composed of a time stamp and three values of traffic/workload measurement corresponding to 

three network nodes where data is collected. Note that the given time stamps are relative ones 

                                                      
11 https://www.netdata.cloud/ 
12 Contact information of BT: Peter J. Willis, peter.j.willis@bt.com 

http://recap-project.eu/
mailto:peter.j.willis@bt.com


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 30 

which are calculated based on the collecting time of the first data entry, i.e., time stamp of the first 

entry is ‘0’ and the next one will be the number of milliseconds elapsed from the first one, and so 

on. 

Use in the project: This data set serves as the baseline for the generation of the synthetic data 

presented in Section 4.4. Further, enhanced versions of this data set have been used for vCDN 

application models presented in (D6.2) and vCDN infrastructure models and optimisation as 

shown in (D8.4). 

  

http://recap-project.eu/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 31 

4 Artificial Workload Generation 

This chapter introduces four different approaches to the generation of artificial workload. Each of 

the following sub-sections contains a brief introduction to the mathematical models used to 

generate artificial workload data traces. Further, they provide relevant references for those 

interested in fully understanding the technical details of the utilised approach. Finally, each of the 

sub-sections lists one or more of the generated data sets. 

4.1 Structural Models based Workload Generation 

RECAP is interested in the availability of datasets describing the evolution of workloads of servers 

and services (applications), so that stochastic models can be trained to forecast future workloads 

based on past performance. Section 3 described the datasets collected by the RECAP project from 

the testbeds and production infrastructure of the industrial partners. However, for many reasons 

e.g. commercial sensitivity, privacy, etc., these datasets are insufficient for some application 

research/investigations, hence additional synthetic datasets had to be generated. 

However, while additional datasets are desirable it is/was of upmost importance that such artificial 

datasets preserve the statistical properties of the real datasets collected by the RECAP project. As 

such, leveraging the experience of the data scientists at Google Search Infrastructure13 RECAP 

developed a set of models, based on structural time series, which allowed for the generation of a 

collection of artificial workloads that resemble those originally collected. In particular, the approach 

was used to generate synthetic datasets for Use Case B Big Data Engine and Use Case C Edge/Fog 

Computing for Smart Cities. 

4.1.1 Background 

Structural time series models (Harvey, 1989) are a family of stochastic models for time series that 

includes and generalizes many standard time-series modelling ideas, including the autoregressive 

models and moving average models that have been already used in RECAP for forecasting 

purposes, like for example, ARIMA or Seasonal ARIMA models (Le Duc & Östberg, D6.1, 2018). A 

structural time series model expresses an observed time series as the sum of simpler components: 

𝑓(𝑡) = 𝑓1(𝑡) + 𝑓2(𝑡) +⋯+ 𝑓𝑛(𝑡) + 𝜖 

Where 𝜖 is a white error term following a normal distribution of mean 0 and variance 𝜎2. 

For example, one component might encode a linear trend, a cycle, or a dependence of previous 

values. Structural time series models allow to identify and encode assumptions about the 

processes that have generated the original data. In this way, structural time series models makes 

it possible to generate artificial data traces that have the same statistical properties from the 

original datasets. 

4.1.2 Approach 

The artificial workloads generated based on structural time series models were generated using 

the TensorFlow Probability (TFP14) library. TFP provides built-in support for fitting and forecasting 

time series using structural time series models. Because models are built inside the TensorFlow 

                                                      
13 http://www.unofficialgoogledatascience.com/2017/04/our-quest-for-robust-time-series.html 
14 https://www.tensorflow.org/probability/ 

http://recap-project.eu/
http://www.unofficialgoogledatascience.com/2017/04/our-quest-for-robust-time-series.html
https://www.tensorflow.org/probability/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 32 

platform, workload generation software can take advantage of vectorised hardware (GPUs) and 

efficiently generate many time series in parallel. 

Figure 2 shows an example of simulation. The figure corresponds to the generation of artificial 

workload traces, that is, number of requests, to the search engine of Linknovate. The original data 

traces collected from the nginx web server are depicted in blue, and the simulated data trace in 

orange. The data trace has been generated using a two-component model using a trend 

component and a cycle component. 

The figure shows that the generated trace does not match the actual data set. This is less of an 

issue, as artificial workloads do not attempt to accurately forecast timeseries. Instead, it is 

important to generate a time series that has the same statistical properties than the original time 

series. 

 

Figure 2 Simulated Workload for a Search Engine 

4.1.3 Data Set STS.1 

Scope: Workload (number of requests) to a web server, aggregated in 30 minutes’ interval. 

Infrastructure: The dataset was generated using the TensorFlow Probability library, and in 

particular, the Structural Time Series module. 

Methodology: Dataset generated using a Monte-Carlo simulation (random walk) applied to a 

structural time series model. 

Date,   Requests 

2019-08-06 17:12:32, 492  

Listing 12 First few lines of the CSV file containing the STS.1 data set. 

Data format: Based on the data format of the Use Case B dataset described in Section 3.2, the 

generated synthetic dataset is composed of two attributes: an artificial date, and the number of 

users during that time slot, cf. Listing 9. 

http://recap-project.eu/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 33 

Use in the project: The purpose of the dataset is the development of models to forecast future 

workloads (number of requests) given past values. Forecasted values allow to plan in advance the 

optimal number of servers required to deal with the expected workloads, minimizing operational 

expenses, and reducing energy consumption. 

4.1.4 Data Set STS.2 

Scope: Workload (number of cars) in a city, aggregated in intervals of one minute according to the 

smart city use case described in Section 2.3 and the corresponding data set from Section 3.3.1. 

Infrastructure: The dataset was generated using the TensorFlow Probability library, and in 

particular, the Structural Time Series module. 

Methodology: Dataset generated using a Monte-Carlo simulation (random walk) applied to a 

structural time series model. 

Data format: Based on the data format of the Use Case C dataset described in Section 3.3, the 

generated synthetic dataset is composed of five attributes: an artificial date, and the number of 

cars during that time slot for the five identified areas: centrum, east, north, west and south, cf. 

Listing 11. 

Date,   Centrum East North West South 
2019-08-06 17:12:32, 492  532 123 4598 9877  

Listing 13 Line of the CSV file containing the STS.2 data set. 

Use in the project: The purpose of the dataset is the development of models to forecast future 

workloads (number of cars) given past values. Forecasted values allow to plan in advance the 

optimal location of the datasets in a cloud/edge based infrastructure. Optimal location saves costs 

of data transfer and improve the quality of service due to a lower (average) latency. 

4.2 Regression-Model-based Workload Generation (Data Set RGM) 

Scope: This data set is generated using regression-based models developed by RECAP for use 

case D1. The models are constructed using traffic data collected from the production CDN of BT 

as presented in Section 3.4. Accordingly, the generated data also represents the content-pulling 

traffic of caches measured in bit per second and aggregated with the frequency of 20 minutes. 

Infrastructure: Three seasonal ARIMA models are used to generate the data at three corresponding 

CDN cache locations in London. 

Methodology: The seasonal ARIMA models are developed using Python 3.6 together with the 

statsmodels 0.10.0 package15, presented in detail in (D6.1) (D6.2). Based on these models, data 

is generated with an API call provided in the statsmodels library; and hence, reserves statistical 

properties of the original data set from the real production system.  

To demonstrate the capability of data simulation of the developed models, a small data set was 

generated consisting of workload data for the last three months within the period of the real data 

collection. Because of being generated from the given models, the data set also inherits 

                                                      
15 https://www.statsmodels.org/stable/release/version0.10.html 

http://recap-project.eu/
https://www.statsmodels.org/stable/release/version0.10.html


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 34 

characteristics, induced by the protection of commercially sensitive information, from the 

processed data set presented in Section 3.4. 

Datetime, Location A, Location B, Location C 

16070400000, 0.049722, 0.055718, 0.050941 

16071600000, -0.007088947, 0.020396702, -0.005875195 

16072800000, 0.049214776, -0.003832634, 0.054279594 

16074000000, 0.062507211, -0.000936094, 0.071077565  

Listing 14 First few lines of the CSV file containing the artificial data set of Use Case D1. 

Data format: This data set is published as a single CSV file (cf. Listing 14). The format of each data 

entry is the same as that in the original data set. Note that because data is generated for the last 

three months of the whole real data collection period, the first timestamp of the data set is the 

same as the corresponding timestamp in the original data set, instead of a value of “0”. 

4.3 GAN-based Workload Generation 

This section presents the approach and results of generating synthetic time-series data by using a 

Generative Adversarial Network (GAN). Section 4.3.1 presents background on that approach while 

Section 4.1.2 discusses the overall methodology used. The approach has been used to generate 

various synthetic data sets from multiple data sets from within the project and from outside of it. 

Further sections discuss the outcome of that approach. 

4.3.1 Background 

Synthetic data generation using GANs has gained popularity in recent years. From their original 

purpose of synthesizing images, GANs have prominently been able to generate realistic images of 

human faces, transfer colours from scenes, just to name a few16. 

In the RECAP case, the overall idea behind the use of GANs to generate synthetic workloads is 

twofold:  

1. On one side, using this approach provides a “what-if” analysis on a dataset, e.g. “how would 

this workload look for a larger number of nodes?”  

2. Additionally, due to its inherent nature, the training goal of a GAN is to estimate the 

probability distribution of the training data and to generate synthetic samples drawn from 

that distribution. Hence, when applied to a real dataset, the GAN learns to mimic its 

statistical pattern. When applied to sensitive data, this has the effect of reflecting the 

statistical properties of the data, while not exposing sensitive information.  

A GAN is based on a combination of two networks, a discriminator D and a competing generator 

network G (cf. Figure 3). In the training phase, D is trained to distinguish real data from generated 

data. In parallel, G is trained to fool D by producing better and better fake data that D will accept 

as real. 

                                                      
16 https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/ 

http://recap-project.eu/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 35 

4.3.2 Approach 

 

Figure 3 An exemplary GAN architecture 

The approach is generally applicable and illustrated in Figure 4 which outlines the requisite steps.  

The entire workflow has been realised using the Python programming language, the Tensorflow 

framework for machine learning, and Keras a more user-friendly abstraction layer/wrapper for 

Tensorflow. For reproducibility and easier training, the process was encapsulated into a Dockerized 

solution, as described in detail in (Schanzel, Leznik, Volpert, Domaschka, & Wesner, 2019). 

 

Figure 4 The processing pipeline for generating artificial workload data 

Network Design 

The discriminator used in this approach is a Recurrent Neural Network (RNN) with two Long Short-

Term Memory (LSTM) layers (one hidden LSTM layer), followed by an output layer of one unit for 

the final classification, resulting in a single scalar value [0; 1]. The generator network consists of 

two recurrent LSTM layers (one being an input layer), with one fully connected output layer following 

the last recurrent layer with one unit per time-step. Having two recurrent layers and an additional 

fully connected output layer shows better results in the experiments.  Figure 5 and Figure 6 depict 

these architectures and outline the respective input, data flow, and output. 

Figure 5 shows the input noise term z, network layers and generated samples as the output. An 

input LSTM layer is followed by one hidden LSTM layer and a fully connected output layer, each 

having width m for sequences of length m. 

Figure 6 shows the input sequences, network layers, and output of class labels. The network 

consists of an LSTM input layer, followed by a hidden LSTM layer of the same width, and a single 

fully connected output neuron. Input sequences of size m X n are fed through the network which 

assigns a class label, telling apart real (y = 0) from generated (y = 1) samples. 

http://recap-project.eu/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 36 

 

 

Figure 5 Generator network layout and data flow  

 

Figure 6 Discriminator network layout and data flow 

Pre-processing 

The input data needs to be procured and then split into a training and a test data set. The pre-

processing workflow takes as input a real workload data set and outputs training data for the GAN 

training process. 

Workload traces are provided as CSV files, representing time-series data. In these files, a row 

denotes a time-step at a point in time and columns denote dimensions of the measurements at 

every time-step. The length of the input sequences is a fixed parameter of the developed GAN 

model. The training data must, therefore, consist of samples with an equal number of time-steps. 

Data normalization is a crucial preparation step for machine learning applications and can 

http://recap-project.eu/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 37 

significantly improve accuracy. The diverse ranges of different features are scaled into a range 

from 0.0 to 1.0 in a separate pre-processing step. 

An additional optional pre-processing step is the clustering of the time series at hand, this is 

necessary if the workload at hand is very heterogeneous. An example of this can be seen in Figure 

7. The clustering then not only allows for a successful training process, but also produces insights 

into the nature of the input data, e.g. showing the predominant load patterns on a cluster. 

Training 

Due to its LSTM design, the GAN used in this approach requires a longer training time when 

compared to CNN based image artificial neural networks. In our case, a computing cluster with two 

NVIDIA Tesla K80 GPUs was utilized for the training process. 

Data Generation 

After successfully training the model, arbitrary amounts of data plausibly resembling the input 

training data can be generated. The data however needs to be evaluated in a separate step. The 

results of this workflow allow to assess if and how a GAN can generate time-series of resource 

utilization measurements that are similar to real data. 

 

 

Figure 7   10 randomly sampled series from a CPU utilization log 

To measure data similarity, an evaluation workflow is defined which takes real and synthetic 

samples as its input, computes statistical characteristics thereof, and presents them in a 

comparative view. These metrics include the autocorrelation function (ACF), the Empirical 

Cumulative Distribution Function (ECDF) and the cross-correlation function (CCF). 

4.3.3 Limitations 

Due to the complexity of LSTM networks, their large size does not allow them to scale out efficiently. 

This leads to one of the drawbacks of this approach, namely the input data size limitation. For two-

dimensional multivariate time series data, this approach currently is able to handle ca. 400 time 

steps per dimension, when used with a univariate time series input, this number goes up to ca. 

800 accordingly. This is to be corrected by using CNN-based networks in future work. 

http://recap-project.eu/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 38 

4.3.4 Data Set GAN.1 vCDN Univariate Locations 

Scope: For generating this data set, we take the BT data set from Section 3.4 as a starting point 

and create individual synthetic time series for each of the locations. This is supposed to 

demonstrate the capabilities of the approach to create time series that are similar, but not identical 

to existing time series. 

Infrastructure: The original data collected and distributed to RECAP comes from three caches 

located in inner-core nodes of the BT network in London, UK (cf. Section 3.4). The training of the 

neural network took place on the BinAC cluster17. 

Cache1@BT,    Cache2@BT,    Cache3@BT 
0.09291529411764704,  0.1186058823529412,  0.12852235294117648 
0.0904658823529412,  0.12380823529411765,  0.1610141176470588 
0.09593176470588234,  0.1201764705882353,  0.1536258823529412 
0.16791882352941176,  0.2171729411764706,  0.21324 
0.3549658823529412,  0.4603388235294118,  0.4890552941176472 
0.3412764705882353,  0.4030776470588235,  0.41772 
0.3074458823529412,  0.3532411764705882,  0.3537764705882353 
0.3197858823529412,  0.36178470588235295,  0.3609035294117647  

Listing 15 Exemplary Input Data from the vCDN Training Data 

Methodology: The procedure is as follows for each location: first, we pick a sequence of 500 

consecutive data points for that location from the original data set (cf. Listing 15). The starting 

point for this sequence is picked at random. This data set is used to train a neural network in a 

series of epochs (cf. Section 4.3.2). In each epoch, the input data set is fed into the discriminator 

network. During the training process of each epoch, synthetical data is generated. In a final step, 

the trained network is used to generate 100 synthetical time series of length 500. 

Data format: The data set is distributed as a zipped file. Its root directory contains three folders 

location<nr> with nr being 1, 2, and 3. Each of these directories contains the same set of files: 

(1) The from_datapoint file contains the randomly selected index in the original data set that is 

the starting point of the training data set. (2) The training_dataset.csv file contains the randomly 

selected training data set for the respective location (500 lines of scalars). As with the original 

data, the data points are presented as scalars with normalized measurements in the range of [0,1]. 

(3) The models folder contains both the generator model and discriminator model in .h5 format 

(The HDF Group). (4) The folder generated_traces contains one file for each of the 100 traces 

generated in the last epoch of the process. The naming schema for the files is trace_<nr>.csv 

with nr running from 0 to 99 and each file contains 499 lines of scalar data. Each data point 

reflect load at a specific point in time; due to the time steps used in the input data, the wall-time 

difference between two consecutive lines reflects a 20-minute interval. (5) Folder 

training_progress contains diagram files in png format that illustrates the time series generated 

in particular epochs. Using these files, it is possible to reconstruct the quality of the training by 

comparing the patterns at an early stage, cf. Figure 8, and at a later stage, cf. Figure 9. The naming 

scheme for the files is epoch-<nr>.png and the folder contains a file for every 10th epoch. 

                                                      
17 https://uni-tuebingen.de/en/facilities/zentrum-fuer-

datenverarbeitung/services/serverdienste/computing/resources/bwforcluster-binac/ 

http://recap-project.eu/
https://uni-tuebingen.de/en/facilities/zentrum-fuer-datenverarbeitung/services/serverdienste/computing/resources/bwforcluster-binac/
https://uni-tuebingen.de/en/facilities/zentrum-fuer-datenverarbeitung/services/serverdienste/computing/resources/bwforcluster-binac/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 39 

 
Figure 8 Generated samples during the first epoch 

 
Figure 9 Generated samples during the 500th epoch 

 

4.3.5 Data Set GAN.2 vCDN Univariate Downsampled Location 

Scope: For generating this data set, we take the BT data set from Section 3.4 as a starting point 

and after downsampling it to create individual synthetic time series for each of the locations. As 

with GAN.1, this is supposed to demonstrate the capabilities of the approach to create time series 

that are similar, but not identical to existing time series. Yet, in contrast to GAN.1 were a small 

subset of the entire data set of a month was selected (adapting the used amount of data to 

technical limitations of the generating hardware), this approach downsamples from 3 data points 

per hour to 1 data point per hour. In consequence, three times more data points for a month 

contribute to the generated data set. 

Infrastructure: The original data collected and distributed to RECAP comes from three caches 

located in inner-core nodes of the BT network in London, UK (cf. Section 3.4). The training of the 

neural network took place on the BinAC cluster18. 

Methodology: Most of the methodology is identical to the methodology used for GAN.1. The only 

differences exist due to the downsampling. Here, three samples per hour are merged into a single 

data point using the mean function. This leads to a total of around 750 datapoints, from which 

500 data points were used to generate the output as described in Section 4.3.4. 

Data format: The data format is identical to the one presented in Section 4.3.4. 

4.3.6 Data Set GAN.3 vCDN Multivariate Locations 

Scope: For generating this data set, we take the BT data set from Section 3.4 as a starting point 

and (in contrast to GAN.1 and GAN.2) create combined synthetic time series for all three locations. 

This is supposed to demonstrate the capabilities of the approach to process and create 

multivariate time series that are similar, but not identical to existing time series. The multivariate 

processing of data allows synthesizing cross site correlations. 

Infrastructure: The original data collected and distributed to RECAP comes from three caches 

located in inner-core nodes of the BT network in London, UK (cf. Section 3.4). The training of the 

neural network took place on the BinAC cluster19. 

                                                      
18 https://uni-tuebingen.de/en/facilities/zentrum-fuer-

datenverarbeitung/services/serverdienste/computing/resources/bwforcluster-binac/ 
19 https://uni-tuebingen.de/en/facilities/zentrum-fuer-

datenverarbeitung/services/serverdienste/computing/resources/bwforcluster-binac/ 

http://recap-project.eu/
https://uni-tuebingen.de/en/facilities/zentrum-fuer-datenverarbeitung/services/serverdienste/computing/resources/bwforcluster-binac/
https://uni-tuebingen.de/en/facilities/zentrum-fuer-datenverarbeitung/services/serverdienste/computing/resources/bwforcluster-binac/
https://uni-tuebingen.de/en/facilities/zentrum-fuer-datenverarbeitung/services/serverdienste/computing/resources/bwforcluster-binac/
https://uni-tuebingen.de/en/facilities/zentrum-fuer-datenverarbeitung/services/serverdienste/computing/resources/bwforcluster-binac/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 40 

Methodology: The methodology is mostly identical to the one described in Section 4.3.4. Yet, as 

the width of the input matrix is three dimensions, its height can only be one third of the height used 

for GAN.1 and GAN.2. Hence, for the creation of this data set a total of 166 measurements per 

location were used as a multivariate input for the GAN. This led to the generation of 100 3-

dimesional multivariate data sets with the length of 166 datapoints each. 

Data format: The data format is identical to the one presented in Section 4.3.4 with the following 

exceptions: (i) the directory hierarchy with location<nr> folders does not exist. Instead all 

files/directories in one of the location<nr> files is located in the root folder of the zip archive. (ii) 

The content of the training_dataset.csv file has three columns instead of one. As in Listing 15, 

each column refers to a location. In return the length of the file is reduced.  (iii) The same holds for 

files in the generated_traces folder. (iv) The diagrams in training_progress contains three 

plots, one for each location. An example of the resulting data can be seen in Figure 10. 

 

Figure 10 Several multivariate time series generated by the GAN, showing vCDN caches for three locations with discrete 

timesteps 

4.3.7 Data Set GAN.4 vCDN Multivariate Downsampled Locations 

Scope: The scope of this data set compared to GAN.3 is the same as the relation between GAN.1 

and GAN.2. 

Infrastructure: The original data collected and distributed to RECAP comes from three caches 

located in inner-core nodes of the BT network in London, UK (cf. Section 3.4). The training of the 

neural network took place on the BinAC cluster20. 

                                                      
20 https://uni-tuebingen.de/en/facilities/zentrum-fuer-

datenverarbeitung/services/serverdienste/computing/resources/bwforcluster-binac/ 

http://recap-project.eu/
https://uni-tuebingen.de/en/facilities/zentrum-fuer-datenverarbeitung/services/serverdienste/computing/resources/bwforcluster-binac/
https://uni-tuebingen.de/en/facilities/zentrum-fuer-datenverarbeitung/services/serverdienste/computing/resources/bwforcluster-binac/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 41 

Methodology: The methodology is mostly identical to the one described in Section 4.3.6, but uses 

the downsampling described in Section 4.3.5. 

Data format: The data format is identical to the one presented in Section 4.3.6 

4.3.8 Data Set GAN.5 Correlated CPU-Network Load 

Scope: For producing this data set, we apply the approach from Section 4.3.2 to samples from the 

UULM testbed (D4.3) and generate multivariate timeseries for network and CPU load, hence 

correlating CPU usage and network traffic. 

Infrastructure: The original data set samples were taken from the UULM testbed (D4.3) where they 

were captured using the RECAP monitoring pipeline (D5.1). The training of the neural network took 

place on the BinAC cluster21. 

Methodology: Since the start of the project several dozen gigabytes of telemetry data was stored 

from the servers at the UULM testbed. Based on visual impression, we selected a small subset of 

the overall data set. It stems from one of the servers in the testbed and covers three metrics in a 

time range of 24h. The raw metrics captured from the RECAP monitoring pipeline have been 

preprocessed as follows to keep the data set self-contained. In particular, host.cpu.idle (cf. Table 

3) has been normalised with host.cpu.cores. The network metrics host.network.in_bytes and 

host.network.out_bytes (cf. Table 7) have been filtered such that traffic related to Virtual 

Machines is contained (data net in OpenStack terminology). 

With measurements taken every minute, this leads to roughly 1,500 data points per metric. We 

applied the very same approach as in Section  4.3.4 to pick a 3-dimensional 150-element sample 

from this data set and then applied the very same strategy to generate data traces as before. 

idle,   datanet.bits_per_sec_in, datanet.bits_per_sec_out 
14.59716666668343, 919364.5333333333,  675737.2 
14.581499999963366, 540711.3333333334,  660163.4666666667 
14.358500000027316, 548399.8666666667,  662049.3333333334 
14.383833333337678, 541546,   656302.1333333333   

Listing 16 Start of the original_dataset.csv file 

Data format: The files used for this data set are identical to the one presented in Section 4.3.6 

with the exception that a further file original_dataset.csv has been added to the zipped archive. 

This file contains the original data set the training the training data set is selected from. As shown 

in Listing 16, it contains three columns, on for each of three metrics: idle shows the server’s idle 

ratio in percent with 100% meaning “all cores idle”. datanet.bits_per_sec_in shows the average 

incoming bits per second in the last interval (since the last data point). datanet.bits_per_sec_out 

shows the same for outgoing traffic. This file contains 1,441 data points for each metric. 

Hereby a three-dimensional multivariate time series with the length of 150 data points was used 

as input for the GAN to generate 100 measurements with the same output length of 150 

measurements. Originally, the data sets were sampled every minute.  

                                                      
21 https://uni-tuebingen.de/en/facilities/zentrum-fuer-

datenverarbeitung/services/serverdienste/computing/resources/bwforcluster-binac/ 

http://recap-project.eu/
https://uni-tuebingen.de/en/facilities/zentrum-fuer-datenverarbeitung/services/serverdienste/computing/resources/bwforcluster-binac/
https://uni-tuebingen.de/en/facilities/zentrum-fuer-datenverarbeitung/services/serverdienste/computing/resources/bwforcluster-binac/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 42 

4.3.9 Data Set GAN.6 Correlated Network Load 

Follows the same approach as GAN9 in Section 4.3.8, but considers only the two-dimensional 

network metrics (in and out), and leaves out the CPU dimension. Due that, the traces used as input 

(and generated as output) can be enhanced in length and the use of 300 datapoints is possible. 

4.4 Traffic Propagation based Workload Generation 

The previous section introduced a background review of the traffic-propagation-based workload 

generation method and its appropriateness. This section first introduces a background review of 

the traffic-propagation-based workload generation method and its necessity. Next, the 

methodology of this workload generation is revealed (see (D6.2) for further details), and how we 

implement the method to retrieve artificial data sets. Lastly, a summary of the retrieved data sets 

(context, methodology, and structure) is presented. 

4.4.1 Background 

As discussed in (D6.2) and (Le Duc, Garcia Leiva, Casari, & Ostberg, 2019), it is often impossible 

and infeasible to obtain the workload/traffic measurements at any network locations where 

application components are deployed and operating. However, such measurements/data are 

required for application modelling/profiling in RECAP. This therefore leads to the demand of 

synthetic workload generation to fill up such missing workload data.  

In WP6, we have developed a model of workload propagation which has been presented in (D6.2) 

in detail. The model is composed of five different diffusion techniques that are applicable for 

different use cases and under different assumptions related to the network topology, network 

links’ capacity, and the distribution of users throughout the network. For the sake of workload 

generation, with this model and real workload data traces collected as time series at a limited 

number of locations, we can produce the workload traces for any or all network locations. 

4.4.2 Approach 

As presented in (D6.2) and (Le Duc, Leznik, Domaschka, & Östberg, 2019), we have implemented 

five diffusion algorithms for workload generation which can be divided into two main groups: non-

hierarchical workload diffusion and hierarchical workload diffusion. Non-hierarchical diffusion 

algorithms include population-based, location-based, and bandwidth-based algorithm; and 

hierarchical diffusion ones include hierarchy-based and network-routing-based algorithm. 

Hereafter are brief descriptions for each algorithm including the assumptions, key inputs, and the 

main flow and properties (cf. Table 24). Further details about the calculations or formulae used in 

each task/step of the algorithms can be found in (D6.2); and the pseudo-code of each algorithm 

can be found in (Le Duc, Leznik, Domaschka, & Östberg, 2019). 

Algorithms have been primarily implemented and tested with workload data traces collected as 

time series at three inner-core nodes of BT’s CDN. Preliminary results have been presented in 

(D6.2). The representative metric of the workload in this use case is the traffic generated at caches 

when serving user requests. To complete the synthetic workload generation defined by this 

deliverable, we have finalized a complete implementation of and have executed all the algorithms 

to generate workload data for a typical scenario in CDN where contents are downloaded from 

caches centrally located at the inner-core nodes and then transferred to end-users in multi-hop 

manner. Regarding the required inputs for the proposed algorithms, we use the same settings as 

in the preliminary tests in (D6.2) in terms of network topology (see Figure 12) and real data 

measurements. More specifically, in the defined scenario, real traffic measurements collected at 

http://recap-project.eu/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 43 

the inner-core nodes in BT’s CDN are placed at three inner-core nodes: I1, I2 and I3 in the target 

network. Five algorithms are executed to propagate the workload/traffic from these inner-core 

nodes to every other node. Results (as generated workload data traces) are collected at all nodes 

located from Tier-1 to outer-core layers and provided together with this document as open datasets 

for public use. 

Table 24: Overview of RECAP’s workload diffusion algorithms 

Diffusion Algorithm Assumptions Key Inputs Description 

Population-based 
- Non-hierarchical 

network/application 

topologies (e.g., 

telecom networks, 

P2P applications) 

(see Figure 11.a) 

- Homogeneous user 

behaviour 

User distribution in 

the network 

- Iterative refinement algorithms 

(similar to heat diffusion and spring 

relaxation equations) 

- Repeatedly solve state equations to 

distribute workload to neighbors until 

the overall load distribution 

approaches equilibrium 

- Algorithms highly parallelizable 

Location-based 
Geographical node 

locations 

Bandwidth-based 
Bandwidth capacity 

of network links 

Hierarchy-based 

- Hierarchical 

network/ application 

topologies (e.g., 

broadband networks, 

CDN application) 

(see Figure 11.b) 

- Full mesh network of 

the inner-core nodes 

- Multiple shortest 

path routing 

- Homogeneous user 

behaviour 

- Network hierarchy 

- Bandwidth capacity 

of network links 

- User distribution in 

the network 

- Hierarchy-based user aggregation to 

identify the aggregated number of 

users at every node/location based 

on bandwidth capacity of neighboring 

links 

- Backward workload extrapolation to 

collect the workload measurements 

from every node to the inner-code 

nodes 

- Inner-Core workload extrapolation to 

extrapolate workload at every inner-

core node (if needed) 

- Workload propagation to distribute 

the workload from inner-code nodes 

to every node in the network 

Network-Routing-

based 

- Network hierarchy 

- Bandwidth capacity 

of network links 

- User distribution in 

the network 

- A set of service 

(inner-core) nodes 

- Routing path discovery to identify 

(shortest) routing paths from client-

clusters to the service nodes 

- Network-routing-based user 

aggregation (using routing paths) 

- Backward workload extrapolation 

- Workload propagation 

  

http://recap-project.eu/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 44 

  

(a) Non-hierarchical network topology including peer 

nodes without specific levels 

(b) Hierarchical network topology  

with multiple levels from tier-1 to inner-core 

Figure 11. Example of network structure/topology 

 

Figure 12. Network (and population) model of the city of Umeå, Sweden. 

4.4.3 Data Set TRG 

Scope: With the traffic-propagation-based workload generation, RECAP aims to generate data sets 

for all nodes/locations based on a small set of real traffic measurements (data) collected at a 

limited number of nodes in the network. Data generated and publicly open in this case is based on 

the real measurements in BT CDN (cf. Section 3.4) which are deployed in the three inner-core 

nodes of Umeå network structure (cf. Figure 12). The reason for such a setting is to show the 

generalisation and flexibility of our proposed workload diffusion algorithms (cf. Table 24). 

Infrastructure: A workload propagation model is developed for the given setting and presented in 

(D6.2). Based on this model, we have developed five algorithms to realise this artificial workload 

generation task. 

http://recap-project.eu/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 45 

Methodology: The given real workload data sets and the network structure are input to the five 

algorithms so as to retrieve artificial workload data traces for every node/location in a given 

network. 

Data format: The data set is released as one zipped file that contains a sub-directory for each of 

the five algorithms. Each of the directories contains a set of 42 single column CSV files 

corresponding to 42 nodes in the network together with one single mapping file (timestamps.csv) 

that contains the timestamps of the entries in the node files; i.e., a data entry in a node file 

represents a value of workload which corresponds to the timestamp entry in the mapping file at 

the same line. This structure avoids duplicating the same list of timestamps in every node file. 

  

http://recap-project.eu/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 46 

5 Conclusion 

The objective of the WP5.- Data Collection, Visualization and Analysis is to provide the tools 

required for retrieving, managing, and refining the data needed for the RECAP project, and the goal 

of Task 5.3 Artificial Workload Generation is the generation of a collection of datasets with artificial 

workloads to complement the real data traces collected from the infrastructures of industrial 

partners. The present accompanying document to Deliverable 5.3.- Artificial data traces and 

workload generator models describes the datasets that has been made public as a result of the 

continuous monitoring activities of the project, together with a description of the datasets 

generated artificially and the stochastic models used for their generation. 

RECAP’s Deliverable 5.3 has contributed to address the scarcity of public available data traces by 

means of releasing a heterogeneous collection of annotated application datasets and real 

infrastructure workloads. The datasets published by Deliverable 5.3 can be used by the scientific 

community as a starting point for the modelling and experimental validation of distributed, edge, 

and fog computing applications, facilitating the repeatability of the results. The status, location, 

and DOI of data sets related to the project are accessible at https://data.recops.eu/, those related 

to this deliverable can be found at https://data.recops.eu/d53. 

Deliverable 5.3 not only includes a description of the available datasets, but also, a description of 

the mathematical techniques that have been used to generate them (structural time series 

models, generative adversarial networks, and workload based on traffic propagation), so that 

additional data traces, preserving the statistical properties of the original ones, could be 

generated. 

  

http://recap-project.eu/
https://data.recops.eu/
https://data.recops.eu/d53


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 47 

6 References 

Amlan Kar, A. P.-Y. (2019, April 25). Meta-Sim: Learning to Generate Synthetic Datasets. Retrieved 

from https://arxiv.org/abs/1904.11621#. 

Bokde, N., Beck, M. W., Álvarez, F. M., & Kulat, K. (2018, December). A novel imputation 

methodology for time series based on pattern sequence forecasting. Pattern Recognition 

Letters. 

Domaschka, J., Area, C., López, M. A., Willis, P., Noya, M., Parapar, J., . . . Närvä, L. (2017). Initial 

Requirements. RECAP Deliverable. 

Domaschka, J., Griesinger, F., Volpert, S., Willis, P., Sundqvist, T., & Narvä, L. (2019). Improved 

Testbed Configuration. RECAP Deliverable. 

Domaschka, J., Lopez, M., Humaes, H., Ocón, J., Willis, P., Noya, M., . . . Le Duc, T. (2018). Final 

Requirements and Validation Plan. RECAP Deliverable. 

Domaschka, J., Narvä, L., Östberg, P.-O., Svorobej, S., Garcia, R., Ellis, K., & Griesinger, F. (2019). 

Initial Integrated Prototype. RECAP Deliverable. 

Garcia, R., Casari, P., Domaschka, J., Griesinger, F., Forsman, J., Area, C., . . . Le Duc, T. (2018). 

Initial Data Acquisition and Analytics Models. Casari, Paolo; Domaschka, Jörg. 

Garcia, R., Casari, P., Domaschka, J., Griesinger, F., Narvä, L., Lopez, M., . . . Willis, P. (2019). Final 

Data Acquisition and Analytics Models. RECAP Deliverable. 

Hao , Z., Novak, E., Yi , S., & Li, Q. (2017). Challenges and Software Architecture for Fog Computing, 

IEEE Internet Computing, vol 21, no 2, p 44-53.  

Harvey, A. C. (1989). Forecasting, structural time series models and the Kalman filter. Cambridge 

University Press. 

Le Duc, T., & Östberg, P.-O. (2018). Initial Workload, Load Propagation and Application Models. 

RECAP Project Deliverable. 

Le Duc, T., Garcia Leiva, R., Casari, P., & Ostberg, P.-O. (2019, August). Machine Learning Methods 

for Reliable Resource Provisioning in Edge-Cloud Computing: A Survey. ACM Computing 

Surveys, 52(5), 39. doi:https://doi.org/10.1145/3341145 

Le Duc, T., Leznik, M., Domaschka, J., & Östberg, P.-O. (2019). Workload Diffusion Modeling for 

Distributed Applications in Fog/Edge Computing Environments. [Submitted].  

Le Duc, T., Östberg, P.-O., García, R., Casari, P., Loomba, R., & Leznik, M. (2019). Final Workload, 

Load Propagraion, and Application Models. RECAP Deliverable. 

Loomba, R., Ellis, K., Casari, P., Garcia, R., Duc, T. L., Östberg, P.-O., & Forsman, J. (2019). Final 

Infrastructure Orchestration and Optimization. RECAP Deliverable. 

Loomba, R., Quinn, R., Ruane, S., Ellis, K., Le Duc, T., Östberg, P.-O., . . . Fernandez Anta, A. (2019). 

Final Infrastructure Modelling and Resource Mapping. RECAP Deliverable. 

Narayanan, A., & Shmatikov, V. (2006). How To Break Anonymity of the Netflix Prize Dataset. arXiv. 

http://recap-project.eu/


RECAP Project ■ H2020 ■ Grant Agreement #732667  

Call: H2020-ICT-2016-2017 ■ Topic: ICT-06-2016 

   

 

 48 

RECAP Consortium. (2019). D3.3 Validation Report. RECAP Deliverable. 

RECAP Consortium. (2019). D4.4 Final System Architecture and Integration. RECAP Project 

Deliverable. 

RECAP Consortium. (2019). Final RECAP simulation platform. RECAP Deliverable. 

Schanzel, B., Leznik, M., Volpert, S., Domaschka, J., & Wesner, S. (2019). Unified Container 

Environments for Scientific Cluster Scenarios. bwHPC Symposium. Tübingen. 

The HDF Group. (n.d.). HDF5 File Format Specification Version 3.0. Website. Retrieved from 

https://portal.hdfgroup.org/display/HDF5/File+Format+Specification 

 

http://recap-project.eu/

