
DARE Platform: Enabling Easy Data-Intensive
Workflow Composition and Deployment

Rosa Filgueira
EPCC

The University of Edinburgh
Edinburgh, UK

rosa.filgueira@ed.ac.uk

Abstract—This work presents the DARE platform and working
environment for enabling easy data-intensive workflow compo-
sition and deployment on clouds systems. DAREs technology
translates scientists methods to concrete scientific workflows that
can be portable and reproducible on different computing envi-
ronments without making any (or little) changes. For achieving
this, we have combined the strengths of dispel4py and CWL sci-
entific workflows, Docker containers, Kubernetes infrastructure
orchestration, Jupyter notebooks, and Cloud platforms.

Index Terms—Scientific Workflows, Cloud systems, FAIR

I. INTRODUCTION

Virtually every domain is enjoying an increasing wealth of
data, e.g., from observing natural phenomena, experiments,
societal behavior, or business transactions. The complexity of
todays challenges and the increases in computational power
lead to simulations that yield large volumes of data. Models
and understanding are improved by comparing such results
with observationsa demanding data-intensive stage in many
scientific methods.

There is commensurate growth in expectations about what
can be achieved with this wealth of data and computational
power. To meet these expectations with available expertise
requires tools that make it far easier to reliably formalise data-
driven methods that exploit high-end architectures efficiently
to meet the needs of science. Therefore, DARE1 project
focuses on empowering domain experts to invent and improve
their methods and models by providing a new platform and
a working environment. DAREs technology will translate
the scientists methods to concrete applications that will be
deployed and executed on cloud resources.

DARE has initially focused in two scientific communities:
Seismology (EPOS 2 and Climate (IS-ENES3 Research In-
frastructure). In this work we describe the advance interfaces
developed to support the Rapid Ground Motion Assessment
(RA) application (see Figure 1). It requires rapid data analyses,
handling multiple data formats, multiple data sources, and
availability of computing and storage resources on demand.

Our main objective here was to build this application in
such a way that can be portable and reproducible [1] without
making any (or little) changes if we run it on different

1http://project-dare.eu/
2https://www.epos-ip.org/
3https://is.enes.org/

Fig. 1: Rapid Ground Motion Assessment application (RA.

computing resources. For doing so, we have exploited different
technologies, CWL [2] and dispel4py [3] workflows, Docker
containers, Kubernetes infrastructure orchestrations, Jupyter
notebooks, and Cloud platforms.

RA aims to model the strong ground motion after large
earthquakes, in order to make rapid assessment of the earth-
quakes impact, also in the context of emergency response. It
has five main phases: (1) to select an earthquake gathering
the real observed seismic wavefield, (2) to simulate synthetic
seismic waveforms corresponding to the same earthquake
using SPECFEM3D [4], a MPI-based parallel software; (3)
to pre-process both synthetic and real data; (4) to calculate
the ground motion parameters for synthetic and real data; (5)
to compare them with each other by creating shake maps (see
Figure 2)

First, we built a dispel4py [5] workflow to represent each
part of the RA as a streaming pipeline application (see
Figure 3), except for the generation of the synthetic data,
since SPECFEM3D is a MPI parallel application on its own.
dispel4py is a stream-based data pipeline framework, that
allows for developing applications on local machines and run
them at distributed computing resources, such Clouds and HPC
clusters, without making changes. Users just need to express
their computational activities in an abstract way, thinking just
how to connect them. One of the key-features of dispel4py
is that it provides automatic mappings to different parallel
engines, such as MPI or Apache-Storm, as well as a sequential
mapping to test applications locally.

Then, we combined the strengths of dispel4py with CWL,
which is a specification for describing the data and execution
model of workflows/command tools. We used CWL to connect
RA dispel4py workflows, to describe semantically their input

http://project-dare.eu/
https://www.epos-ip.org/
https://is.enes.org/

Fig. 2: Shake maps of ground motion parameters are funda-
mental for a visual representation of the earthquake.

Fig. 3: dispel4py pre-processing workflow, which corresponds
to the third step of the RA.

and output parameters, and to orchestrate their executions by
using different mappings based on the computing resource
available at each time.

Later, we created a new docker container with SPECFEM3D
and an MPI cluster4 , which allows for generating synthetic
waveforms using either local or distributed resources. CWL
was also used here for describing and managing the execution
of SPECFEM3D, enabling us to fully connect all the RA steps.

For validating all of our work we first run all the steps of
the RA in our laptops, using a small dataset and the sequential
dispel4py mapping for all the workflows. Once validated the
results, we executed the same codes (dispel4py workflows and
SPECFEM3D) using the NSF-Chameleon 5cloud (using a VM
with 24 cores), with a larger dataset, and the parallel MPI
dispel4py mapping. In both execution environments, CWL
was in charge to execute and connect each part of the RA
application.

Results shown that combining CWL, dispel4py and
SPECFEM3D container, we are able to manage the entire
application without users making changes to run it on different
computing resources, as well as scale it up automatically.

Therefore, the new interfaces that we are building on
DARE provide a fluent path from prototyping to production.
Applications are not locked to platforms but can be moved to
suitable new platforms without human intervention and with
the encoded methods semantics unchanged.

In the future, DARE platform will act as an intermediary
between users applications and the underlying computing
resources, making use of the technologies described before.
An API is being developed through which RA application
can be submitted, and it deploys automatically the necessary
environment on demand to run and monitor the application,
as well collecting its provenance and results.

REFERENCES

[1] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Ax-
ton, A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E.
Bourne, et al., The fair guiding principles for scientific data management
and stewardship, Scientific data 3. doi:10.1038/sdata.2016.18.

[2] P. Amstutz, M. R. Crusoe, N. Tijani, B. Chapman, J. Chilton, M. Heuer,
A. Kartashov, J. Kern, D. Leehr, H. Mnager, M. Nedeljkovich, M. Scales,
S. Soiland-Reyes, L. Stojanovic, Common workflow language, v1.0
(2016). doi:10.6084/m9.figshare.3115156.v2.

[3] R. Filguiera, A. Krause, M. Atkinson, I. Klampanos, A. Moreno, dis-
pel4py: A python framework for data-intensive scientific computing, The
International Journal of High Performance Computing Applications 31 (4)
(2017) 316–334. doi:10.1177/1094342016649766.

[4] D. Peter, D. Komatitsch, Y. Luo, R. Martin, N. L. Goff, E. Casarotti,
P. L. Loher, F. Magnoni, Q. Liu, C. Blitz, T. Nissen-Meyer, P. Basini,
J. Tromp, Forward and adjoint simulations of seismic wave propagation
on fully unstructured hexahedral meshes, Geophys. J. Int. 186 (2011)
721–789.

4https://gitlab.com/project-dare/WP6 EPOS/tree/master/specfem3d/docker
5https://www.chameleoncloud.org/

http://dx.doi.org/10.1038/sdata.2016.18
http://dx.doi.org/10.6084/m9.figshare.3115156.v2
http://dx.doi.org/10.1177/1094342016649766
 https://gitlab.com/project-dare/WP6_EPOS/tree/master/specfem3d/docker
https://www.chameleoncloud.org/

	Introduction
	References

