
A self-applicablepartial evaluatorfor asubset of HaskellSilvano Dal-ZilioEcole Normale Sup�erieure de Lyon(dalzilio@ens.ens-lyon.fr)director: John HughesDepartement of Computing Science,Chalmers Tekniska Hogskola(rjmh@cs.chalmers.se)August 16, 1993AbstractPartial evaluation is becoming very promising as a programming tool, as its prac-tice is now well developed. But the theorical foundation are not equally well under-stood.In this paper, we report on the making of a partial evaluator for a functionnallanguage deriving from Haskell. And we discuss on the many problems arised from itsself-application, theorical as much as practical.

1

2

Contents1 Introduction. 42 About partial evaluation. 42.1 Principle of partial evaluation. : 42.2 Futamura projections. : 63 TinyHaskell, or a subset of Haskell. 73.1 Introduction. : 73.2 TinyHaskell Context-Free Syntax. : 84 The specializer. 94.1 Reduction and evaluation. : 94.1.1 Algorithm. : 94.1.2 Type of expressions. : 114.2 Reducing the size of datas structure. : 134.2.1 Theorical aspect. : 134.2.2 Practical consequence. : 135 MIX, a partial evaluator written with TinyHaskell. 145.1 Improving partial evaluation. : 145.2 The TRICK. : 155.3 A new trick. : 166 Extension of the programming language. 166.1 Let expression. : 166.2 Higher-order functions. : 176.3 Specializing types de�nition. : 187 Discussion. 19

3

1 Introduction.Functionnal programing provides an elegant solution to the increase of software complex-ity, allowing high-structured programing and providing powerful tools, such as lazynessand higher-order function de�nition [Hug84]. But this advantage in comfort of program-mation is, like often, counterbalanced by a loss of e�ciency.Use of partial-evaluation can remedy to this drawback, program's specialization givenautomatically more e�cient and always faithfull results. And this for a wide range ofproblems, such as neural net training, scienti�c computing or computer graphics.The most developed area for the use of partial-evaluation is probably the design of pro-gramming language compilers, which requires application of partial evaluation to partialevaluator themselves.But self-application arises many problems. Especially when a strongly-typed language,such as Haskell [Hask90], is used.For example, whereas Futamura produced his \projection" in 1971 [Fut71] , the �rstpartial evaluator having been succesfully self-applicated (produced at DIKU, Copenhagen)was made only in the middle of the eighties. And the �rst written in a strongly-typedlanguage, PEL, a subset of Lazy ML (LML), only in 1989 [Lau89].In this report we de�ned section 3, after an overview of partial-evaluation principlesin section 2, a subset of the functionnal programming language Haskell. This languagewill be usefull to our study of partial evaluation, section 4. Section 5 described the �nalpartial evaluator, with an emphasis on the compiler generator . Whereas section 6 containsa discussion on possible extensions. Section 7 concludes.2 About partial evaluation.2.1 Principle of partial evaluation.Partial evaluation can be seen as an extension of the principle of projection, well-knownin geometry or in analysis.Partial evaluation consist of specializing a program to a part of its arguments. Forexample, if we consider a program f , with two arguments x and y, we can compute orreduce expression in f if we know that x will take a static value a. This computationcarries out a new program, fa, such that fa y = f a y, that can possibly run much fasterthan f .The �rst formulation of the idea of partial evaluation is the works of S C Kleene,published in 1952. Kleene demonstrates his s-m-n theorem, that can be interpreted as:For a general m+n-argument computable function, and given values for the �rst m ar-guments x1; : : : ; xm, there exist a program for the specialized function fx1;:::;xm. Moreover,there is a program (a computable function) which e�ectively constructs the specializedprogram from every computable function f and a set of values (in fact Kleene argue withrecursive function on the integers, and Turing machine.) [HML, p. 705-707]4

A partial evaluator, given the program and the values of the static parameters, con-struct a new program which, when given the remainings input, yield the same result thatthe program would have produced 1.We could de�ned this property using a equational de�nition:[[[[mix]] (f; x)]] y = [[f]] x yWhere [[f]] is the \function" that the programs f de�ne, andmix is the partial evaluator.The goal is to generate an e�cient program automatically. This is done, intuitively,by performing all the calculation depending only on statics parameters (evaluation), andby generating code for calculations depending on both type of parameters (reduction: forexample unfolding function calls, or reducing conditionnal branch with static-test expres-sions). It's a mixture of computation and code generation, hence the name mix for ourpartial-evaluator.An ideal partial evaluator will performed all computations that can be done withoutthe dynamic values.For example, if we de�ne the function power n x, that computes xn:power n x = if (n == 0)then 1else x � power (n� 1) xWe can specialize power for static values of n or x:powern=3 x = x � (x � (x � 1)) powerx=4 n = if (n == 0)then 1else 4 � powerx=4 (n� 1)We could see with this little example some aspects of partial evaluation:� We must be able to compute, for e�ciency, that, if n is static, the test n == 0 isa static expression. Which means that we must be able to di�erientate static fromdynamic expression. This process, also named Binding-Time Analysis, is one of themain problem. Indeed one can demonstrate that, resolve the problem of bindingtimes analysis is resolve the halting problem 2.� A results following from the \undecidability" of the binding-time analysis, is thatwe cannot decide if we can unfold a function call. For example we cannot unfold thefunction powerx without entering an in�nite looppower4 n = if (n == 0)then 1else if ((n� 1) == 0)then 4 � 1else if (((n� 1)� 1) == 0)then 4 � 4 � 1else : : :1Static parameters are parameters whose value are known in advance, as opposed to dynamic parameterswhose values are known at computation times.2If you know that a variable is static or not, then you are able to say if this variable is \visited" duringthe computation. And then you can decide if your program end.5

This example demonstrate that specialization faces problems of termination.� The specialization can increase size and number of call of the program. For example,if we do not unfold calls to power in the �rst example, we have:power3 x = x � power2xpower2 x = x � power1xpower1 x = x � power0xpower0 x = 1Then we can't predict the speedup and the size from the program beforespecialization.2.2 Futamura projections.Futamura projection shows the capabilities of partial evaluation for generating compilergenerator.We have already seen that a partial evaluator takes two argument, a program f :A�B ! C , to specialize , and a value a from A 3.In particular we have the relation(1) : 8b 2 B; [[f]] a b = [[fa]] b ; where fa = [[mix]] f a:A compilator from a language S (source) to a language T (target) is also de�ned bysuch an equation (2): target = [[compiler]] source.Besides, the result of mix is not necesseraly written in its input language, and, like forcompilers, a partial evaluator has an input and an output language.So, if we de�ne an interpreter int, from S to a target language T , and if mix is a partialevaluator \from S to T ", it follows that:result = [[f]] input f is written inS= [[int]] f input= [[[[mix]] int f]] input (1)= [[target]] input target is written inTAnd then we prove the �rst Futamura projection:F1 : Ptarget = [[mix]] int PsourceThis equation means that, specializing an interpreter to a particular program, we obtaina program in the \target" language of int (the language in which mix has been written).Using this �rst result we prove the second Futamura projection:target = [[mix]] int source= [[[[mix]]mix int]] source (1)= [[compiler]] source (2)3As we will use typed-functionnal-languages latter, we consider that programm are function and that,at each data, can be given a type 6

F2 : compiler = [[mix]] mix intThen we are able to generate automatically a compiler given an interpreter. The interestlies in the fact that interpreters are easier to write, and that we are sure to producecompilator always \correct" with respect to the interpreter. i.e. semantically correctcompiler.The only restriction is that mix must be written in the language used for its input, asthe \text" of mix is the �rst argument.Remark. We say that mix must be self-applicable. Obviously we do not apply mixto himself. Self-application, like in demonstration of the Halting-Problem, is used for in-validate result. We only use the text of mix 4.These two previous formulas bring us to examine the meaning of [[mix]]mixmixThe mix-equation (1) gives:[[[[mix]] mix mix]] int = [[mix]] mix intand, from F2, we know that [[mix]] mix int is a compilatorThen F3 : [[mix]] mix mix is a compiler-generator.A program that, given an interpreter, produce a compiler.3 TinyHaskell, or a subset of Haskell.3.1 Introduction.The subset of Haskell, TinyHaskell, used for the implementation of mix, is the result ofmany contradictory imperatives.We have �rst to reconcile in our language,� power of expression: as we must write mix in TinyHaskell to permit later self-application. 5� simplicity: in order to better understand the behaviour of mix, we do not handledi�cult programming paradigms, like higher-order function for example.We also have to keep, as much as possible, Haskell semantics. For example, TinyHaskelland its \big brother", share the same layouts rules and module's de�nition[Hask90].To avoid the di�cult problem of binding-time analysis, we entrust programmers withtaking care to put annotation that describe the nature of each expression. Which makesthe problem much simpler and allows experiment.Those annotations are used as speci�cations to decide which conditional should bereduced, which expression may be completely evaluated or which function call should be4remenber the di�erence between f and [[f]]5see 2nd Futamura projection. 7

unfolded. It is of course possible to compute a part of those informations on-the-y, giventhe static variables, but it is both more e�cient 6 and easier to understand when presentedin the form of annotation [Lau91].So this language must provide facilities to represent those annotations. We have re-served special character to de�ne` static variables or expression.$ recursive call (to avoid in�nite unfolding)~ for partially-static structures 7Here an example of an annotated function de�nition in TinyHaskell:power `n x = if `(n == 0)then 1else x * $power (n - 1) xFigure 1: The function power annotated.those annotations de�ned n as a static parameters of the function, and the conditionnal(n == 0) as static (i.e. computable as compile-time). The dollar-sign in front of thefunction call ($power (n� 1) x) avoid the unfolding, and leads to the computation of aspecialized version of power for the value n� 1.3.2 TinyHaskell Context-Free Syntax.program ! declsdecls ! decl1 ; : : : ; decln (n � 1)decl ! lhs = exp [where f declsg]lhs ! [$]identifier ([`j~]identifier)�exp ! expf exp0exp0 ! : expj reservedop expj �expf ! if exp then exp else exp (conditional)j case exp of alt (; alt)� (case expression)j fexpfexp ! � expj reservedfun (aexp)�j [$]identifier (aexp)�j con (aexp)�j aexpaexp ! identifierj con (constructor)j integer6see discussion on o�-line partial evaluator section 4:2.7see section 5 8

j stringj (exp) (parenthesised expression)j (exp1 , : : : , expk) (tuple; k � 2)j [exp1 , : : : , expk] (list; k � 0)j [`j~]exp (annotated expression)con ! Truej Falsej uppercasef char g�identifier ! lowercasef char g�<reservedop;reservedfun>alt ! pattern ! exppattern ! (wildcard)j identifierj con (identifier)�j []j identifier : identifierj (exp1 , : : : , expk) (2 � k � 6)j (pattern)Remark. The case expression de�ned in TinyHaskell is not the same than this de�nedin Haskell.As you could see in the context-free grammar, we only match pattern result of theapplication of a constructor on identi�er, or identi�er themselves. List and tuples mightbe seen as a special case. \:" being the constructor for the lists, and #n the constructorfor tuples which length is n.4 The specializer.4.1 Reduction and evaluation.4.1.1 Algorithm.The structure of a specializer, and then of mix, is very closed to that of an interpreter. Andin our case of a TinyHaskell-self-interpreter, as both mix input and output are TinyHaskellprograms.Mix specialize its �rst argument, an annotated program, according to a list of its staticparameters. The result, a specialized program, is a list of specialized function de�nition.We could describe this algorithm de�ning the specializing loop:1. We de�ne a Pending list of all the function de�nition yet to be specialized, pairedwith their static-parameters-values. This list is initialized with the the argumentsof mix 8, and represent what specialization is still to be performed.We also de�ne a Done list of all the specialized call already computed to avoidduplicated work (and then, sometimes, endless specialization of the same call). Thislist represent what specialization have already been performed.8remenber that a program is a function 9

2. While Pending is non-empty, we take a menber of the list and, if it is not in Done,we construct a new specialized function using eval on the function body.The function eval 9, given the names of the parameters, their values (the value ofthe dynamic parameter x is Parm "x") and the status of an expression, reduce orevaluate this expression. Indeed these two action are very similar. we can noticethe function static that, given an expression, compute its status according to theannotation.We could see eval as an algorithm of reduction on graph (Indeed we work with theprogram-parse result). For example, if we study the specialization of the functionpower n x for the value 2 of n:power 'n x = if '(n == 0) then 1else x * power (n - 1) xWe evaluate the body of power (given below), knowing that n == 0 is a static-expression10. \power" [\n"] [\x"] [If]== 1 *Paramn 0 Paramx Call\power" - ParamxParamn 1The result of the evaluation is a graph with less state, as \static conditional branches"have been pruned and n has been replaced by its value:\power" [\n"] [\x"] [�]Paramx Call\power" 1 xThe residual call power 1 x can itself be evaluated in two di�erent way. It can beunfolded, or it can lead to the creation of a new specialized function powern=19see �gure in the appendix10a function call is represented by the name of the function, a list of static and a list of dynamicparameters, and the body of the function 10

3. The residual expression is scanned for any residual function call that may needfurther specialisation.4. When Pending is empty, we rename the function of theDone-list, using their staticvalues, to obtain the �nal result.4.1.2 Type of expressions.We de�ne a type for each expressions and value of the TinyHaskell language, using theHaskell type system[Hask90]. 11:data Term = Num Int |Bl Bool | -- booleanStr String |Term Term |Lst [Term] |Constr String [Term] |Parm String |Case Term [(String,[String],Term)] |If Term Term Term |Prim String [Term] |Call String [Term] [Term] |RCall String [Term] [Term] |Ann Int Termuniversal type de�nition for expression.Term is the general typed for expression.Constr s list is used to represent application of the constructor s upon the list ofterm list. For example a list can be expressed using the list constructor \:":Lst[Num1; Num2; Num3] = Constr" : "[Num1; Constr" : "[Num2; Constr" : "[Num3; []]]]Parm is used to represent a parameter of the function.The �rst argument to the CASE-constructor is the expression over which the case-expression proceed. Each clauses being a triple: (Constructor , List of variable , Expres-sion).Prim is used to represent primitive function calls, like +;�; : : :Call is used to represent user-de�ned functions that could be unfolded, and RCall torepresent recursive call that should not be unfolded (tagged by a $ -sign). Their parametersare split under static and dynamic parameters.Ann is used to represent annotated expression.Others type constructor are explicit.11in this system, which could be seen has a powerfull extension of an Hindley-Milner type system, thetype de�ning the list of element of A is represented by [A]11

eval prog names values stat e = case e ofNum i -> iStr s -> sTerm e -> eParm x -> lookup_envt names values xIf b e1 e2 -> if ((static b) == "static") || (stat == "static"))then if (eval prog names values 2 b)then (eval prog names values stat e1)else (eval prog names values stat e2)else (If (eval prog names values stat b)(eval prog names values stat e1)(eval prog names values stat e2))RCall f st dy -> Call f (map (eval prog names values "static") st)(map (eval prog names values "dynamic") dy)....Figure 2: an oversimpli�ed eval -de�nition.

12

4.2 Reducing the size of datas structure.4.2.1 Theorical aspect.We can inferred the type of mix using the same notation than in the introduction. But weneed �rst to introduce a new notation to distinguish between the type of a function, andthe type of the \program implementing this function". Like previously, with the conven-tion upon the meanings of f and [[f]], this notation is not correct. Many di�erent programimplement the same function, and program written in many di�erent languages. But weuse it for convenience.So if we de�ne f as the \type of a program " implementing f , and the type of mix's�rst argument as : A�B ! C, mix must be of type:mix: (A �B ! C)�A! B ! CWe can notice that mix's second argument is also an encoding of the static value.Indeed, even if in untyped language the second solution: mix: (A �B ! C) � A !B ! C is used, it is inapplicable to our purpose because we cannot cannot express it.The type of the second argument varies according to the \value" of the �rst argument,which is only element of a simple �xed type (the type Term as it happens).So, if we want to apply mix to [[mix]], we obtain the right type instantiating A toA�B ! C, B to A and C to B ! C, which gives:mix: (A�B ! C �A! B ! C)�A�B ! C ! A! B ! CThen the second argument of mix must be a double encoding of the program to which[[mix]] is being specialized. We will see the repercussion of this double-encoding in thenext section.Remark: Exactly the same feature arise in the de�nition of the compiler-generator,which is de�ned by [[mix]] mix mix, where the compiler-generator has the type:cogen: (A �B ! C)! A! B ! C4.2.2 Practical consequence.The need of a double encoding is not without consequence. That means that the parameterof mix, when we make a compiler, is represented by a huge data structure.For example, the simple expression l1 + +l2 (++ is the concatenation-operator) willbe represented, with our convention, by:Prim \ + +" [Parm \l1"; Parm \l2"]but is represented as a value by:(�) Constr \Prim" [Str \ + +"; Lst [Constr \Parm" [Str \l1"]; Constr \Parm" [Str \l2"]]]The size is more than double.And the loss in e�ciency is even worse. For example, the size of the heap correspond-ing to that gigantic data-structure, increased frequency of garbage collection or memory13

paging. And more, before specialization, we have to test if the function call to be special-ized is already recorded in the Done-list. So we have to compare the values of the staticparameters of this call, which necessite the used of an equality test, test directly propor-tionnal to the size of the objects being compared. This latter argument also demonstratethat the lazyness of our languages is no help in this problem, as the equality test force thefull computation of each object.The solution used in our study, and already succesfully employed in the making of aself-applicable partial evaluator for LML [Lau89], is to replace lazyness by delaying theexpansion ourselves.We used the type-constructor Term to help us in this way. We could see Term as anequivalent of \quote" in other functionnal programming languages. The value and \type"of Term (Prim \ + +" [Parm \l1"; Parm \l2"]) is equal to (�), for example.We could then compress or expand expression-encoding according to the situation andthen gain almost an order of magnitude in the size needed for encoding all our datas. Inpractice this means that the times taken to compute mix mix mix, for example, is reducefrom hours to minutes[Lau91]. Even if, with this strategy, some terms might be expandedseveral times (for example a static value examined by several case expressions).5 MIX, a partial evaluator written with TinyHaskell.5.1 Improving partial evaluation.The chief motivation for doing partial evaluation is speed. Then, an estimate of the ob-tainable speedup before the specialization is done, would be a valuable information. Whenwe use mix as a compiler, for example, It could be interesting to know wether specializa-tion plus specialized program run time is greater or not than program interpretion, if theprogram has to be run once or if the time to run the specializer itself is a signi�cant factor.ie: tmix(interpreter; program) + tprogram(input) � tinterpreter(program; input)We will consider the speedup obtain with partial evaluation as a measure of partialevaluation e�ciency. We could de�ned the speedup using a straightforward mathematicalde�nitions[NDJ]:Definition: for a �xed two-arguments program int and a static input st, we de�nethe speedup by: sust(input) = tint(st; input)tmix(int;st)(input)Then, if we represent the (�nite) computation of a program using a \weakened" oper-ational semantic:prog s0 d0 � (p0; (s0; d0))! (p1; (s1; d1))! : : :! (pn; (sn; dn))where s represent static values (that means values depending only on s0) and d dynamicvalues, and (pi; (si; di)) ! (pi+1; (si+1; di+1)) represent a \derivation" between controlpoints of the ow chart of prog. We could interpreted partial evaluation as a \derivationcompressor". 14

Indeed, variable values depending only on pi and si can be evaluated at specializationtime, and if a state (pi; (si; di)) only depends on static inputs, the specialization \can shiftcontrol" to pi+1 (unfolding).So, if we call ts0 (resp. td0) the time spent in static (resp. dynamic) computationduring prog's-execution, we obtain:sus0(d0) = ts0 + td0td0Assume that partial evaluation of prog on s0 terminates in K derivation. Then in thestandard computation there can be at most K � 1 \static steps" since mix is no fasterthan direct execution. This means in particular that ts0 � K:td0 . And then we have anupper-bound for the speedup, that is K.This bound being independent of the dynamic input (d0), it follows that no superlinearspeedup can be achieve using partial evaluation. We could at most expect linear speedup.And this bound is clearly far larger than what is usually seen in practice. But experimentshows a linear speedup of approximatively 5 when we use the compiler, and 25 when weuse the compiler-generator on the self-interpreter.The speedup obtain with partial evaluation on an interpreter can be explain usingthe same approach. Di�erences between execution of a program an interpretation lies inthe many overhead arised by \manipulation on syntax", recursive calls of the evaluation,command execution functions and variable access. The cost of interpretation-overheadscan be expressed by the empirical law:for a typical interpreter int's running time on inputs prog and input we have:9�prog; 8 input; �prog:tprog(input) � tint(prog; input)(in experiments �prog is often superior to 10 and grow as a function of prog's size)The speedup that we can expect, that is 1�prog , is then bounded by 1. We could thende�ned an \optimal" partial evaluator as a partial evaluator able to remove a completelayer of interpretation, ie a partial evaluator responding to the formula su = 1:tmix(int;prog)(input) = tprog(input)The rest of this report is dedicated to the study of the relationship between partialevaluation and compilation, and more precisely, on the di�erent methods to obtain acompiler that remove the maximum of interpretation's overhead.5.2 The TRICK.We can �rst remark that mix's \e�ciency" depend mainly on its �rst argument.For example, it often happens that a parameter, var, takes only a bounded number ofvalues (for example values in a list names). If the function to be specialized implementa dynamic scoping for var it is unlikely that the variable name will disappear from themixed-program. Indeed as the list is dynamic, var must be tagged as dynamic and call tothis variable can't be specialized.But it is not the case if the function implement a static-scoping. Intuitively, we couldspecialize the call if mix compares var with all the possible values and produce specialized15

code for them, which is possible as they are in a �nite number and as the values are knownat compile-time.This trick: specializing \statically bounded parameters" using all their possible values,is so common that it has been named The Trick. And is necessary to avoid trivial self-application of mix.5.3 A new trick.We have de�ned, section 3:1, an annotation for partially static structures (~). Wich couldbe de�ne by dynamic structures with known \properties".For our study, for example, we consider static-list, which are dynamic list of knownlength. In fact, such static-list are frequent in programs. For example the environment ofa program, as used by the partial evaluator, which is a list of all the parameters and theirvalues, is a static list (we know the name of each argument but not their values).We could then specialize a static-list L of length n, by replacing all occurences of L bya list of n new variables l1; : : : ; ln. And also specialize call to L using those new variable.For example we could specialize the function:head ~l = case ~l of[] -> fail ``too small''x : xs -> xintohead_[n] l1 l2 ... ln = l1and then, when unfolding a specialized call to the function head with a static-list argument,we obtain directly the result.This \new trick" can improve mix's self-application. Indeed, mix use a static listto handle the environment of the program being specialized. Then, without static-listspecialization, when mix is self-applied, we obtain for each call to a parameter's value, asequence of call to head and tail12 in the residual program.6 Extension of the programming language.6.1 Let expression.We will begin the extension of our tiny functional language by adding let-expression.Let-expressions interest lies in their use to avoid \re-computation". For example it ismore e�cient to compute the value (20! ; 20!) with the expression: let a lot = factorial20 in (a lot , a lot) than with the expression (factorial 20 , factorial 20).We could use this interesting property in the partial evaluator to avoid the problem ofcode duplication, which leads at run-time to duplication of computation. For example, ifwe de�ne:12car and cdr in Scheme. 16

double x = (x + x)power_of_2 n = if n == 0 then 1 else (double (power_of_2 (n - 1)))then unfolding the function call gives:power_of_2' n = if n == 0 then 1 else ((power_of_2 (n - 1)) + (power_of_2 (n - 1)))transforming a linear program in an exponential one's.But if during a preprocessing phases we insert let-binding for each duplicate variables13,we could get rid of those duplication.double n = let x = n in (x + x)power_of_2 n = let x = n inif x == 0then 1else (double (power_of_2 (x - 1)))power_of_2' n = let x = n inif x == 0then 1else let x' = (power_of_2 (x - 1)) in (y + y)Evaluation of let-expressions in mix is given in �gure (3). Where we could see the newtype constructor introduced to represent let-expressions: Let s e1 e2, which representthe de�nition let s = e1 in e2 (s is a variable). If e1 is static, then we unfold the letde�nition in a new environment where the variable s is bounded to the value of e1. If not,we created a specialized let-expression.6.2 Higher-order functions.Before to introduce higher order function, we will �rst discuss on the representation oflambda-expression in TinyHaskell.Lambda-expression are represented by the type-constructor: Lam stat x e, where xis the parameter, e the expression, and stat is the status of the lambda-expression: static(�` x:e) or dynamic (� x:e) (a dynamic lambda-expression is: � x: (y + x) where y isdynamic for example, whereas � x: power 3 x is static).We assume in TinyHaskell that we only apply lambda-expression. (� x: power 3 x) 5is correct, but (power 3) 5 is not. And we provide the operator @ to \annotate" staticapplication of a lambda-expression to an expression. An application e1 e2 is representedwith our type system by Appl i e1 e2, where i is the status of the application and e1and e2 are Term.We could then de�ne, for example, the function map stat which map a static functionto a known list:13we must then be able to count variable's occurences.17

map_stat `f `l = case `l of[] -> []x : xs -> (f @ x) : (map_stat f xs)The evaluation of lambda expression and application is given �gure (4):6.3 Specializing types de�nition.We have de�ned, previously, an e�cient partial evaluator as a partial evaluator able toremove a \complet layer of interpretation"We will see in this section that mix is unable to achieve this goal. Especially whenapplied to himself, mix is unable to remove all the interpretion overhead.Imagine that we specialize a program which uses some type not represented in Term.For example the addition in an algebraic type for numbersadd m n = case m ofZERO -> nSUCC x -> add x (SUCC n)the result of the specialization of the TinyHaskell self-interpreter to this program gives:int_0 values_2 values_1= (eval_1 values_2 values_1)eval_1 vs_2 vs_1= case vs_2 ofConstr n p -> if ("ZERO" == n)then vs_1else if ("SUCC" == n)then eval_1 (head p) (AConstr "SUCC" [vs_1])else fail "no match in case expression!!"We could see that the type used in the program is coded using the \universal"-data-type of mix with Constr. Then the case expression is translated into a nested conditionnal,whereas it would have been more e�cient to compile it into a case expression with a mul-tiway jump. Moreover, the test of each conditionnal is based on an expansive matchingupon string, and as the second element of a \Constr" is a list, we have multiple call to theprimitives function head and tail.One possibility to handle more e�ciently users datatypes, is to use a postprocessingphases to transform nested conditionnals and to represent each constructor by integers(the equality test being cheaper).But a more promising approach is to specialize types de�nition themselves. The idea isto create specialized constructor from users type de�nition. For example we can create twospecialized version of Constr "ZERO" [] and Constr "SUCC" [n], that is Constr ZEROand Constr SUCC n. The nested conditionnal being replaced by a case expression.We could see with this little example the numerous advantages of this technique. UsingConstr SUCC, we save a call to the primitive head. And, in each case, we save interpretationoverheads created by the application of the type constructor Constr.18

7 Discussion.This exercise in making a self applicable partial evaluator, has given me the opportunityto learn an exciting and promising method for both optimizing interpretive programs, andfor understanding the theorical relationship between interpreters and compilers.It has also been the occasion to discover the �eld of functionnal programming andlazyness.Although partial evaluation is a universal paradigm. Partial evaluator for C and Prologhave been succesfully self-applied. Speci�cities of functional programming gives it an otherdimension, in particular by its facility to work on program transformation.But there are not only advantages. Partial evaluation of lazy languages faces, byessence, many problems. With e�ciency: it is sometimes more e�cient to preserve thelazyness of a program than to specialize it. And with termination: how should we handlean in�nite structure14?That's why a better understanding of the partial evaluation's process is needed. Andin particular of the theoricals underpinnings. And I hope that this brief overview of partialevaluation, based on the study of a self-applicable partial evaluator for a \tiny" functionnallanguage, would have help you to foresee some of those problems.

acknowledgments.Thanks to Graham Hutton for all the precious advices given to me during my stay inChalmers, and for my discover of the joy of combinators and categories. Thanks to JanEkman for his courses always instructive. Thanks to Carsten Keller for his precious advicesand to K.V.S. Prasad for his experiment and his kindness. Thanks to John Hughes, �nally,who has still been attentive and who has been a constant source of inspiration during thosetwo months.14in lazy language one can de�ne the list of all the integers for example19

References[Lau91] John Launchbury A Strongly-Typed Self-Applicable Partial Evaluator.FPCA 1991 (Springer LNCS).[Lau89] John Launchbury Projection Factorisations in Partial Evaluation.Ph.D. Thesis, University of Glasgow (Nov. 1989) .[Fut71] Y. Futamura Partial Evaluation of Computation Process - An approachto a Compiler-Compiler.Systems, Computers, Controls 1971 (Vol. 2 No 5).[Hug84] John Hughes Why Functionnal Programming Matters.Report 16, Programming Methodology Group .[Hask90] P. Hudak Report on the Programming Language Haskell .Glasgow University 1990 .[NDJ] Neil D. Jones, Carsten K. Gomard, Peter Sestoft Partial Evaluation andAutomatic Program Generation.Prentice-Hall, C.A.R. Hoare series editor.[HML] Handbook of Mathematical Logic.Barwise editor, volume 90 .

20

eval prog names values static e =case e of....Let s e1 e2 -> if (static e1) == ``static''then letss = eval prog ns vs ``static'' e1ineval prog (s : ns) (ss : vs) (max stat (static e2)) e2else letss = eval prog ns vs (max stat (static e1)) e1inALet s ss (eval prog (s : ns) ((Parm s) : vs) (max stat (static e2)) e2)....Figure 3: evaluation of let expression in the function eval of mix.
eval prog names values status e =case e of....Lam i x t -> Lam i x (eval prog (x:ns) ((Parm x): vs) (max i status) t)Appl i e1 e2 -> if (i == ``static'')thencase e1 ofLam i s t -> (\ x -> (eval prog (s:ns) (x:vs) static t))(eval prog ns vs status e2)_ -> fail "fail in static lambda-appl. "elseAppl i (eval prog ns vs status e1) (eval prog ns vs status e2)....Figure 4: evaluation of lambda expression and application in the function eval of mix.21

