A self-applicable
partial evaluator

for a
subset of Haskell

Silvano Dal-Zilio
Ecole Normale Supérieure de Lyon
(dalzilio@ens.ens-lyon.fr)

director: John Hughes
Departement of Computing Science,

Chalmers Tekniska Hogskola
(rjmh@cs.chalmers.se)

August 16, 1993

Abstract

Partial evaluation is becoming very promising as a programming tool, as its prac-
tice is now well developed. But the theorical foundation are not equally well under-
stood.

In this paper, we report on the making of a partial evaluator for a functionnal
language deriving from Haskell. And we discuss on the many problems arised from its
self-application, theorical as much as practical.






Contents
1 Introduction.

2 About partial evaluation.
2.1 Principle of partial evaluation. . . . ... ... ... ... ... .......
2.2 Futamura projections. . . . . . . . . ..o

3 TinyHaskell, or a subset of Haskell.
3.1 Introduction. . . . . . . . . . e e
3.2 TinyHaskell Context-Free Syntax.. . . . . . . .. ... .. ... .. .....

4 The specializer.

4.1 Reduction and evaluation. . . . . . . . ... . Lo o Lo
4.1.1  Algorithm. . . .. .. . s
4.1.2 Type of expressions. . . . . . . . . . . ...

4.2 Reducing the size of datas structure. . . . . . .. ... 0oL L
4.2.1 Theorical aspect. . . . . . . . .. L
4.2.2 Practical consequence. . . . . . ...

5 MIX, a partial evaluator written with TinyHaskell.

5.1 Improving partial evaluation. . . . . . . . . .. ... ... L.
5.2 The TRICK. . . . . . s e e
5.3 A mew trick. . . . ..o

6 Extension of the programming language.

6.1 Let exXpression. . . . . . . ..o
6.2 Higher-order functions. . . . . . . . . ... o o
6.3 Specializing types definition. . . . . . .. ... o000 oL

7 Discussion.



1 Introduction.

Functionnal programing provides an elegant solution to the increase of software complex-
ity, allowing high-structured programing and providing powerful tools, such as lazyness
and higher-order function definition [Hug84]. But this advantage in comfort of program-
mation is, like often, counterbalanced by a loss of efficiency.

Use of partial-evaluation can remedy to this drawback, program’s specialization given
automatically more efficient and always faithfull results. And this for a wide range of
problems, such as neural net training, scientific computing or computer graphics.

The most developed area for the use of partial-evaluation is probably the design of pro-
gramming language compilers, which requires application of partial evaluation to partial
evaluator themselves.

But self-application arises many problems. Especially when a strongly-typed language,
such as Haskell [Hask90], is used.

For example, whereas Futamura produced his “projection” in 1971 [Fut71] , the first
partial evaluator having been succesfully self-applicated (produced at DIKU, Copenhagen)
was made only in the middle of the eighties. And the first written in a strongly-typed
language, PEL, a subset of Lazy ML (LML), only in 1989 [Lau89].

In this report we defined section 3, after an overview of partial-evaluation principles
in section 2, a subset of the functionnal programming language Haskell. This language
will be usefull to our study of partial evaluation, section 4. Section 5 described the final
partial evaluator, with an emphasis on the compiler generator . Whereas section 6 contains
a discussion on possible extensions. Section 7 concludes.

2 About partial evaluation.

2.1 Principle of partial evaluation.

Partial evaluation can be seen as an extension of the principle of projection, well-known
in geometry or in analysis.

Partial evaluation consist of specializing a program to a part of its arguments. For
example, if we consider a program f, with two arguments x and y, we can compute or
reduce expression in f if we know that x will take a static value a. This computation
carries out a new program, f,, such that f, y = f a y, that can possibly run much faster
than f.

The first formulation of the idea of partial evaluation is the works of S C Kleene,
published in 1952. Kleene demonstrates his s-m-n theorem, that can be interpreted as:

For a general m + n-argument computable function, and given values for the first m ar-
guments 21, ..., Z,,, there exist a program for the specialized function f,, . . Moreover,
there is a program (a computable function) which effectively constructs the specialized
program from every computable function f and a set of values (in fact Kleene argue with
recursive function on the integers, and Turing machine.) [HML, p. 705-707]



A partial evaluator, given the program and the values of the static parameters, con-
struct a new program which, when given the remainings input, yield the same result that
the program would have produced '.

We could defined this property using a equational definition:

[[mix] (f, )]y =[fT 2y

Where [ f] is the “function” that the programs f define, and mixzis the partial evaluator.

The goal is to generate an efficient program automatically. This is done, intuitively,
by performing all the calculation depending only on statics parameters (evaluation), and
by generating code for calculations depending on both type of parameters (reduction: for
example unfolding function calls, or reducing conditionnal branch with static-test expres-
sions). It’s a mixture of computation and code generation, hence the name miz for our
partial-evaluator.

An ideal partial evaluator will performed all computations that can be done without
the dynamic values.
For example, if we define the function power n x, that computes x™:

power nx = if (n==0)
then 1
else x x power (n — 1) x

We can specialize power for static values of n or x:

power,—3 x = xx*(xx*x(xx1))  power,—yn = if (n==0)
then 1
else 4 x power,—, (n —1)

We could see with this little example some aspects of partial evaluation:

e We must be able to compute, for efficiency, that, if n is static, the test n == 0 is
a static expression. Which means that we must be able to differientate static from
dynamic expression. This process, also named Binding-Time Analysis, is one of the
main problem. Indeed one can demonstrate that, resolve the problem of binding
times analysis is resolve the halting problem 2.

e A results following from the “undecidability” of the binding-time analysis, is that
we cannot decide if we can unfold a function call. For example we cannot unfold the
function power, without entering an infinite loop

powery n = if (n==0)
then 1
else if ((n—=1)==0)
then 4 %1
else if ((n—1)—1)==0)
then 4x4x1
else

! Static parameters are parameters whose value are known in advance, as opposed to dynamic parameters
whose values are known at computation times.

2Tf you know that a variable is static or not, then you are able to say if this variable is “visited” during
the computation. And then you can decide if your program end.



This example demonstrate that specialization faces problems of termination.

e The specialization can increase size and number of call of the program. For example,
if we do not unfold calls to power in the first example, we have:

POWeEr3 T = & * POWETLT
powery T = X %k POWET|T
power; T = I * POWET,T
powerg xz = 1

Then we can’t predict the speedup and the size from the program before
specialization.

2.2 Futamura projections.

Futamura projection shows the capabilities of partial evaluation for generating compiler
generator.

We have already seen that a partial evaluator takes two argument, a program f :
A x B — C , to specialize , and a value a from A 3.

In particular we have the relation

(1) : Vbe B,[f]ab = [f.] b,where f, = [miz] f a.

A compilator from a language S (source) to a language 7 (target) is also defined by
such an equation (2): target = [compiler] source.

Besides, the result of mix is not necesseraly written in its input language, and, like for
compilers, a partial evaluator has an input and an output language.

So, if we define an interpreter int, from S to a target language 7', and if mix is a partial
evaluator “from S to 77, it follows that:

result = [f] input f is written inS
= [int] f input
= [[miz] int f] input (1)
= [target] input target is written inT

And then we prove the first Futamura projection:
Fl : 7Dta'r‘get — [[mm,‘ﬂ Znt Psou'rce

This equation means that, specializing an interpreter to a particular program, we obtain
a program in the “target” language of int (the language in which miz has been written).

Using this first result we prove the second Futamura projection:

target = [mix] int source
= [[miz]mix int] source (1)
= [compiler] source (2)

3As we will use typed-functionnal-languages latter, we consider that programm are function and that,
at each data, can be given a type



F,: compiler = [mix] mix int

Then we are able to generate automatically a compiler given an interpreter. The interest
lies in the fact that interpreters are easier to write, and that we are sure to produce
compilator always “correct” with respect to the interpreter. i.e. semantically correct
compiler.

The only restriction is that miz must be written in the language used for its input, as
the “text” of mix is the first argument.

Remark. We say that miz must be self-applicable. Obviously we do not apply mix
to himself. Self-application, like in demonstration of the Halting-Problem, is used for in-
validate result. We only use the text of mix *.

These two previous formulas bring us to examine the meaning of [mix]|mizmix
The mix-equation (1) gives:

[[miz] miz miz] int = [miz] mix int

and, from F,, we know that [mix] mizx int is a compilator
Then

F; : [mix] mix mix is a compiler-generator.

A program that, given an interpreter, produce a compiler.

3 mwHaskell, or a subset of Haskell.

3.1 Introduction.

The subset of Haskell, TinyHaskell, used for the implementation of mix, is the result of
many contradictory imperatives.
We have first to reconcile in our language,

e power of expression: as we must write mix in TinyHaskell to permit later self-
application. °

e simplicity: in order to better understand the behaviour of mix, we do not handle
difficult programming paradigms, like higher-order function for example.

We also have to keep, as much as possible, Haskell semantics. For example, TinyHaskell
and its “big brother”, share the same layouts rules and module’s definition[Hask90].

To avoid the difficult problem of binding-time analysis, we entrust programmers with
taking care to put annotation that describe the nature of each expression. Which makes
the problem much simpler and allows experiment.

Those annotations are used as specifications to decide which conditional should be
reduced, which expression may be completely evaluated or which function call should be

“remenber the difference between f and [f]
5 nd
2

see Futamura projection.



unfolded. It is of course possible to compute a part of those informations on-the-fly, given
the static variables, but it is both more efficient ¢ and easier to understand when presented
in the form of annotation [Lau91].
So this language must provide facilities to represent those annotations. We have re-
served special character to define
¢ static variables or expression.
$ recursive call (to avoid infinite unfolding)
for partially-static structures
Here an example of an annotated function definition in TinyHaskell:

7

power ‘n x = if ‘(n == 0)
then 1
else x * $power (n - 1) x

Figure 1: The function power annotated.

those annotations defined n as a static parameters of the function, and the conditionnal
(n == 0) as static ( i.e. computable as compile-time ). The dollar-sign in front of the
function call ( $power (n — 1) = ) avoid the unfolding, and leads to the computation of a
specialized version of power for the value n — 1.

3.2 TinyHaskell Context-Free Syntax.

program — — decls
decls — decly ; ... ; decl, (n>1)
decl — lhs = exp [where { decls} ]
lhs — [$lidentifier ([ |identifier )"
exp — exp’ exp’
exp' — :exp
| reservedop exp
| €
exp’ — if exp then exp else exp (conditional)
| case exp of alt (; alt)’ (case expression)
| feap
fexp — — exp
| reservedfun (aexp)”
| [$]identifier (aexp)”
| con (aexp)”
| aexp
aexp — identifier
| con (constructor)
| integer

Ssee discussion on off-line partial evaluator section 4.2.
"see section 5



string

|
| (exp ) (parenthesised expression)
| (expy , ... , expy ) (tuple, k> 2)
| [exp, , ... , expy ] (list, k > 0)
| RE) (annotated expression)
con — True
| False
| uppercase{ char }"
identifier — lowercase{ char }"_ . .. cqopreservedfans
alt — pattern — exp
pattern — _ (wildcard)
| identifier
| con (identifier)”
| [7
| identifier : identifier
| (expi , ... , expy ) (2 <k<6)
| ( pattern )

Remark. The case expression defined in TinyHaskell is not the same than this defined
in Haskell.

As you could see in the context-free grammar, we only match pattern result of the
application of a constructor on identifier, or identifier themselves. List and tuples might
be seen as a special case. “:” being the constructor for the lists, and #n the constructor
for tuples which length is n.

4 The specializer.

4.1 Reduction and evaluation.
4.1.1 Algorithm.

The structure of a specializer, and then of mix, is very closed to that of an interpreter. And
in our case of a TinyHaskell-self-interpreter, as both mix input and output are TinyHaskell
programs.
Mix specialize its first argument, an annotated program, according to a list of its static
parameters. The result, a specialized program, is a list of specialized function definition.
We could describe this algorithm defining the specializing loop:

1. We define a Pending list of all the function definition yet to be specialized, paired
with their static-parameters-values. This list is initialized with the the arguments
of mix ®, and represent what specialization is still to be performed.

We also define a Done list of all the specialized call already computed to avoid
duplicated work (and then, sometimes, endless specialization of the same call). This
list represent what specialization have already been performed.

&remenber that a program is a function



2. While Pending is non-empty, we take a menber of the list and, if it is not in Done,
we construct a new specialized function using eval on the function body.

The function eval ?, given the names of the parameters, their values (the value of
the dynamic parameter = is Parm ”"z”) and the status of an expression, reduce or
evaluate this expression. Indeed these two action are very similar. we can notice
the function static that, given an expression, compute its status according to the
annotation.

We could see eval as an algorithm of reduction on graph (Indeed we work with the
program-parse result). For example, if we study the specialization of the function
power n x for the value 2 of n:

power ’n x = if ’(n == 0) then 1
else x * power (n - 1) x

We evaluate the body of power (given below), knowing that n == 0 is a static-
expression?.
“power” [(Cn”] I:“X”] [ If ]
p A/l p i\\
aram atam .
n X
“ ” Param
power” -
X
. /\
aram
n

The result of the evaluation is a graph with less state, as “static conditional branches”
have been pruned and n has been replaced by its value:

[Pl [

“power”  [*n"] [*x7] [ x]
Param Call
X
“power” 1 X

The residual call power 1 x can itself be evaluated in two different way. It can be
unfolded, or it can lead to the creation of a new specialized function power,_;

9see figure in the appendix

104 function call is represented by the name of the function, a list of static and a list of dynamic

parameters, and the body of the function

10



3. The residual expression is scanned for any residual function call that may need
further specialisation.

4. When Pending is empty, we rename the function of the Done-list, using their static
values, to obtain the final result.

4.1.2 Type of expressions.

We define a type for each expressions and value of the TinyHaskell language, using the
Haskell type system[Hask90]. '':

data Term = Num Int |
Bl Bool | -- boolean
Str String |
Term Term |
Lst [Term] |
Constr String [ Term ] |
Parm String |
Case Term [ (String, [String],Term) 1 |
If Term Term Term |
Prim String [Term] |
Call String [Term] [Term] |
RCall String [Term] [Term] |
Ann Int Term

universal type definition for expression.

Term is the general typed for expression.
Constr s list is used to represent application of the constructor s upon the list of
term list. For example a list can be expressed using the list constructor

Lst[Numl, Num2, Num3] = Constr” : "[Numl, Constr” : ”"[Num2, Constr” : "[Num3, [ ]]]]

Parm is used to represent a parameter of the function.

The first argument to the CASE-constructor is the expression over which the case-
expression proceed. Each clauses being a triple: ( Constructor , List of variable , Expres-
sion ).

Prim is used to represent primitive function calls, like 4+, —, ...

Call is used to represent user-defined functions that could be unfolded, and RCall to
represent recursive call that should not be unfolded (tagged by a $ -sign). Their parameters
are split under static and dynamic parameters.

Ann is used to represent annotated expression.

Others type constructor are explicit.

"in this system, which could be seen has a powerfull extension of an Hindley-Milner type system, the

type defining the list of element of A is represented by [A]

11



eval prog names values stat e = case e of

Num i -> i
Str s -> s
Term e -> e

Parm x -> lookup_envt names values x
If b el e2 -> if ((static b) == "static") || (stat == "static"))
then
if  (eval prog names values 2 b)
then (eval prog names values stat el)
else (eval prog names values stat e2)
else (
If (eval prog names values stat b)
(eval prog names values stat el)
(eval prog names values stat e2)

RCall f st dy -> Call f (map (eval prog names values "static") st)
(map (eval prog names values "dynamic") dy)

Figure 2: an oversimplified eval -definition.

12



4.2 Reducing the size of datas structure.
4.2.1 Theorical aspect.

We can inferred the type of mix using the same notation than in the introduction. But we
need first to introduce a new notation to distinguish between the type of a function, and
the type of the “program implementing this function”. Like previously, with the conven-
tion upon the meanings of f and [f], this notation is not correct. Many different program
implement the same function, and program written in many different languages. But we
use it for convenience.

So if we define f as the “type of a program ”
first argument as : A x B — C, mix must be of type:

implementing f, and the type of mix’s

miz:(AxB— C)xA— B— C

We can notice that mix’s second argument is also an encoding of the static value.
Indeed, even if in untyped language the second solution: mix:(Ax B — C) x A —
B — (' is used, it is inapplicable to our purpose because we cannot cannot express it.
The type of the second argument varies according to the “value” of the first argument,
which is only element of a simple fixed type (the type Term as it happens).

So, if we want to apply mix to [miz], we obtain the right type instantiating A to
AxB— C,BtoAandC toB — C, which gives:

miz:(AxB— CxA—B— C)xAxB— C— A— B— C

Then the second argument of mix must be a double encoding of the program to which
[miz] is being specialized. We will see the repercussion of this double-encoding in the
next section.

Remark: Exactly the same feature arise in the definition of the compiler-generator,
which is defined by [mix] mix mix, where the compiler-generator has the type:

cogen:(AxB— C)— A— B — C

4.2.2 Practical consequence.

The need of a double encoding is not without consequence. That means that the parameter
of mix, when we make a compiler, is represented by a huge data structure.

For example, the simple expression [1 + +[2 (++ is the concatenation-operator) will
be represented, with our convention, by:

Prim “++7 [Parm “I17, Parm “[2”]

but is represented as a value by:

(%) Constr “Prim” [ Str “+ 47, Lst |
Constr “Parm” [ Str “I117], Constr “Parm” [ Str “I127]] ]

The size is more than double.
And the loss in efficiency is even worse. For example, the size of the heap correspond-
ing to that gigantic data-structure, increased frequency of garbage collection or memory

13



paging. And more, before specialization, we have to test if the function call to be special-
ized is already recorded in the Done-list. So we have to compare the values of the static
parameters of this call, which necessite the used of an equality test, test directly propor-
tionnal to the size of the objects being compared. This latter argument also demonstrate
that the lazyness of our languages is no help in this problem, as the equality test force the
full computation of each object.

The solution used in our study, and already succesfully employed in the making of a
self-applicable partial evaluator for LML [Lau89], is to replace lazyness by delaying the
expansion ourselves.

We used the type-constructor Term to help us in this way. We could see Term as an
equivalent of “quote” in other functionnal programming languages. The value and “type”
of Term (Prim “+ 4" [Parm “117, Parm *12”]) is equal to (x), for example.

We could then compress or expand expression-encoding according to the situation and
then gain almost an order of magnitude in the size needed for encoding all our datas. In
practice this means that the times taken to compute mix miz mix, for example, is reduce
from hours to minutes[Lau91]. Even if, with this strategy, some terms might be expanded
several times (for example a static value examined by several case expressions).

5 MIX, a partial evaluator written with TinyHaskell.

5.1 Improving partial evaluation.

The chief motivation for doing partial evaluation is speed. Then, an estimate of the ob-
tainable speedup before the specialization is done, would be a valuable information. When
we use mix as a compiler, for example, It could be interesting to know wether specializa-
tion plus specialized program run time is greater or not than program interpretion, if the
program has to be run once or if the time to run the specializer itself is a significant factor.
ie:

tmiz (interpreter, program) + tyeogram (INPUL) > tinterpreter (PTOgram, input)

We will consider the speedup obtain with partial evaluation as a measure of partial
evaluation efficiency. We could defined the speedup using a straightforward mathematical
definitions[NDJ]:

Definition: for a fixed two-arguments program int and a static input st, we define
the speedup by:
tint(St, input)

tmia:(int,st) (anUt)

sug(input) =

“

Then, if we represent the (finite) computation of a program using a “weakened” oper-

ational semantic:

prog so do = (po, ($0,do)) = (p1,(51,d1)) = ... = (Do, (50, dn))

where s represent static values (that means values depending only on s;y) and d dynamic
values, and (p;, (s;,d;)) — (pit1, (Siz1.diy1)) represent a “derivation” between control
points of the flow chart of prog. We could interpreted partial evaluation as a “derivation
compressor”.

14



Indeed, variable values depending only on p; and s; can be evaluated at specialization
time, and if a state (p;, (s;,d;)) only depends on static inputs, the specialization “can shift
control” to p;;; (unfolding).

So, if we call t,, (resp. t4,) the time spent in static (resp. dynamic) computation
during prog’s-execution, we obtain:

tSn + tdn

sug, (dy) = ;
d

0

Assume that partial evaluation of prog on sy terminates in K derivation. Then in the
standard computation there can be at most K — 1 “static steps” since mix is no faster
than direct execution. This means in particular that ¢, < K.t,;,. And then we have an
upper-bound for the speedup, that is K.

This bound being independent of the dynamic input (dy), it follows that no superlinear
speedup can be achieve using partial evaluation. We could at most expect linear speedup.
And this bound is clearly far larger than what is usually seen in practice. But experiment
shows a linear speedup of approximatively 5 when we use the compiler, and 25 when we
use the compiler-generator on the self-interpreter.

The speedup obtain with partial evaluation on an interpreter can be explain using
the same approach. Differences between execution of a program an interpretation lies in
the many overhead arised by “manipulation on syntax”, recursive calls of the evaluation,
command execution functions and variable access. The cost of interpretation-overheads
can be expressed by the empirical law:

for a typical interpreter int’s running time on inputs prog and input we have:

A prog, YV input, Aprog-torog (input) < t,..(prog,input)

(in experiments a,,,, is often superior to 10 and grow as a function of prog’s size)
The speedup that we can expect, that is a;, is then bounded by 1. We could then

defined an “optimal” partial evaluator as a partial evaluator able to remove a complete
layer of interpretation, ie a partial evaluator responding to the formula su = 1:

tmiz(int,prog) (INPUt) = 1,0, (input)

The rest of this report is dedicated to the study of the relationship between partial
evaluation and compilation, and more precisely, on the different methods to obtain a
compiler that remove the maximum of interpretation’s overhead.

5.2 The TRICK.

We can first remark that mix’s “efficiency” depend mainly on its first argument.

For example, it often happens that a parameter, var, takes only a bounded number of
values (for example values in a list names). If the function to be specialized implement
a dynamic scoping for var it is unlikely that the variable name will disappear from the
mixed-program. Indeed as the list is dynamic, var must be tagged as dynamic and call to
this variable can’t be specialized.

But it is not the case if the function implement a static-scoping. Intuitively, we could
specialize the call if mix compares var with all the possible values and produce specialized

15



code for them, which is possible as they are in a finite number and as the values are known
at compile-time.

This trick: specializing “statically bounded parameters” using all their possible values,
is so common that it has been named The Trick. And is necessary to avoid trivial self-
application of mix.

5.3 A new trick.

We have defined, section 3.1, an annotation for partially static structures (7). Wich could
be define by dynamic structures with known “properties”.

For our study, for example, we consider static-list, which are dynamic list of known
length. In fact, such static-list are frequent in programs. For example the environment of
a program, as used by the partial evaluator, which is a list of all the parameters and their
values, is a static list (we know the name of each argument but not their values).

We could then specialize a static-list £ of length n, by replacing all occurences of £ by
a list of n new variables [,,...,[,. And also specialize call to £ using those new variable.
For example we could specialize the function:

head "1 = case "1 of
1 -> fail ‘‘too small’’
X 1 Xs ->X

into
head_[n] 11 12 ... 1n = 11

and then, when unfolding a specialized call to the function head with a static-list argument,
we obtain directly the result.

This “new trick” can improve mix’s self-application. Indeed, mix use a static list
to handle the environment of the program being specialized. Then, without static-list
specialization, when mix is self-applied, we obtain for each call to a parameter’s value, a
sequence of call to head and tail'? in the residual program.

6 Extension of the programming language.

6.1 Let expression.

We will begin the extension of our tiny functional language by adding let-expression.

Let-expressions interest lies in their use to avoid “re-computation”. For example it is
more efficient to compute the value ( 20! , 20!) with the expression: let a_lot = factorial
20 in ( a_lot , a_lot ) than with the expression (" factorial 20 , factorial 20 ).

We could use this interesting property in the partial evaluator to avoid the problem of
code duplication, which leads at run-time to duplication of computation. For example, if
we define:

12 car and cdr in Scheme.

16



double x = (x + x)

power_of_2 n = if n == 0 then 1 else (double (power_of_2 (n - 1)))

then unfolding the function call gives:

power_of_2’ n = if n == 0 then 1 else ((power_of_2 (n - 1)) + (power_of_2 (n - 1)))

transforming a linear program in an exponential one’s.
But if during a preprocessing phases we insert let-binding for each duplicate variables!?,
we could get rid of those duplication.

double n = let x = n in (x + x)

power_of_2 n = let x = n in
if x == 0
then 1
else (double (power_of_2 (x - 1)))

power_of_2’ n = let x = n in
if x ==
then 1
else let x’ = (power_of_2 (x - 1)) in (y + y)

Evaluation of let-expressions in mix is given in figure (3). Where we could see the new
type constructor introduced to represent let-expressions: Let s el e2, which represent
the definition let s = el in e2 (s is a variable). If el is static, then we unfold the let
definition in a new environment where the variable s is bounded to the value of el. If not,
we created a specialized let-expression.

6.2 Higher-order functions.

Before to introduce higher order function, we will first discuss on the representation of
lambda-expression in TinyHaskell.

Lambda-expression are represented by the type-constructor: Lam stat x e, where z
is the parameter, e the expression, and stat is the status of the lambda-expression: static
(A" z.e) or dynamic (A z.e) (a dynamic lambda-expression is: A x. (y + x) where y is
dynamic for example, whereas A\ x. power 3 x is static).

We assume in TinyHaskell that we only apply lambda-expression. (A x. power 3 x) 5
is correct, but (power 3) 5 is not. And we provide the operator @ to “annotate” static
application of a lambda-expression to an expression. An application el e2 is represented
with our type system by Appl i el e2, where i is the status of the application and el
and e2 are Term.

We could then define, for example, the function map_stat which map a static function
to a known list:

13we must then be able to count variable’s occurences.

17



map_stat ‘f ‘1l = case ‘1l of
0 -> [
x : xs -> (f @ x) : (map_stat f xs)

The evaluation of lambda expression and application is given figure (4):

6.3 Specializing types definition.

We have defined, previously, an efficient partial evaluator as a partial evaluator able to
remove a “complet layer of interpretation”

We will see in this section that mix is unable to achieve this goal. Especially when
applied to himself, mix is unable to remove all the interpretion overhead.

Imagine that we specialize a program which uses some type not represented in Term.
For example the addition in an algebraic type for numbers

add m n = case m of
ZERO ->n
SUCC x -> add x (SUCC n)

the result of the specialization of the TinyHaskell self-interpreter to this program gives:

int_O0 values_2 values_1

= (eval_1 values_2 values_1)
eval_1 vs_2 wvs_1

= case vs_2 of

Constr n p -> if ( "ZERO" == n )
then vs_1
else if ( "SUCC" == n )

then eval_1 (head p) (AComnstr "SUCC" [vs_1])
else fail "no match in case expression!!"

We could see that the type used in the program is coded using the “universal’-data-
type of mix with Constr. Then the case expression is translated into a nested conditionnal,
whereas it would have been more efficient to compile it into a case expression with a mul-
tiway jump. Moreover, the test of each conditionnal is based on an expansive matching
upon string, and as the second element of a “Constr” is a list, we have multiple call to the
primitives function head and tail.

One possibility to handle more efficiently users datatypes, is to use a postprocessing
phases to transform nested conditionnals and to represent each constructor by integers
(the equality test being cheaper).

But a more promising approach is to specialize types definition themselves. The idea is
to create specialized constructor from users type definition. For example we can create two
specialized version of Constr "ZER0O" [ ] and Constr "SUCC" [n], that is Constr_ZERQ
and Constr_SUCC n. The nested conditionnal being replaced by a case expression.

We could see with this little example the numerous advantages of this technique. Using
Constr_SUCC, we save a call to the primitive head. And, in each case, we save interpretation
overheads created by the application of the type constructor Constr.

18



7 Discussion.

This exercise in making a self applicable partial evaluator, has given me the opportunity
to learn an exciting and promising method for both optimizing interpretive programs, and
for understanding the theorical relationship between interpreters and compilers.

It has also been the occasion to discover the field of functionnal programming and
lazyness.

Although partial evaluation is a universal paradigm. Partial evaluator for C and Prolog
have been succesfully self-applied. Specificities of functional programming gives it an other
dimension, in particular by its facility to work on program transformation.

But there are not only advantages. Partial evaluation of lazy languages faces, by
essence, many problems. With efficiency: it is sometimes more efficient to preserve the
lazyness of a program than to specialize it. And with termination: how should we handle

an infinite structure'*?

That’s why a better understanding of the partial evaluation’s process is needed. And
in particular of the theoricals underpinnings. And I hope that this brief overview of partial

evaluation, based on the study of a self-applicable partial evaluator for a “tiny” functionnal
language, would have help you to foresee some of those problems.

acknowledgments.

Thanks to Graham Hutton for all the precious advices given to me during my stay in
Chalmers, and for my discover of the joy of combinators and categories. Thanks to Jan
Ekman for his courses always instructive. Thanks to Carsten Keller for his precious advices
and to K.V.S. Prasad for his experiment and his kindness. Thanks to John Hughes, finally,
who has still been attentive and who has been a constant source of inspiration during those
two months.

'in lazy language one can define the list of all the integers for example

19



References

[Lau9l] John Launchbury A Strongly- Typed Self-Applicable Partial Evaluator.
FPCA 1991 (Springer LNCS).

[Lau89] John Launchbury Projection Factorisations in Partial Evaluation.

Ph.D. Thesis, University of Glasgow (Nov. 1989) .

[Fut71] Y. Futamura Partial FEvaluation of Computation Process - An approach
to a Compiler-Compiler.

Systems, Computers, Controls 1971 (Vol. 2 No 5).

[Hug84] John Hughes Why Functionnal Programming Matters.
Report 16, Programming Methodology Group .

[Hask90] P. Hudak Report on the Programming Language Haskell .
Glasgow University 1990 .

[INDJ] Neil D. Jones, Carsten K. Gomard, Peter Sestoft Partial Fvaluation and
Automatic Program Generation.

Prentice-Hall, C.A.R. Hoare series editor.

[HML] Handbook of Mathematical Logic.

Barwise editor, volume 90 .

20



eval prog names values static e =
case e of

Let s el e2 -> if (static el) == ‘‘static’’
then let
ss = eval prog ns vs ‘‘static’’ el
in
eval prog (s : ns) (ss : vs) (max stat (static e2)) e2
else let
ss = eval prog ns vs (max stat (static el)) el
in

Alet s ss (eval prog (s : mns) ((Parm s) : vs) (max stat (static e2)) e2)

Figure 3: evaluation of let expression in the function eval of mix.

eval prog names values status e =
case e of

Lam i x t -> Lam i x (eval prog (x:ns) ((Parm x): vs) (max i status) t)
Appl i el e2 -> if (i == ‘‘static’’)
then

case el of
Lam i s t => (\ x -> (eval prog (s:ms) (x:vs) static t))
(eval prog ns vs status e2)
-> fail "fail in static lambda-appl. "
else
Appl i (eval prog ns vs status el) (eval prog ns vs status e2)

Figure 4: evaluation of lambda expression and application in the function ewval of mix.

21



