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Abstract. We give a characterization of deterministic polynomial time
computation based on an algebraic structure called the resolution semiring,
whose elements can be understood as logic programs or sets of rewriting
rules over first-order terms. This construction stems from an interactive
interpretation of the cut-elimination procedure of linear logic known as
the geometry of interaction.
This framework is restricted to terms (logic programs, rewriting rules)
using only unary symbols, and this restriction is shown to be complete for
polynomial time computation by encoding pushdown automata. Sound-
ness w.r.t. Ptime is proven thanks to a saturation method similar to
the one used for pushdown systems and inspired by the memoization
technique.
A Ptime-completeness result for a class of logic programming queries
that uses only unary function symbols comes as a direct consequence.

Keywords: implicit complexity, unary queries, logic programming, ge-
ometry of interaction, proof theory, pushdown automata, saturation,
memoization

1 Introduction

Complexity theory classifies computational problems relatively to the amount of
time or memory needed to solve them. Complexity classes are defined as sets of
problems that can be solved by algorithms whose executions need comparable
amounts of resources. For instance, the class Ptime is the set of predicates over
binary words that can be decided by a Turing machine whose execution time is
bounded by a polynomial in the size of its input.

One of the main motivations for an implicit computational complexity (ICC)
theory is to find machine-independent characterizations of complexity classes.
The aim is to characterize classes not “by constraining the amount of resources
a machine is allowed to use, but rather by imposing linguistic constraints on
the way algorithms are formulated.” [18, p. 90] This has been already achieved
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via different approaches, for instance by considering restricted programming
languages or computational principles [12,37,38].

A number of results in this area also arose from proof theory, through the
study of subsystems of linear logic [25]. More precisely, the Curry-Howard—or
proofs as programs—correspondence expresses an isomorphism between formal
proofs and typed programs. In this approach, once a formula Nat corresponding
to the type of binary integers is set, proofs of the formula Nat ⇒ Nat are
algorithms computing functions from integers to integers, via the cut-elimination
procedure. By considering restricted subsystems, one allows less proofs of type
Nat⇒ Nat, hence less algorithms can be implemented, and the class of accepted
proofs, or programs, may correspond4 to some complexity class: elementary
complexity [29,21], polynomial time [36,11], logarithmic [19] and polynomial [24]
space.

More recently, new methods for obtaining implicit characterizations of com-
plexity classes based on the geometry of interaction (GoI) research program [27]
have been developed. The GoI approach offers a more abstract and algebraic
point of view on the cut-elimination procedure of linear logic. One works with
a set of untyped programs represented as some geometric objects, e.g. graphs
[20,40] or generalizations of graphs [42], bounded linear maps between Hilbert
spaces (operators) [26,30,41], clauses (or “flows”) [28,8]. This set of objects is then
considered together with an abstract notion of execution, seen as an interactive
procedure: a function does not process a static input, but rather communicate
with it, asking for values, reading its answers, asking for another value, etc. (this
interactive point of view on computation has proven crucial in characterizing
logarithmic space computation [19]).

This method does not proceed by restricting a type system, but by imposing
original conditions, of an algebraic nature, on the representation of programs.
Note that one still benefits from the work in the typed case: for instance, the
representation of words used here directly comes from their representation in linear
logic. The first results in this direction were based on operator algebra [31,5,6].
This paper considers a more syntactic flavor of the GoI interpretation, where
untyped programs are represented in the so-called resolution semiring [8], a
semiring based on the resolution rule [39] and a specific class of logic programs.
This setting presents some advantages: it avoids the heavy structure of operator
algebras theory, eases the discussions in terms of complexity (as first-order
terms have natural notions of size, height, etc.) and offers a straightforward
connection with complexity of logic programming [22]. Previous works in this
direction led to characterizations of logarithmic space predicates Logspace and
co-NLogspace [2,3], by considering restrictions on the height of variables.

The main contribution of this paper is a characterization of the class Ptime
by studying a natural limitation, the restriction to unary function symbols.
Pushdown automata are easily related to this simple restriction, for they can be
represented as logical programs satisfying this “unarity” restriction. This implies
the completeness of the model under consideration for polynomial time predicates.

4 In an extensional correspondence: they can compute the same functions.
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Soundness follows from a variation of the saturation algorithm for pushdown
systems [13], inspired by S. Cook’s memoization technique [17] for pushdown
automata, that proves that any such unary logic program can be decided in
polynomial time.

Compared to other ICC characterizations of Ptime, and in particular those
coming from proof theory, this method has a simple formulation and provides
an original point of view on this complexity class. It also constitutes the first
characterization of a time-complexity class directly on the semantic side of
the GoI interpretation. Nevertheless, the results presented here can be read
independently of any knowledge of GoI.

An immediate consequence of this work is a Ptime-completeness result for a
specific class of logic programming queries corresponding to unary flows.

1.1 Outline

Sect. 2.1 gives the formal definition of the resolution semiring; then representation
of words and programs in this structure is briefly explained (Sect. 2.2). Sect. 2.3
introduce the restricted semiring that will be under study, the Stack semiring.
We believe the technical results presented in this section to be of importance,
as they describe an algebraic restriction corresponding to Ptime and broaden
previous algebraic restrictions for (co-N)Logspace.

The next two sections are respectively devoted to the completeness and
soundness results for Ptime. Proving completeness needs to first review multi-
head finite automata with pushdown stack, that characterize Ptime, and then
to represent them as elements built from the Stack semiring (Sect. 3). The
soundness result is then obtained by “saturating” elements of the stack semiring,
so that they become decidable with Ptime resources (Sect. 4).

Ptime-completeness of unary logic programming queries is then proved to be
implied by this result (Sect. 5).

Sketched proofs are detailed in a technical report [4] and in the second author’s
Ph.D. thesis [8].

2 The Resolution Semiring

2.1 Flows and Wirings

We begin with some reminders on first-order terms and unification theory.

Notation 1 (terms). We consider first-order terms, written t, u, v, . . ., built
from variables and function symbols with assigned finite arity. Symbols of arity 0
will be called constants.

Sets of variables and of function symbols of any arity are supposed infinite.
Variables will be noted in italics font (e.g. x, y) and function symbols in typewriter
font (e.g. c, f(·), g(·, ·)).

We distinguish a binary function symbol • (in infix notation) and a constant
symbol ?. We will omit the parentheses for • and write t•u•v for t•(u•v).
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We write var(t) the set of variables occurring in the term t and say that t is
closed if var(t) = ∅. The height h (t) of a term t is the maximal distance between
its root and leaves; a variable occurrence’s height in t is its distance to the root.

We will write θt for the result of applying the substitution θ to the term t and
will call renaming a substitution α that bijectively maps variables to variables.

We focus on the resolution of equalities t = u between terms, and hence need
some definitions.

Definition 2 (unification, matching and disjointness). Two terms t, u are:
– unifiable if there exists a substitution θ—a unifier of t and u—such that
θt = θu. If any other unifier of t and u is such that there exists a substitution
that maps it to θ, we say θ is the most general unifier (MGU) of t and u;

– matchable if t′, u′ are unifiable, where t′, u′ are renamings of t, u such that
var(t′) ∩ var(u′) = ∅;

– disjoint if they are not matchable.

A fundamental result of unification theory is that when two terms are unifi-
able, a MGU exists and is computable. More specifically, the problem of deciding
whether two terms are unifiable is Ptime-complete [23, Theorem 1]. The no-
tion of MGU allows to formulate the resolution rule, a key concept of logic
programming defining the composition of Horn clauses (expressions of the form
H a B1, . . . , Bn):

V a T1, . . . , Tn
H a B1, . . . , Bm, U

var(U) ∩ var(V ) = ∅
θ is a MGU of U and V

Res
θH a θB1, . . . , θBm, θT1, . . . , θTn

Note that the condition on variables implies that we are matching U and V
rather than unifying them. In other words, the resolution rule deals with variables
as if they were bounded.

From this perspective, “flows”—defined below—are a specific type of Horn
clauses H a B, with exactly one formula B at the right of a and all the variables
of H already occurring in B. The product of flows will be defined as the resolution
rule restricted to this specific type of clauses.

Definition 3 (flow). A flow is an ordered pair f of terms f := t ↼ u, with
var(t) ⊆ var(u). Flows are considered up to renaming: for any renaming α,
t↼ u = αt↼ αu.

A flow can be understood as a rewriting rule over the set of first-order terms,
acting at the root. For instance, the flow g(x) ↼ f(x) corresponds to “rewrite
terms of the form f(v) as g(v)”.

Next comes the definition of the product of flows. From the term-rewriting
perspective, this operation corresponds to composing two rules—when possible,
i.e. when the result of the first rewriting rule allows the application of the second—
into a single one. For instance, one can compose the flows f1 := h(x) ↼ g(x) and
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f2 := g(f(x)) ↼ f(x) to produce the flow f1f2 = h(f(x)) ↼ f(x). Notice by the
way that this (partial) product is not commutative, as composing these rules the
other way around is impossible, i.e. f2f1 is not defined.

Definition 4 (product of flows). Let t↼ u and v↼ w be two flows. Suppose
we picked representatives of the renaming classes such that var(u) ∩ var(v) = ∅.

The product of t↼ u and v↼ w is defined when u and v are unifiable, with
MGU θ, as (t↼ u)(v↼ w) := θt↼ θw.

We now define wirings, which are just finite sets of flows and therefore
correspond to logic programs. From the term-rewriting perspective they are just
sets of rewriting rules. The definition of product of flows naturally lifts to wirings.

Definition 5 (wiring). A wiring is a finite set of flows. Their product is defined
as FG := { fg | f ∈ F, g ∈ G, fg defined }. The resolution semiring R is the set
of all wirings.

The set of wirings R indeed enjoys a structure of semiring.5 We will use an
additive notation for sets of flows to highlight this situation:

– The symbol + will be used in place of ∪, and we write sets as sums of their
elements: { f1, . . . , fn } := f1 + · · ·+ fn.

– We denote by 0 the empty set, i.e. the unit of the sum.
– The unit for the product is the wiring I := x ↼ x.
As we will always be working within R, the term “semiring” will be used

instead of “subsemiring of R”. Finally, let us extend the notion of height to flows
and wirings, and recall the definition of nilpotency.

Definition 6 (height). The height h(f) of a flow f = t ↼ u is defined as
max{h(t), h(u)}. A wiring’s height is defined as h(F ) = max{h(f) | f ∈ F }. By
convention h(0) = 0.

Definition 7 (nilpotency). A wiring F is nilpotent—written Nil(F )—if and
only if Fn = 0 for some n.

That standard notion of nilpotency, coming from abstract algebra, has a
specific reading in our case. In terms of logic programming, it means that all
chains obtained by applying the resolution rule to the set of clauses we consider
cannot be longer than a certain bound. From a rewriting point of view, it means
that the set of rewriting rules is terminating with a uniform bound on the length
of rewriting chains—again, we consider rewriting at the root of terms, while
general term rewriting systems [7] allow for in-context rewriting.

5 A semiring is a set R equipped with two operations + (the sum) and × (the product),
and an element 0 ∈ R such that: (R,+, 0) is a commutative monoid; (R,×) is a
semigroup; the product distributes over the sum; and the element 0 is absorbent, i.e.
0× r = r × 0 = 0 for all r ∈ R.
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2.2 Representation of Words and Programs

This section explains and motivates the representation of words as flows. Studying
their interaction with wirings from a specific semiring allows to define notions of
program and accepted language. First, let us extend the binary function symbol
• , used to construct terms, to flows and then semirings.

Definition 8. Let u ↼ v and t ↼ w be two flows. Suppose we have chosen
representatives of their renaming classes that have disjoint sets of variables.

We define (u ↼ v) • (t ↼ w) := u • t ↼ v •w. The operation is extended to
wirings by (

∑
i fi)•(

∑
j gj) :=

∑
i,j fi •gj. Then, given two semirings A and B,

we define the semiring A•B := {
∑

i Fi •Gi | Fi ∈ A , Gi ∈ B }.

The operation indeed defines a semiring because for any wirings F , F ′, G and
G′, we have (F •G)(F •G) = FF ′ •GG′. Moreover, we carry on the convention of
writing A•B •C for A•(B •C).

Notation 9. We write t� u the sum t↼ u + u↼ t.

Definition 10 (word representation). We fix for the rest of this paper an
infinite set of constant symbols P (the position constants) and a finite alphabet
Σ disjoint from P with ? 6∈ Σ (we write Σ∗ the set of words over Σ).

Let W = c1 · · · cn ∈ Σ∗ and p = p0, p1, . . . , pn be pairwise distinct elements
of P. Writing pn+1 = p0 and cn+1 = c0 = ?, we define the representation of
W associated with p0, p1, . . . , pn as the following wiring, where x and y are two
arbitrary but distinct variables:

W̄p =

n∑
i=0

ci •r•x •y •head(pi)� ci+1 •l•x •y •head(pi+1)

Position constants p0, p1, . . . , pn represent memory cells storing the symbols
?, c1, c2, . . . . The representation of words is dynamic, i.e. we may think intuitively
of movement instructions for an automaton reading the input, getting instructions
to move from a symbol to the next (at the left, hence the l) or the previous (to
the right, hence the r). More details on this point of view will be given in the
proof of Theorem 4. A term ci • r (resp. ci • l) at position p will be linked by
flows of the representation to an element ci+1 •l at position pi+1 (resp. ci−1 •r
at position pi−1).

Taking cn+1 = c0 = ? reflects the Church encoding of words and make the
representation of the input circular. Flows representing the word c1 · · · cn can be
pictured as follows:

p0
?•r
?•l

p1
c1 •r
c1 •l

p2
c2 •r
c2 •l

. . .

pn
cn •r
cn •l
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The notion of observation will be the counterpart of a program in our construc-
tion. We first give a general definition, that will be instantiated later to particular
classes of observations characterizing complexity classes. The important point
is that observations cannot use any position constant, so that they interact the
same way with all the representations W̄p of a word W .

Definition 11 (observation semiring). We define the semirings P⊥ of flows
that do not use the symbols in P; and Σlr the semiring generated by flows of the
form c•d↼ c′ •d′ with c, c′ ∈ Σ ∪ {?} and d, d′ ∈ {l, r}.

We define the semiring of observations as O := (Σlr • R) ∩ P⊥, and the
semiring of observations over the semiring A as O[A ] := (Σlr •A) ∩ P⊥.

The following property is a consequence of the fact that observations cannot
use position constants [8, Theorem IV.5].

Theorem 1 (normativity). Let W̄p and W̄q be two representations of a word
W and O an observation. Then Nil(OW̄p) if and only if Nil(OW̄q).

How a word can be accepted by an observation can now be safely defined:
the following definition is independent of the specific choice of a representation.

Definition 12 (accepted language). Let O be an observation. The language
accepted by O is defined as L(O) := {W ∈ Σ∗ | ∀p, Nil(OW̄p) }.

A previous work [3] investigated the semiring of balanced wirings, that are
defined as sets of balanced—or “height-preserving”—flows.

Definition 13 (balance). A flow f = t ↼ u is balanced if for any variable
x ∈ var(t) ∪ var(u), all occurrences of x in both t and u have the same height
(recall notations p. 4). A balanced wiring F is a sum of balanced flows and the
set of balanced wirings is written Rb.

A balanced observation is an element of O[Rb •Rb ].

This simple restriction was shown to characterize (non-deterministic) logarith-
mic space computation [3, Theorems 34-35], with a natural subclass of balanced
wirings corresponding to the deterministic case. The balanced restriction won’t
be further considered, even if previous results on the nilpotency problem for
balanced wirings [3, p. 54], [8, Theorem IV.12] are required to complete the
detailed proof of Theorem 5 [4,8].

2.3 The Stack Semiring

This paper deals with another restriction on flows, namely the restriction to unary
flows, i.e. defined with unary function symbols only. The semiring of wirings
composed only of unary flows is called the Stack semiring, and will be shown to
give a characterization of polynomial time computation. Below are the needed
definitions and results about this semiring, a more complete picture is in the
second author’s Ph.D. thesis [8].
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Definition 14 (unary flows). A unary flow is a flow built using only unary
function symbols and a variable. The semiring Stack is the set of wirings of the
form

∑
i ti ↼ ui where the ti ↼ ui are unary flows.

Example 1. The flows f(f(x )) ↼ g(x ) and x ↼ g(x ) are both unary, while x •
f(x) ↼ g(x) and f(c) ↼ x are not.

The notion of cyclic flow is crucial to prove the characterization of polynomial
time computation. It is complementary to the nilpotency property for elements
of Stack , i.e. a wiring in Stack will be either cyclic or nilpotent.

Definition 15 (cyclicity). A flow t ↼ u is a cycle if t and u are matchable
(Definition 2). A wiring F is cyclic if there is a k such that F k contains a cycle.

Remark 1. A flow f is a cycle iff f2 6= 0, which in turn implies fn 6= 0 for all n
in the case f is unary. This does not hold in general: f = x •c↼ d•x is a cycle
as f2 = c•c↼ d•d 6= 0, but f3 = (x •c↼ d•x )(c•c↼ d•d) = 0.

Theorem 2 (nilpotency). A wiring F ∈ Stack is nilpotent iff it is acyclic.

Proof (sketch [8, theorem II.52]). An immediate consequence of Remark 1 is that
if F is acyclic, then it is not nilpotent. The converse is a consequence of a bound
on the height of elements of Fn when F is acyclic [10]. From this, a contradiction
can be obtained by realizing that manipulating bounded height terms built from
a finite pool of symbols implies that one is wandering in a finite set and will
eventually be cycling in it.

Example 2. The following nilpotent element of Stack illustrates how the nilpo-
tency problem can be tricky to solve efficiently:

F := f1(x) ↼ f0(x)
+ f0(f1(x)) ↼ f1(f0(x))
+ f0(f0(f1(x))) ↼ f1(f1(f0(x)))
+ f0(f0(f0(x))) ↼ f1(f1(f1(x)))

Taking the sequence fxfyfz to be the integer x+ 2y+ 4z, this wiring implements
a counter from 0 to 7 in binary notation, that resets to 0 when it reaches 8. It
is clear with this intuition in mind that this wiring is cyclic. Indeed, an easy
computation shows that f0(f0(f0(x))) ↼ f0(f0(f0(x))) ∈ F 8.

Lifting this example to the case of a counter from 0 to 2n − 1, gives a wiring
for which the number of iterations needed to find a cycle is exponential in its size.
This rules out a polynomial time decision procedure for the nilpotency problem
that would simply compute iterations of a wiring until it finds a cycle.

Finally, let us define a new class of observations, based on the Stack semiring.

Definition 16 (balanced observation with stack). A balanced observation
with stack is an element of the semiring Ob+s := O[Stack •Rb ].
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3 Pushdown Automata and Ptime Completeness

Automata form a simple model of computation that can be extended in different
ways. For instance, allowing multiple heads that can move in two directions on the
input tape gives a model of computation equivalent to read-only Turing machines.
If one adds moreover a “pushdown stack” one defines “pushdown automata”, well-
known to capture polynomial-time computation. Ptime-completeness of balanced
observation with stacks will be attained by encoding pushdown automata: we
recall briefly their definition and characterization of Ptime, before sketching how
to represent them as observations.

Definition 17 (pushdown automata (2MFA+S)). For k > 1, a pushdown
automaton (formally, a 2-way k-head finite automaton with pushdown stack
(2MFA+S(k))) is a tuple M = {S, i, A,B,B,C,�, σ} where:
– S is the finite set of states, with i ∈ S the initial state;
– A is the input alphabet, B the stack alphabet;
– B and C are the left and right endmarkers, B,C/∈ A;
– � is the bottom symbol of the stack, � /∈ B;
– σ is the transition relation, i.e. a subset of the product (S× (A./)k ×B�)×

(S×{−1, 0,+1}k×{pop, push(b)}) where A./ (resp. B�) denotes A∪{B,C}
(resp. B ∪ {�}). The instruction −1 corresponds to moving the head one
cell to the left, 0 corresponds to keeping the head on the current cell and
+1 corresponds to moving it one cell to the right. Regarding the pushdown
stack, the instruction pop means “erase the top symbol”, while, for all b ∈ B,
push(b) means “write b on top of the stack”.

The automaton rejects the input if it loops, otherwise it accepts. This condition
is equivalent to the standard way of defining acceptance and rejection by “reaching
a final state” [35, Theorem 2]. Modulo another standard transformation, we
restrict the transition relation so that at most one head moves at each transition.

We used in our previous work [3,6] the characterization of Logspace and
NLogspace by 2-way k-head finite automata without pushdown stacks [43,
pp. 223–225]. The addition of a pushdown stack improves the expressiveness of
the machine model, as stated in the following theorem.

Theorem 3. Pushdown automata characterize Ptime.

Proof. Without reproving this classical result of complexity theory, we review
the main ideas supporting it.

Simulating a Ptime Turing machine with a Pushdown automata amounts to
designing an equivalent Turing machine whose movements of heads follow a regular
pattern. That permits to seamlessly simulate their contents with a pushdown stack.
A complete proof [16, pp. 9–11] as well as a precise algorithm [43, pp. 238–240]
can be found in the literature.
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Simulating a pushdown automata with a polynomial-time Turing machine cannot
amount to simply simulate step-by-step the automaton with the Turing machine.
The reason is that for any pushdown automaton, one can design a pushdown
automaton that recognizes the same language but runs exponentially slower [1,
p. 197]. That the pushdown automaton can accept its input after an exponential
computation time is similar with the situation of the counter in Example 2.

The technique invented by Alfred V. Aho et al. [1] and made popular by
Stephen A. Cook consists in building a “memoization table” allowing the Turing
machine to create shortcuts in the simulation of the pushdown automaton,
decreasing drastically its computation time. In some cases, an automaton with
an exponentially long run can even be simulated in linear time [17].

Let us now consider the proof of Ptime-completeness for the set of balanced
observations with stacks. It relies on an encoding that is similar to the previously
developed encoding of 2-way k-head finite automata (without pushdown stack)
by flows [3, Sect. 4.1]. The only difference is the addition of a “plug-in” that
allows to represent stacks in observations.

Remember that acceptance by observations is phrased in terms of nilpotency
of the product OW̄p of the observation and the representation of the input
(Definition 12). Hence the computation in this model is defined as an iteration:
one computes by considering the sequence OW̄p, (OW̄p)

2, (OW̄p)
3, . . . and the

computation either ends at some point (i.e. accepts)—that is (OW̄p)
n = 0 for some

integer n—or loops (i.e. rejects). This iteration represents a dialogue between
the observation and its input: whereas an automaton is often thought of as
manipulating some the “passive” data, in our setting, the observation and the
word representation interact, taking turns in making the situation evolve.

Theorem 4. If L ∈ Ptime, then there exists a balanced observation with stack
O ∈ Ob+s such that L = L(O).

Proof. Let A = Σ be the input alphabet and M the 2MFA+S(k + 1) that
recognizes L. By Theorem 3, such a M exists, and its transition relation is
encoded as a balanced observation with stack (Definition 16). More precisely,
the automaton will be represented as an element OM of Ob+s = O[Stack •Rb ]
which can be written as a sum of flows of the form

c′ •d′ •σ(x)•q′ •auxk(y′1, . . . , y
′
k)•head(z′) ↼

c•d•s(x)•q•auxk(y1, . . . , yk)•head(z)

with
– c, c′ ∈ Σ ∪ {?} and d, d′ ∈ {l, r},
– σ a finite sequence of unary function symbols,
– s a unary function symbol,
– q, q′ two constant symbols,
– auxk and head two functions symbols of respective arity k and 1.
The intuition behind the encoding is that a configuration of a 2MFA+S(k + 1)

processing an input can be seen as a closed term

c•d•τ(�)•q•auxk(pi1 , . . . , pik)•head(pj)
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where the pi are position constants representing the positions of the main pointer
(head(pj)) and of the auxiliary pointers (auxk(pi1 , . . . , pik)); the symbol q repre-
sents the state the automaton is in; τ(�) represents the current stack; the symbol
d represents the direction of the next move of the main pointer; the symbol c
represents the symbol currently read by the main pointer.

When a configuration matches the right side of the flow, the transition is
followed, leading to an updated configuration.

More precisely, the iterations of OMW̄p, the product of the encoding ofM with
a word representation, is observed. Let us now explain how the basic operations
of M are simulated:

Moving the pointers. Looking back at the definition of the encoding of words
(Definition 10) gives a new reading of the action of the representation of a word:
it moves the main pointer in the required direction. From that perspective, the
position holding the symbol ? in Definition 10 allows to simulate the behavior of
the endmarkers B and C.

On the other hand, the observation is not able to manipulate the position
of pointers directly (remember observations are forbidden to use the position
constants) but can change the direction symbol d, rearrange pointers (hence
changing which one is the main pointer) and modify its state and the symbol c
accordingly. For instance, a flow of the form

· · ·•auxk(x, . . . , yk)•head(y1) ↼ · · ·•auxk(y1, . . . , yk)•head(x)

encodes the instruction “swap the main pointer and the first auxiliary pointer”.
Note however that our model has no built-in way to remember the values

of the auxiliary pointers—it remembers only their positions as arguments of
auxk(· · · )—, but this can be implemented easily using additional states.

Handling the stack. Given a unary function symbol b(·) for each symbol b of the
stack alphabet B�, reading the stack, pushing and popping elements are easily
implemented:

· · ·•x• · · ·↼ · · ·•b(x)• · · · (Read b and pop it)
· · ·•c(b(x))• · · ·↼ · · ·•b(x)• · · · (Read b and push c)

Changing the state. Given a constant q for each state q of M , updating the state
amounts to picking the right q and q′ in the flow representing the transition.

Acceptance and rejection. The encoding of acceptance and rejection is slightly
more delicate, as detailed in a previous article [5, 6.2.3.].

The basic idea is that acceptance in our model is defined as nilpotency, that
is to say: the absence of loops. If no transition in the automaton can be fired,
then no flow in our encoding can be unified, and the computation ends.

Conversely, a loop in the automaton will refrain the wiring from being nilpo-
tent. Loops should be represented as a re-initialization of the computation, so
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that the observation performs forever the same computation when rejecting the
input. Another encoding may interfere with the representation of acceptation
as termination: an “in-place loop” triggered when reaching a particular state
would make the observation cyclic, hence preventing the observation from being
nilpotent no matter the word representation processed.

Indeed, the “loop” in Definition 17 of pushdown automata is to be read as
“perform forever the same computation”.

Observations resulting from encoding pushdown automata are sums of flows of
a particular form (shown at the beginning of the preceding proof). However, using
general observations with stack, not constrained in this way, does not increase
the expressive power: the next section is devoted to prove that the language
recognized by any observation with stack lies in Ptime.

4 Nilpotency in Stack and Ptime soundness

We now introduce the saturation technique, which allows to decide nilpotency
of Stack elements in polynomial time. This technique relies on the fact that in
certain cases, the height of flows does not grow when computing their product.
It adapts memoization [32] to our setting: we repeatedly extend the wiring by
adding pairwise products of flows, allowing for more and more “transitions”.

Remark 2. As pointed out by a reviewer of a previous version of this work,
deciding the nilpotency of a unary flow is reminiscent of the problem of acyclicity
for the configuration graph of a pushdown system (PDS) [13], a problem known to
lie in Ptime [15]. However, our algorithm treats every state of the corresponding
PDS as initial, and would detect cycles even in non-connected components: our
problem is probably closer to the “uniform halting problem” [34], a problem
known to be decidable [14, p. 10]. Whether this last problem, equivalent to
deciding the nœthériennité of a finite system rewriting suffix words, is known to
lie in Ptime, and if our Theorem 5 entails that bound, are both unknown to us.

Notation 18. Let τ and σ be sequences of unary function symbols. If h
(
τ(x)

)
≥

h
(
σ(x)

)
(reps. h

(
τ(x)

)
≤ h

(
σ(x)

)
), we say that τ(x) ↼ σ(x) is increasing (resp.

decreasing).
A wiring in Stack is increasing (resp. decreasing) if it contains only increasing

(resp. decreasing) unary flows.

Lemma 1 (stability of height). Let τ and σ be sequences of unary function
symbols. If τ is decreasing and σ is increasing, then h(τσ) ≤ max{h(τ), h(σ)}.

With this lemma in mind, we can define a shortcut operation that augments
an element of Stack by adding new flows while keeping the maximal height
unchanged. Iterating this operation, we obtain a saturated version of the initial
wiring, containing shortcuts, shortcuts of shortcuts, etc. In a sense we are designing
an exponentiation by squaring procedure for elements of Stack , the algebraic
reading of memoization in our context.
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Definition 19 (saturation). If F ∈ Stack we define its increasing F ↑ := {f ∈
F | f is increasing} and decreasing F ↓ := {f ∈ F | f is decreasing} subsets. We
set the shortcut operation short(F ) := F +F ↓F ↑ and its least fixpoint, which we
call the saturation of F : satur(F ) :=

∑
n∈N short

n(F ) (where shortn denotes
the nth iteration of short).

The point of this operation is that it is computable in Ptime (the fixpoint is
reached in polynomial time) because of Lemma 1. This leads to a Ptime decision
procedure for nilpotency of elements of Stack .

Theorem 5 (nilpotency is in Ptime). Given any integer h, there is a proce-
dure Nilph(·) ∈ Ptime that, given a F ∈ Stack such that h(F ) ≤ h as an input,
accepts iff F is nilpotent.

Proof (sketch [8, theorem IV.15]). This relies on the fact that satur (·) is com-
putable in polynomial time and that the cyclicity of F and that of satur (F ) are
related. More precisely F is cyclic iff either satur (F )↑ or satur (F )↓ is. Finally
one has to see that the case of increasing or decreasing wirings is easy to treat
by discarding the bottom of large stacks, which is harmless in that case.

The saturation technique can then be used to show that the language rec-
ognized by an observation with stack always belongs to the class Ptime. The
important point in the proof is that, given an observation O and a representation
W̄p of a word W , one can produce in polynomial time an element of Stack whose
nilpotency is equivalent to the nilpotency of OW̄p.

Proposition 1. Let O ∈ Ob+s be an observation with stack. There is a procedure
RedO(·) ∈ FPtime that, given a wordW as an input, outputs a wiring F ∈ Stack
with h(F ) ≤ h(O) such that F is nilpotent iff OW̄p is for any choice of p.

This is done essentially by remarking that the “balanced” part of the computa-
tion can never step outside a finite computation space, so that one can associate
to each configuration a unary function symbol that is put on top of the stack.

Theorem 6 (soundness). If O ∈ Ob+s , then L(O) ∈ Ptime.

5 Unary Logic Programming

In previous sections, we showed how the Stack semiring captures polynomial time
computation. As we already mentioned, the elements of this semiring correspond
to a specific class of logic programs, so that our results have a reading in terms
of complexity of logic programming [22] which we detail now.

Definition 20 (data, goal, query). A unary query is Q = (D,P,G), where:
– D is a set of closed unary terms (a unary data),
– P is a an element of Stack (a unary program),
– G is a closed unary term (a unary goal).
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We say that the query Q succeeds if G a can be derived combining d a
with d ∈ D and the elements of P by the resolution rule presented in Sect. 2.1,
otherwise we say the query fails. The size |Q| of the query is defined as the total
number of occurrences of symbols in it.

To apply the saturation technique directly, we need to represent all the
elements of the unary query (data, program, goal) as elements of Stack . This
requires a simple encoding.

Definition 21 (encoding unary queries). We suppose that for any constant
symbol c, we have a unary function symbol c(·). We also need two unary functions,
START(·) and ACCEPT(·). To any unary data D we associate an element of Stack :
[D] := { τ(c(x)) ↼ START(x) | τ(c) ∈ D } and to any unary goal G = τ(c) we
associate 〈G〉 := ACCEPT(x) ↼ τ(c(x)).

Note that the program part P of the query needs not to be encoded as it
is already an element of Stack . Once a query is encoded, we can tell if it is
successful or not using the language of the resolution semiring.

Lemma 2 (success). A unary query Q = (D,P,G) succeeds if and only if
ACCEPT(x) ↼ START(x) ∈ 〈G〉Pn[D] for some n.

The saturation technique then can be applied to unary queries adding to new
shortcut rules which eventually allow to decide acceptance.

Lemma 3 (saturation of unary queries). A unary query Q = (D,P,G)
succeeds if and only if ACCEPT(x) ↼ START(x) ∈ satur

(
[D] + P + 〈G〉

)
.

Theorem 7 (Ptime-completeness). The UQuery problem (given a unary
query, is it successful?) is Ptime-complete.

Proof. The lemma above, combined with the fact that satur (·) is computable
in polynomial time,6 ensures that the problem lies indeed in the class Ptime.
The hardness part follows from a variation on the encoding presented in Sect. 3
and the reduction derived from Proposition 1.

Remark 3. We presented the result in a restricted form to stay in line with the
previous sections. However, it should be clear to the reader that it would not be
impacted if we allowed: non-closed goals and data; programs with no restriction
on variables, e.g. f(x) ↼ g(y); constants in the program part of the query.

Remark 4. In terms of complexity of logic programs, we are considering the
combined complexity [22, p. 380]: every part of the query Q = (D,P,G) is
variable. If for instance we fixed P and G (thus considering data complexity), we
would have a problem that is still in Ptime, but it is unclear to us if it would
be complete. Indeed, the encoding of Sect. 3 relies on a representation of inputs
as plain programs, and on the fact that the evaluation process is a matter of
interaction between programs rather than mere data processing.
6 The bound on the running time of the procedure computing satur (·) being exponen-
tial in the height, one needs to first process the query into an equivalent one using
only terms of bounded height, which can easily be done in polynomial time
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6 Perspectives

Adding a “stack plugin” to observations extends modularly previous works [2,3,5,6]
and gives the perfect tool to characterize Ptime. This modularity was inspired
by the classical addition of a stack to an automaton, allowing to switch from
Logspace to Ptime, and providing a decisive proof technique: memoization—
or exponentiation by squaring in our context—implemented as saturation. The
automata’s qualitative constraint on memory is directly represented as a syntactic
restriction on flows.

In this setting, evaluation is inspired by the interactive approach to the Curry-
Howard correspondence—geometry of interaction—, which makes the complexity
parametric in the program and the input. This mechanism of computation differs
from automata’s step-by-step evaluation, but that does not prevent the simulation
of pushdown automata by unary logic program.

The mechanism of pre-computation of transitions, known as memoization, was
adapted in a setting where logic programs are represented as algebraic objects.
This saturation technique computes shortcuts in a logic program to decide its
nilpotency in polynomial time. As it turns out, this is similar to the techniques
employed to solve efficiently the problem of termination of pushdown systems.

More generally, this approach to complexity is based either on operator
algebra [31,5,6] or unification theory [8,2,3]: it is emerging as a meeting point for
computer science, logic and mathematics, and raises a number of perspectives.

A number of interrogations emerges naturally when considering the relations
to proof theory. First, we could consider the Church encoding of other data
types—trees for instance—and define “orthogonally” set of programs interacting
with them, wondering what their computational nature is. In the distance, one
may hope for a connection between our approach and ongoing work on higher
order trees and model checking [33]; all alike, one could study the interaction
between observations and one-way integers—briefly discussed in earlier work [3]—
or non-deterministic data. Second, a still unanswered question of interest is to
give proof-terms representation of captured programs, i.e. observations.

Finally, it should be possible to represent functional computation (and not
only decision problems, i.e. to switch from Ptime to FPtime), by considering
a more general notion of observation that could express what an output is.
In that perspective, a good place to start should be to show that light logics
characterization results [9] can be recovered via our methods, which seems very
likely but remains to be precisely investigated.
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