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On the benefits of using multivariate analysis in
mass spectrometric studies of combustion-generated
aerosols

D. Ducaa, C. Irimieab, A. Faccinettoc, J. A. Noblea,†, M. Vojkovica, Y. Carpentiera, I. K.
Ortegab, C. Pirima and C. Focsaa

Detailed molecular-level analysis of combustion emissions may be challenging even with high-
resolution mass spectrometry. The intricate chemistry of the carbonaceous particles surface layer
(which drives their reactivity, environmental and health impacts) results in complex mass spec-
tra. Building on a recently proposed comprehensive methodology (encompassing all stages from
sampling to data reduction), we propose herein a comparative analysis of soot particles produced
by three different sources: a miniCAST standard generator, a laboratory diffusion flame and a
single cylinder internal combustion engine. The surface composition is probed by either laser or
secondary ion mass spectrometry. Principal component analysis and hierarchical clustering anal-
ysis proved their efficiency in both identifying general trends and evidencing subtle differences
that otherwise would remain unnoticed in the plethora of data generated during mass spectro-
metric analyses. Chemical information extracted from these multivariate statistical procedures
contributes to a better understanding of fundamental combustion processes and also opens to
practical applications such as the tracing of engine emissions.

1 Introduction1

Multivariate analysis (MVA) methods are powerful tools to un-2

ravel trends in complex databases. They have been successfully3

applied in the past, for instance, to identify drug metabolites4

in biological fluids1, to evaluate profiles of volatile compounds5

present in mainstream tobacco smoke2, or else, to assess surface6

water quality3. Among the MVA methods commonly used4 are7

the principal component analysis (PCA) and the hierarchical clus-8

tering analysis (HCA). The former is used to reveal hidden pat-9

terns in databases, by emphasising the variance between samples10

and thus highlighting their differences and similarities5, whereas11

the latter searches for patterns in a database by grouping the ob-12

servables into distinct clusters. Their capability at distinguishing13

various complex samples, as exemplified for a while now in the14

field of biology, has recently led to their consideration for unrav-15

elling the chemical composition of multifaceted samples of envi-16
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ronmental interest.17

Atmospheric aerosols are airborne particles consisting of an18

intricate mixture of chemical constituents whose nature varies19

greatly depending upon their emission source and evolution20

within the atmosphere. Carbonaceous particles account for a21

significant fraction of atmospheric particulate matter in urban22

areas (typically 30-50% by mass6–8). They are mainly formed23

of soot, i.e. particles generated by the incomplete combustion24

of hydrocarbon-based fuels or biomass. Accordingly, soot parti-25

cles hold a multitude of chemical compounds derived from vari-26

ous sources (remnant of fuels, combustion and/or post-oxidation27

products, etc.) that may have been further transformed (aged)28

by the time they are analysed due to their continuous interaction29

with environmental elements (solar rays, water molecules, pol-30

lutants, etc.). Soot particles are therefore considered a complex31

mixture that often needs a concerted analytical scheme to be fully32

resolved.33

Mass spectrometry (MS) based techniques have significantly34

contributed to better understanding soot chemistry over the35

years. They are generally robust techniques that do not require36

extensive sample preparation, and are hence preferred for the37

analysis of such complex samples. Furthermore, the amount of38

particulate matter required to perform MS analysis is relatively39

small. MS based techniques mostly differ by the way the ions40
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transferred to the mass spectrometer are created (e.g. soot par-41

ticle aerosol mass spectrometry (SP-AMS)9, two-step laser mass42

spectrometry (L2MS)10, time-of-flight secondary ion mass spec-43

trometry (ToF-SIMS)11,12), which often condition their specificity44

to provide information on either bulk or surface chemical compo-45

sition. Ultra high resolution mass analyzers as Orbitrap, Fourier46

transform ion cyclotron resonance (FT-ICR) and high resolution47

quadrupole time of flight MS can reach a resolving power higher48

than 90 00013,14. These techniques were developed mainly for49

proteomics and pharmaceutical analyses, but lately their applica-50

tion has been extended to many other fields among which they51

start being used and adapted to atmospheric aerosols15,16. How-52

ever, ultra high resolution mass spectrometry is still very rarely53

applied to the analysis of combustion products, with only a few54

examples to date17. Ultra high resolution mass analyzers are55

powerful analytical tools, however they still need validation of56

the sampling protocols. For instance, the sample transfer into57

the instrument is based on nanospray desorption electrospray us-58

ing a polar solvent for Orbitrap, followed more recently by laser59

desorption for FT-ICR and atmospheric pressure chemical ioniza-60

tion (APCI) for APCI-Orbitrap13,16,17. Let us also emphasize that61

in directed energy (laser, ion beam) desorption methods, beside62

the analyzer performances, the condensed-gas phase transfer it-63

self plays a critical role in the maximum achievable mass resolu-64

tion and on the total number of detected signals, trough, e.g., the65

sample/substrate roughness or conductive properties. We there-66

fore stress the need for a thorough evaluation (and optimization)67

of the entire analysis chain, from sample collection/deposition on68

suitable substrates, to sample transfer/ionization into gas phase,69

ions mass separation and detection, and finally powerful data70

treatment and interpretation18,19.71

Mass spectra of soot particles can be very complex, featuring72

hundreds and even thousands mass peaks, which quickly renders73

the interpretation of mass spectra difficult and therefore limits74

the potentiality of MS to resolve complex mixtures. Accordingly,75

resolving sample complexity in MS databases is currently tackled76

using two main approaches. The first is based on the identifica-77

tion of marker species, i.e. compounds that are directly linked to78

a source/process and that can thus be considered as their finger-79

prints, while the second approach relies on statistical methods.80

In particular, the use of MVA methods in conjunction with MS is81

a creative combination to exploit all of the information given by82

a multitude of peaks within a great variety of sample sets. Both83

approaches are widely used in analysis of mass spectra obtained84

with aerosol mass spectrometers (AMS)20–22, proton transfer re-85

action mass spectrometers (PTR-MS)23,24, and laser-based MS86

techniques19,25,26. Discrimination using marker species was ap-87

plied to samples of various sources, proving its effectiveness when88

comparing soot emitted from wood combustion20,27, on-road ve-89

hicles25, aircrafts22–24,28,29, ships30 or other ambient aerosols21.90

However, since some marker species may not remain stable over91

the aerosols' life span, especially upon atmospheric ageing6, this92

method may misdirect with regards to the origin of samples a93

priori unknown. To circumvent this limitation, MVA approaches94

are chosen, as they can discriminate samples regardless of their95

provenance or evolution. Therefore, MVA can uncover trends and96

features even in samples of unknown/mixed origins28,31, which97

is particularly interesting when analysing natural aerosols.98

In constant interaction with their surroundings, aerosols sur-99

faces drive their overall reactivity, and therefore, set their evo-100

lution path within the atmosphere (sedimentation, formation of101

secondary organic aerosols, nucleation, etc.). It is hence im-102

perative to uncover their complex surface composition in order103

to assess their impact on both human health and the environ-104

ment32,33. For example, some polycyclic aromatic hydrocarbons105

(PAHs), often found adsorbed on the surface of soot particles, are106

known to be toxic and to have mutagenic effects34,35. In addition,107

the chemical composition of aerosol surfaces determines their hy-108

groscopicity36 and therefore their ability to act as condensation109

nuclei, potentially influencing climate forcing, cloud cover and110

precipitations.111

Our group has been addressing this issue of untangling surface112

chemical compositions of field-collected or laboratory-generated113

combustion aerosols for over a decade10,18,19,26,29,30,37–40. We114

recently described an original and comprehensive experimen-115

tal methodology18 that we later implemented in combining116

statistical-based approaches with compound classification tech-117

niques19. This latter systematic study by Irimiea and cowork-118

ers19 was undertaken to characterise over 100 samples collected119

from different flames. In this work we developed a comprehen-120

sive protocol that allowed significant progress towards the fun-121

damental understanding of soot nucleation and growth. Labora-122

tory flames or standard soot generators are often used to produce123

soot particles with similar physico-chemical properties to the ones124

produced by “real world” combustion sources41. Laboratory soot125

particles offer the advantages of a reproducible, easy-access and126

low-cost production, which is of great importance when testing127

the robustness of a protocol. Therefore, this necessary step is of128

paramount importance for further refinements in field-collected129

combustion-generated particle analyses.130

2 Experimental131

In this section, the choice of the combustion conditions, the sam-132

pling approach and the experimental techniques used to charac-133

terised the samples are detailed. In particular, L2MS and SIMS134

are used in parallel to obtain information on the chemical com-135

position of combustion generated aerosols.136

2.1 Soot samples137

Soot samples are generated in different combustion conditions138

(fuel, burner and sampling method) in order to test the ability of139

our data treatment protocols to reveal differences and similarities140

between samples. The sampling procedure, including the sub-141

strate choice and its preparation, is optimised according to our142

previous experience18. In particular, the sample-substrate reac-143

tivity can lead to the formation of a large number of byproducts144

that clutter the mass spectrum and make the identification of in-145

dividual compounds much more difficult. A short description of146

all analysed samples (summarised in Table 1) is given below. The147

following soot samples have been used:148

• Soot produced by a miniCAST generator (5201c) from Jing149
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Ltd., which is currently proposed as a means of obtaining150

“standard” soot easily comparable to other studies41–43. The151

main difference between the miniCAST working points is the152

oxidation flow (1.50 → 1.15 → 1.00 L min−1) resulting in153

three different combustion conditions (C1 →C2 →C3)41–43.154

The hereby generated particles are subsequently deposited155

on quartz fibre filters.156

• Soot produced by laboratory turbulent diffusion flames sup-157

plied with two different liquid fuels: diesel (D1-5) and158

kerosene (K1-5). Soot particles are sampled from the flame159

at different height above the burner (HAB) and deposited by160

impaction on Si wafers. Sampling at various HAB is a means161

of investigating soot particles of different maturity38.162

• Soot produced by a gasoline single cylinder internal combus-163

tion engine (ICE). Operating conditions of this engine (e.g.164

injection and ignition crank angle, applied load) could be165

easily changed, thus allowing exhausts sampling at various166

working regimes. The following operating points were used:167

– normal engine operation, i.e. engine optimised in168

terms of high efficiency and low particle emissions,169

with medium (GOM) and high (GOH) applied loads,170

which simulate different driving regimes;171

– malfunction simulation with a medium load applied:172

low air/fuel ratio resulting in a high-sooting regime173

(GEF) and an addition of oil to the combustion cham-174

ber (GEO).175

Soot particles are sampled using a cascade impactor176

(NanoMOUDI) to enable for size selection during sampling,177

and deposited on Al foils. We analysed the particles collected178

on the last five stages, having diameter in the range 10-180179

nm (Table 1).180

Off-line analysis of soot particles requires a careful choice of181

the deposition substrate, not only to minimise the risk of contam-182

inating the samples, but also to ensure that a high mass resolution183

can be achieved. In particular, among other factors, the mass res-184

olution is directly linked to the surface roughness of the substrate,185

and can be maximised by depositing the samples on ultra-flat sur-186

faces such as Si or Ti wafers. Furthermore, the sample-substrate187

reactivity can lead to the formation of reaction byproducts that188

may heavily interfere with the assignment of sample-specific sig-189

nals. Therefore, the careful characterization/choice of the deposi-190

tion substrate is mandatory and the comprehensive identification191

of its possible reactivity byproducts is necessary for a valid analyt-192

ical protocol18,19. Regardless of its nature, the substrate should193

undergo a series of preparation steps before it can be used to col-194

lect particulate matter.195

2.2 Two-step laser mass spectrometry (L2MS)196

This laser-based MS technique has been extensively used by our197

group to characterise the chemical composition of combustion198

byproducts during the last decade10,18,26,29,30,37–39. The main199

advantages of L2MS are its high sensitivity and selectivity with re-200

gards to specific classes of compounds thanks to resonant ionisa-201

tion processes that can be tuned to reach for instance the sub-fmol202

limit for the detection of PAHs10,37. In addition, the controlled203

laser desorption process ensures a soft removal of molecules ad-204

sorbed on the particle surface (typically sub-monolayer regime),205

and thus avoids/limits either their fragmentation or the in-depth206

damaging of the underlying carbon matrix37. This qualifies L2MS207

as a surface-sensitive analysis technique, comparable in limit of208

detection (∼10−6 monolayers) with static-mode secondary ions209

mass spectrometry (SIMS, see below), but with much lower an-210

alyte fragmentation. However, our previous L2MS studies were211

limited by a mass resolution of m/∆m∼ 1000, significantly lower212

than the one achievable in SIMS (up to m/∆m∼ 10 000, depend-213

ing on the deposition substrate18,19). In the current work, we214

take benefit of the recent implementation of a new mass spec-215

trometer (Fasmatech S&T) which combines ion cooling, Radio216

Frequency (RF) guiding and Time of Flight (ToF) analyser to217

reach a mass resolution of about m/∆m∼ 15000. In this new ex-218

perimental setup, the sample, placed under vacuum (10−8 mbar219

residual pressure), is irradiated at 30° angle of incidence by a fre-220

quency doubled Nd:YAG laser beam (Quantel Brilliant, λ= 532221

nm, 4 ns pulse duration, ∼50 mJ cm−2 fluence, 10 Hz repetition222

rate) focused to a 0.3 mm2 spot on the surface. The desorbed223

compounds form a gas plume expanding in the vacuum normally224

to the sample surface, and are ionised by an orthogonal UV laser225

beam (Quantel Brilliant, λi = 266 nm, 4 ns pulse duration, 10226

Hz repetition rate, ∼0.3 J cm−2 fluence). At this ionisation wave-227

length, a high sensitivity is achieved for PAHs through a resonance228

enhanced multiphoton ionisation process 1+1 REMPI44–46. Care229

must be taken on the coupling of the desorption and ionisation230

steps in this laser-based MS technique47–49. Moreover, by chang-231

ing the ionisation wavelength, one can target different classes of232

compounds. The generated ions are then RF-guided to a He colli-233

sion cell for thermalisation and subsequently mass analysed in a234

time of flight mass spectrometer (ToF-MS).235

2.3 Secondary Ion Mass Spectrometry (SIMS)236

In addition, the samples are characterised by using a commercial237

IONTOF ToF-SIMS5 secondary ion mass spectrometer with maxi-238

mum resolving power of m/∆m ∼ 10 000. In short, samples are239

placed in the analysis chamber with a residual pressure of ∼ 10−7
240

mbar. The surface of the sample is bombarded by a 25 keV Bi+3241

ion beam with a current of 0.3 pA in static mode. A small fraction242

of the ejected atoms/molecules are ionised (secondary ions) and243

can thus be analysed using a time-of-flight tube (V mode). Mass244

spectra are recorded in both positive and negative polarities, to245

obtain the maximum amount of information on the sample18,19.246

3 Data Analysis Methodology and Exam-247

ples of Applications248

The data presented below is analysed following an approach249

structured in three main points that include: mass defect analysis250

for identification of unknown compounds (Section 3.1), multi-251

variate analysis for the reduction of the number of dimensions of252
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Table 1 Soot samples used to put in evidence the proposed methodology

Name Fuel Source Substrate Description Analysing technique

C1
propane miniCAST Quartz fibre filters

1.5 l/min oxidation flow
L2MS +C2 1.15 l/min oxidation flow

C3 1.0 l/min oxidation flow
D1

diesel diffusion flame Si wafer

HAB = 6mm

SIMS +/-
D2 HAB = 12mm
D3 HAB = 14mm
D4 HAB = 18mm
D5 HAB = 24mm
K1

kerosene diffusion flame Si wafer

HAB = 6mm

SIMS +/-
K2 HAB = 12mm
K3 HAB = 14mm
K4 HAB = 18mm
K5 HAB = 24mm

GOM1

gasoline Al foil

�100 - 180nm

SIMS +/-
GOM2 ICE, �56 - 100nm
GOM3 optimal conditions, �32 - 56nm
GOM4 medium load �18 - 32 nm
GOM5 �10 - 18 nm
GOH1

gasoline

ICE,

Al foil

�100 - 180nm

SIMS +/-
GOH2 optimal conditions, �56 - 100nm
GOH3 high load �32 - 56nm
GOH4 �18 - 32 nm
GEF1

gasoline

ICE,

Al foil

�100 - 180nm

SIMS +/-
GEF2 low Air/Fuel ratio �56 - 100nm
GEF3 �32 - 56nm
GEF4 �18 - 32 nm
GEO1

gasoline

ICE,

Al foil

�100 - 180nm

SIMS +/-
GEO2 addition of oil �56 - 100nm
GEO3 �32 - 56nm
GEO4 �18 - 32 nm

the dataset (Section 3.2) and eventually mass peak grouping for253

uncovering hidden trends and highlight correlations between dif-254

ferent classes of compounds (Section 3.3). This section details the255

proposed data treatment protocol. Mass spectra of the previously256

described samples have been used to demonstrate its advantages,257

including its universal character (the ability to be used with mass258

spectra of various samples, obtained with different experimen-259

tal techniques). Mass spectra were recorded with either L2MS or260

SIMS in multiple regions of the sample surface, to ensure the con-261

sistency of the method and to build a database allowing a more262

advanced statistical analysis. Once all the peaks coming from the263

substrate are removed, the data is ready to be processed.264

3.1 Mass defect analysis265

Mass defect analysis is used to assign a molecular formula to the266

recorded accurate mass50,51. By convention, the mass defect of267

12C is defined as zero, therefore the mass defect of every other268

existing isotope is either positive or negative, depending on its269

relative nuclear binding energy to 12C. Since each nuclide has270

unique mass defect, molecules with different isotopic composition271

have unique exact mass. For example, while a resolving power272

of around 5000 is sufficient to completely separate C14H+
10 and273

C13H6O+, for closely spaced ions the required resolving power274

can easily increase up to 105 or even higher. As the m/z increases,275

the number of combinations of different elements resulting in the276

same nominal mass grows very fast. This experimental limitation277

is already tackled in Irimiea et al. 19 when discussing the role of278

oxygen containing compounds. Nevertheless, a lower mass res-279

olution mass spectrum can provide several helpful information.280

In particular, in the investigation of soot particles sampled from281

laboratory flames C, H and O are the major contributors to the282

total mass of soot, and therefore the mass analysis of peaks with283

a high signal-to-noise ratio (SNR) can be reasonably limited to284

CmHnO+
p ions. Identification within 5 ppm, often but not neces-285

sarily assumed as “certain”52, in our work is possible up to m/z ≈286

150 – 200. A priori knowledge of the samples and experimental287

conditions can extend this range up to m/z ≈ 500 – 550 and lead288

to self consistent results and coherence with many other works in289

the literature.290

The mass defect analysis can also be used to simplify the visu-291

alisation of complex mass spectra (e.g. Figures S1 and S2). This292

is generally achieved by plotting the mass defects of all peaks ver-293

sus their nominal mass. The resulting graph (mass defect plot,294

Figure 1 and S3) enables the visualisation of complex databases295

in one single plot, and highlights trends that are often invaluable296

to identify unknown species. For instance aliphatic, aromatic or297
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polycyclic aromatic hydrocarbons are aligned on different positive298

slopes corresponding to the addition of H atoms. When analysing299

samples containing hydrocarbons with different degrees of alky-300

lation, the Kendrick mass defect can be used as an alternative way301

of presenting the mass defect data50,51. Kendrick mass defect is302

calculated from the re-normalised mass of a repeating molecu-303

lar fragment to an integer value as shown in Equation 1 for the304

common case of CH2 (m = 14.01565):305

mKendrick = mIUPAC 14.0000
14.01565

(1)

After this conversion, homologous series that contain the re-306

peating fragment have identical Kendrick mass defect and are307

found aligned on horizontal lines, making their identification308

even easier50,53. This is useful when dealing with repeating alkyl309

groups for instance, since their mass defect increases regularly310

with their molecular weight and makes their association to a cer-311

tain series less intuitive when represented on conventional mass312

defect plots50. The most convenient approach (conventional or313

Kendrick) heavily depends on the nature of the sample. If the314

sample is dominated by a variety of different species, the use of315

the conventional mass defect is more advisable. However, when316

the mass spectrum contains many species that only differ by a317

repeating unit such as aliphatic chains for instance (Table S1),318

Kendrick mass defect is more advantageous (Figure S4).319

In this work, mass defect analysis is applied to the data ob-320

tained from L2MS and SIMS to demonstrate its effectiveness321

when dealing with a variety of mass spectrometric data. Figure322

1 shows the mass defect plot obtained from sample C2 analysed323

by L2MS. The suggested representation merges into one graph324

important information extracted from the raw mass spectra that325

include the peaks mass defect (y-axis), nominal mass (x-axis) and326

relative abundance (dot size). Species that line up in the mass327

defect plots typically contain a repeating unit. Additionally, the328

detection of a series of homologous species can help the identi-329

fication of unknown peaks. This is especially helpful for species330

with high molecular masses, where the attribution of a chemical331

formula can be rather delicate.332

As PAHs exhibit a high thermodynamic stability54, they appear333

in great abundance in all mass spectra and this is amplified by the334

high sensitivity of the analysis technique to these specific com-335

pounds (Figure S1). Since the H/C ratio of PAHs is low com-336

pared to other hydrocarbons, they have a relatively small mass337

defect and are thus easily distinguishable from other hydrocar-338

bons. For instance, aromatic hydrocarbons that contain the same339

number of hydrogen atoms and progressively increasing number340

of carbon atoms (e.g. C10H8 → C12H8 → C14H8 → ...→ C22H8)341

can be found on the same horizontal line. Besides hydrocarbons,342

all samples contain oxygen and nitrogen organic derivatives to343

some extent. As a rule of thumb, in the mass defect plot of com-344

bustion generated aerosols, oxygen containing hydrocarbons are345

often found below the corresponding hydrocarbons due to the346

large negative mass defect of oxygen. Nitrogen containing hydro-347

carbons show distinct behaviours. For instance, organic amines348

are often found mixed to their corresponding hydrocarbons due349

to the nucleophilicity of nitrogen that results in their tendency to350

bind one additional hydrogen atom post-ionisation. Organic ni-351

trates, on the other hand, tend to be found at lower mass defect352

due to the presence of oxygen.353

Kendrick mass defect can be used to emphasise some less obvi-354

ous patterns as shown in Figure S4, in which CH (m = 13.007825)355

is used as the base unit.356

3.2 Statistical analysis357

In this section we detail the chemometric techniques, based on358

commonly used statistical tools like multivariate analysis, that359

were adopted by our group to extract chemical information from360

mass spectrometric data. A mass spectrometry database can con-361

tain an extremely variable number of mass spectra (observations),362

and each of them typically contain up to thousands of peaks (vari-363

ables). This database structure should be taken into consideration364

when choosing the most appropriate statistical methods.365

3.2.1 Principal component analysis366

PCA is a powerful statistical tool that can be used to classify sam-367

ples and reveal trends and patterns in databases5, and is often368

used to increase the readability of very complex data55. PCA ap-369

plied to mass spectrometry is especially useful when many mass370

spectra are being compared, since it reduces the dimensionality371

of the database while preserving most of the original informa-372

tion. PCA is a non-parametric analysis, i.e. its output is inde-373

pendent of any hypotheses about data distribution56. In this374

work, PCA is performed on a matrix containing the integrated375

peaks (variables) against the samples (observations). Before ap-376

plying PCA, data obtained from mass spectrometry should un-377

dergo a special preparation procedure56,57 that includes calibra-378

tion, baseline removal, construction of a peak list, peak integra-379

tion and standardisation. PCA applied to data with no normali-380

sation/standardisation is mostly affected by the largest raw vari-381

ance, which can skew the overall interpretation of the dataset.382

Therefore, normalisation techniques are applied to mass spec-383

tra prior PCA analysis when there are differences in the sam-384

ples weight, volume or other properties that may result in ad-385

ditional sources of variance. The most popular and generally rec-386

ommended normalisation method is the normalisation to the total387

ion count (TIC), i.e. the integrated ion count over a given mass388

range18,58,59.389

Care has to be taken when building the peak list as it should390

only contain species representative of the sample. Minor-391

abundance isotopes are usually excluded from the peak list, thus392

allowing to focus on the major-abundance isotopic species58.393

Peaks coming from the substrate and/or originate from the394

sample-substrate reactivity should also be disregarded. Identi-395

fying these peaks, especially the ones corresponding to reaction396

products, can be a difficult task. One approach to their identifica-397

tion involves comparing mass spectra of the sample deposited in398

the same experimental conditions but on different substrates (e.g.399

Si and Ti wafers)18. Another possibility relies on the use of PCA:400

species coming from the sample-substrate reactivity become less401

prominent as the substrate coverage increases and is less avail-402

able for the reaction, and are thus likely to be found all clustered403

in the same principal component.404
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Fig. 1 Mass defect plot obtained from the L2MS mass spectrum of miniCAST soot, C2 sample. The data points represent the assigned accurate mass.
The size of the data points is proportional to the corresponding peak integrated area, normalised to the total ion count after background subtraction.
Molecular formulas of homologous species are displayed. The error bars show the uncertainty on the accurate mass calculated from the obtained
mass resolution.

Each principal component (PC) accounts for a defined percent-405

age of the total variance within the data set, are represented in a406

scree plot and used to select the PCs to take into consideration.407

The loadings represent the weights of each variable used to cal-408

culate the PCs, and are used to understand the contribution of409

each variable to the selected PC. The distance of an observation410

from a PC is represented on the scores plot. Scores are obtained411

for each observation in the database and for each principal com-412

ponent, and are often used as a base to display and classify the413

samples. In the score plot, similar observations group together414

and are separated from dissimilar observations. The clustering415

of the scores is strongly related to the values of the loadings, and416

they are discussed as a whole. The most challenging part of PCA is417

the interpretation of individual PCs and their contribution to the418

investigated processes. To this purpose, there is a vast literature419

providing general guidelines that should be followed5,60–62.420

To illustrate the potential of this technique, we show below421

some application to mass spectrometric data of various combus-422

tion generated aerosol samples.423

3.2.1.1 MiniCAST soot, L2MS424

When L2MS mass spectra of miniCAST soot samples are exam-425

ined, PC1 and PC2 account for ∼ 96% of the total variance, and426

are therefore only considered for the data interpretation. The427

three samples are well separated in the PC2 vs. PC1 scores plot428

(Figure 2). Sample C1 is highly influenced by C14H8, C14H10 and429

C16H10 (high positive PC1 scores) whereas C2 and C3 are domi-430

nated by higher mass aromatic compounds (negative PC1 scores).431

It can be noticed that PC2 (∼ 10%) allows for better discrimina-432

tion between the samples than PC1, especially C2 and C3.433

3.2.1.2 Flame and ICE soot, SIMS434

PCA is applied to the ensemble of SIMS mass spectra obtained435

in positive polarity from soot samples generated by the gasoline436

engine and the laboratory flame (diesel and kerosene fuels). PC1437

and PC2 account together for the 73.3% of the total variance.438

Two main groups are observed in the score plot of both positive439

and negative ions (Figure 3 and S5). While it was not possible to440

clearly associate a phenomenon to PC1 (51.7% of total variance),441

the samples are well separated by the different emission source442

(engine, GOM, and flame, D and K) in PC2 (21.6% of total vari-443

ance). At this level of the analysis PCA cannot distinguish soot444

generated by burning the two different liquid fuels (diesel and445

kerosene) in laboratory flames, which appear mixed together in446

negative PC2.447

PC1 is mainly associated to high H/C fragment ions (negative448

contribution, red dots in the loadings plot (Figure 3), and low449

H/C fragment ions probably resulting from the dissociation of450

large aromatic hydrocarbons (positive contribution, green dots451

in the loadings plot). The main contributions to PC2 come from452

aromatic species (positive contribution, blue dots on the loadings453

plot), and to a smaller extent to high H/C fragment ions. There-454

fore, the contribution of high H/C fragment ions, possibly related455

to the dissociation of aliphatic hydrocarbons, depends less on the456

fuel and more on the combustion conditions (engine vs. con-457
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Fig. 2 Score plots of PC2 vs PC1 for miniCAST soot samples obtained
with L2MS – (a). Ellipses highlight data points coming from different sam-
ples and are added for visual purposes only. (b) – the corresponding
loadings plot of PC2 vs PC1. Several homologous series are highlighted:
Cn+8Hn – red, Cn+10Hn – purple, Cn+12Hn – green.

trolled laboratory flames).458

Going a step further, PCA is applied to gasoline soot samples459

obtained in different engine regimes in order to determine their460

impact on the chemical composition (Figure 4). There is an obvi-461

ous separation between normal engine operation regimes (GOM,462

GOH) and the ones which simulate a malfunction (GEF, GEO).463

A good discrimination is achieved with only the first two compo-464

nents that account for ∼ 98% of the total variance. PC1 alone465

(∼ 91%) allows the separation of regimes, based on the abun-466

dance of aliphatic fragment ions (positive contribution to PC1,467

marked in red in Figure S6). Consequently, samples that simulate468

a malfunction (GEF, GEO) are characterised by a higher relative469

contribution from aliphatic fragment ions compared to optimised470

engine regimes (GOM, GOH). PC2 is linked to the contribution of471

aliphatic fragment ions and aromatic species (positive PC2 value),472

however some aliphatic fragment ions (C5H7, C5H9, C3H7, C4H7)473

show a contribution to negative PC2). The data points corre-474

sponding to optimal engine regimes form a smaller cluster. This475

implies that soot produced in conditions simulating engine mal-476

function shows a much larger variability in chemical composition.477

At this point of the analysis, it is clear that the two regimes that478

simulate a malfunction (GEF, GEO) exhibit similarities, while be-479

ing well separated from the optimised regimes (upper panel of480

Figure 4). This implies that the variance of a certain principal481

component for them is much smaller than the one responsible482

for the separation between optimised and non-optimised regimes.483

Consequently, each group should be analysed independently, thus484

uncovering even smaller contributions to the variance. To demon-485

strate this concept, the same statistical method was applied a486

second time to the two non-optimised regimes, and their com-487

parison lead to discriminate between the two main contributors488

to particulate emissions of the internal combustion engine: fuel489

and oil, Figure 4. In this case, PC1 (∼ 71%), accountable for the490

separation of the two regimes, is linked to the contribution of491

hydrogen-rich hydrocarbons on one side (negative contribution)492

and of fragment ions and aromatic species on the other (positive493

contribution). This reveals that oil-related soot particles feature494

more hydrogen-rich hydrocarbons, while an excess of gasoline495

leads to the production of more aromatic species, Figure S6. The496

increase of the contribution of fragment ions in the latter is prob-497

ably linked to the increase in the aromatic contribution, since the498

majority of fragment ions can be related to dissociation reactions499

of PAHs63. PC2 (∼ 20%) is associated to the presence of aromatic500

hydrocarbons (blue dots in Figure S6). One can also notice that501

samples corresponding to the engine regime with a low air/fuel502

ratio (GEF1) surprisingly lie in the oil-excess region, while sam-503

ples GEO3 appear far from the oil-excess region (Figure 4). It is504

likely that the specific behaviour observed for these samples re-505

lates to their particle size (Table 1) but correlating size to chemi-506

cal composition is out of scope of this paper and will be addressed507

in a future work.508

3.2.2 Hierarchical clustering analysis509

Hierarchical clustering analysis (HCA) is a MVA method that iden-510

tifies patterns in a dataset by creating groups of observations511

called clusters. Unlikely PCA, HCA accounts for the total vari-512

ance in the database60,62. HCA is based on a simple approach513

for building the clusters that starts with one cluster for each ob-514

servation and finishes with a single cluster containing the entire515

database. At each step, the two closest clusters are merged into516

a single new cluster resulting in a dendrogram representative of517

the database. In order to decide which clusters to merge, different518

approaches to measure their distance can be used and give rise to519

several hierarchical methods61,62. In this work, HCA (group av-520

erage method, Euclidean distances) is applied to the same stan-521

dardised matrix used for PCA analysis, on both columns (observa-522

tions) and rows (variables). The HCA output is built in a heatmap523

organised by the clusters obtained on observations and variables.524
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Fig. 3 Score plot of PC2 vs PC1 for positive ions of soot samples obtained from gasoline engine and laboratory flames (left panel). Corresponding
loadings plot of the first two principal components (right panel). For sample description see Table 1.

This representation improves the visualisation of clusters in the525

multidimensional space, in which each tile represents the value526

of the correlation between observations and variables.527

The heatmap obtained for the samples analysed in SIMS pos-528

itive polarity is shown in Figure 5. HCA groups the samples in529

three main clusters (C1, C2 and C3) at distance d1 function of530

the characteristics of the five clusters of variables (R1, R2, R3, R4531

and R5). Cluster C1 is specific to samples GEO1-4, GOM4 and532

D1 due to the high contribution of compounds with H/C > 1 and533

identified in the C1-1 cluster. C1-2 is dissimilar from the C1-1 due534

to the presence of aromatic hydrocarbons and other compounds535

with low H/C ratio. Soot collected from the gasoline engine in536

optimal conditions and after the addition of oil are dominated by537

R5, while there is a shift to R1 and R2 for soot collected from the538

diesel flame. Contrary to C1, C2 has a high contribution of frag-539

ment ions with high (R4) and low (R1) H/C ratio. C2 shows that540

soot collected from the engine in optimal conditions with high541

and medium load have similar chemical fingerprint.542

This representation offers at once a clustering of the samples543

function of the three main classes of chemical compounds iden-544

tified in the mass spectra. For instance, the high content of aro-545

matic hydrocarbons and low H/C fragment ions is specific to soot546

collected from the kerosene flame. Basically, the addition of oil547

increases the fraction of high H/C fragment ions in the emissions,548

the normal operation conditions of the engine have an intermedi-549

ate content of high H/C fragment ions and a slight contribution of550

aromatics with four and five aromatic rings, while kerosene soot551

contains the highest contribution of aromatic compounds and low552

H/C fragment ions. HCA is also applied to L2MS and SIMS neg-553

ative polarity data as detailed in the Supplementary Information.554

In this work, HCA is applied to the raw data corresponding to the555

selected mass spectra but its usefulness can be extended to more556

compact data after using another statistical method for sorting557

the input variables and observations. One of the advantages of558

this method is that it does not require the raw data set. Moreover,559

HCA can be used to visualise clusters that form in the principal560

component space, after applying the PCA, or it can group sam-561

ples according to other properties (mass defect, contribution from562

different classes of compounds, etc).563

3.3 Mass peaks grouping into chemical classes564

A detailed description of the soot chemical composition is cer-565

tainly desirable and can lead to important clues on the soot for-566

mation, growth, ageing and reactivity. However, this can rapidly567

turn into a very cumbersome task, especially if many different568

samples are analysed. For the sake of simplicity, most of the time,569

and especially when long time-series of field-collected data are570

to be treated, individual compounds are grouped in classes (e.g.571

aliphatics, aromatics, oxygenated, sulphur-containing hydrocar-572

bons and so on). This grouping of mass peaks into appropriate573

classes allows easier comparison with other experimental mea-574

surements (e.g. OC/EC29) and facilitates the interaction with575

modellers that use the data as inputs for various scales simula-576

tions. Moreover, this grouping of peaks is also useful when mass577

spectra of several samples are compared to each other in order to578

reveal general trends in their chemical composition.579

When it comes to the chemical composition of combustion gen-580

erated aerosols, three non-specific indicators are often consid-581

ered: amount of ash components (inorganic compounds, IC),582

amount of carbon associated to the carbonaceous matrix (ele-583

mental carbon, EC), and amount of carbon found in organic com-584

pounds (organic carbon, OC)64. IC alone can sometimes help585

identify the main source of the emissions. For instance, K+, Na+,586

K2Cl+ and K3SO+
4 in the positive polarity mass spectra and Cl−,587

SO−3 , HSO−4 and KCl−2 in the negative polarity mass spectra are588

known to be markers of wood combustion65. Generally speaking,589

since IC potentially contains many inorganic compounds, it can590
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Fig. 4 Score plots of the first two principal components for soot samples
produced by a single cylinder engine. Upper panel – discrimination be-
tween different engine regimes, lower panel – particle source discrimina-
tion. Ellipses highlight clusters of data points and are for visual purposes
only. For sample description see Table 1.

and should be further broken down into source specific groups591

when characterising complex systems such as internal combus-592

tion engines. In this case, accepted grouping of inorganic com-593

pounds is: fuel specific (compounds that are coming from fuel594

additives and trace elements (Na, K)11,66), oil specific (detergent595

and anti-wear additives (P, Ca)67) and engine wear tracers (Fe,596

Al, Cr)30,67,68). For addressing the elemental carbon (EC) com-597

ponent, carbon clusters C−n (n=2-4) are considered to be appro-598

priate markers in aerosol mass spectrometry64. This is also con-599

firmed by the high positive correlation between C−2 , C−3 and C−4600

Fig. 5 Two-way hierarchical clustering heat-map for positive ions of gaso-
line, diesel and kerosene soot obtained with SIMS. Each column corre-
sponds to the averaged mass spectra obtained for a soot sample. The
contribution of each mass in individual samples is expressed as relative
value and is represented by the cell colour.

signals in the recorded mass spectra26. In single particle mass601

spectrometry, carbon clusters with even higher masses are also602

considered to be representative of the elemental carbon (C−5 at603

60 u, C−6 at 72 u and C−7 at 84 u)11. While the handling of IC and604

EC is relatively straightforward, the OC landscape looks far more605

complex, with an overwhelming variety of organic compounds,606

generated in various processes and being themselves main actors607

of broad-range time-scale reactivity. A subsequent classification608

of different organic species according to their functional group(s)609

seems therefore necessary. However, the detailed chemical analy-610

sis of a complex mixture of chemicals based on mass spectromet-611

ric data only is still an important challenge that requires the iden-612

tification of the individual ion dissociation patterns. On a prac-613

tical ground, being able to distinguish these compounds is very614

important since they all have different sources and roles in the615

soot formation and ageing mechanisms. For instance, PAHs form616

during combustion and are well known as building blocks of soot617

particles and are generally seen as reliable markers of the over-618
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all OC content29. Organic hydroxyl groups are linked to alcohols619

that are commonly used as additives in gasoline. The presence of620

many compounds containing carbonyl groups has been proposed621

as a marker to distinguish fresh emissions from soot particles aged622

in the atmosphere69.623

A combination of previously described mass peak classification624

methods is shown in Table 2 along with chemical formula assign-625

ments63. Detailed classification of molecular ions by functional626

groups remains difficult by MS alone, however it can be achieved627

in combination with complementary techniques (e.g. FTIR).26
628

Also, for the sake of simplicity, Table 2 displays only the nominal629

masses, but the peak assignment is based on the exact mass (see630

mass defect analysis, Section 3.1). The discussion below is based631

on this grouping of mass peaks.632

Depending on the studied samples, the analysis will focus on633

specific classes from Table 2. For soot samples obtained with634

the miniCAST standard generator, one may want to address the635

impact of the oxidation flow. A possible focus is therefore on636

the evolution of the oxygenated species vs. PAHs (linked to the637

OC content). Since miniCAST soot is a well-studied standard, it638

also allows the comparison of mass spectrometric results with the639

ones reported in the literature based on other experimental tech-640

niques. In the present case, Figure 6 clearly shows an increase of641

the oxygenated species abundance with the oxidation flow, how-642

ever a low oxidation flow (C2 and C3) leads to the formation of643

more PAHs, which confirms previous observations on the same644

set-points of the miniCAST generator43,70.645

Even though examining trends for specific groups can be very646

informative, when it comes to complex mass spectra containing a647

multitude of peaks that can be separated in many different ways,648

not all the groups feature useful trends. It is therefore advis-649

able to first identify the species of interest, groups or individual650

compounds that can be linked to variations in the chemical com-651

position of the samples. This information can be retrieved from652

PCA and HCA as discussed in the sections 3.2.1 and 3.2.2, re-653

spectively. Based on the statistical analysis of positive polarity654

SIMS mass spectra of gasoline, diesel and kerosene soot samples,655

three groups of interest are chosen for further analysis as shown656

in Figure 6: low-mass and low H/C ions (from the dissociation657

of aromatic species63), low-mass and high H/C ions (from the658

dissociation of aliphatic species), and finally large aromatic ions659

(mostly PAHs, stable enough to be detected as molecular ions).660

Gasoline soot shows higher content of large aromatic compounds,661

with high and almost constant contribution to all considered par-662

ticle sizes. Gasoline soot also features the least fragmentation663

that is well consistent with the higher contribution of large aro-664

matics if compared to diesel and kerosene soot. For the other665

two fuels, different zones of the flame, corresponding to different666

stages in the soot formation process, were probed, therefore the667

variation in aromatic content looks more pronounced. It is clear668

that the aliphatic content alone cannot be used to discriminate669

between soot coming from combustion of different fuels, just like670

it was concluded from PCA. However, it still provides valuable in-671

formation about different soot maturity. For example, for diesel672

soot the contribution of aliphatics gradually increases with the673

sampled HAB (HAB ≥ 12 cm). On the other hand the HCA on674

Fig. 6 Several trends retrieved from mass spectra of: (a) – miniCAST
soot (L2MS), (b) – gasoline, diesel and kerosene soot (SIMS).

the negative polarity of SIMS is much easier to interpret because675

the results clearly discriminate the laboratory flame soot from the676

one produced with the gasoline engine. The samples belonging677

to the latest category are clearly evidenced by the presence of678

sulphur and oxygen containing compounds while the soot from679

the flames contains mainly OC and EC. Generally speaking, the680
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Table 2 Grouping of mass peaks into chemical classes

Category m/z Formula m/z Formula m/z Formula m/z Formula
15 CH3 54 C4H6 71 C5H11 99 C7H15

Aliphatics 27 C2H3 55 C4H7 81 C6H9 109 C8H13
(alkynes, 29 C2H5 57 C4H9 83 C6H11 111 C8H15
alkene, 41 C3H5 67 C5H7 85 C6H13 113 C8H17

alkyl, etc.) 43 C3H7 68 C4H8 95 C7H11
53 C4H5 69 C5H9 97 C7H13

Aromatics

26 C2H2 64 C5H4 152 C12H8 216 C17H12
38 C3H2 74 C6H2 154 C12H10 228 C18H12
39 C3H3 75 C6H3 166 C13H10 252 C20H12
40 C3H4 76 C6H4 178 C14H10 276 C22H12
50 C4H2 78 C6H6 266 C21H14 278 C22H14
51 C4H3 91 C7H7 190 C15H10
63 C5H3 128 C10H8 202 C16H10
31 CH3O 69 C4H5O 87 C5H11O 129 C7H13O2
33 CH5O 71 C4H7O 89 C5H13O 137 C10HO
43 C2H3O 73 C3H5O2 97 C6H9O 142 C10H6O
45 C2H5O 73 C4H9O 97 C5H5O2 156 C11H8O

O-containing 47 CH3O2 75 C3H7O2 101 C6H13O 166 C12H6O
(carbonyls, 47 C2H7O 75 C4H11O 105 C7H5O 169 C11H9O

acids, 53 C4H5 81 C5H5O 109 C7H9O 180 C13H8O
ethers, 55 C3H3O 83 C5H7O 111 C6H7O2 205 C14H9O

alcohols, etc.) 57 C3H5O 85 C5H9O 111 C7H11O
59 C3H7O 85 C4H5O2 119 C8H7O
61 C2H5O2 87 C5H11O 123 C7H7O2
61 C3H9O 87 C4H7O2 125 C9HO

N-containing
26 CN 46 CH4NO 60 C2H6NO 89 C2H3NO3
29 CH3N 55 C3H5N 74 C2H4NO2 98 C4H4NO2
44 CH2NO 55 C2H3N2 87 C3H5NO2 121 C8H11N

S-containing 32 S 44 CS 46 CH2S
Unclassified 28 C2H4 56 C4H8 84 C6H12 112 C8H16

hydrocarbons 42 C3H6 70 C5H10 98 C7H14

trends that are shown herewith are very useful when interpret-681

ing the data. However, they are almost impossible to notice in682

the raw mass spectra. Being able to follow the contribution of a683

group of related molecules hidden in a much larger ensemble of684

signals is a powerful feature used to uncover trends that would685

have remained hidden to a more basic analysis. The fact that PCA686

and HCA are able to separate the selected samples into categories687

dependent on their unique pattern of chemical signatures proves688

that mass spectrometry and MVA provide useful insights into their689

properties. The usefulness of this approach allows for an easier690

identification and traceability of combustion generated particles691

with unknown sources.692

4 Conclusions693

Our recently developed comprehensive methodology (based on694

mass defect analysis, PCA/HCA multivariate methods)18 dedi-695

cated to the chemical analysis of combustion-generated aerosols696

is applied here to the study of 30 soot samples generated by697

three different sources using four different fuels. Laser and sec-698

ondary ion mass spectrometry techniques are used to probe their699

surface chemistry. A few examples on the performances of this700

methodology are provided, showcasing its ability to clearly dis-701

criminate samples according to various parameters, such as com-702

bustion source, soot maturity, or engine operating conditions. The703

correlations evidenced by the MVA methods were used for peak704

clustering to highlight the evolution of grand chemical classes705

with the combustion conditions. These trends, along with de-706

tailed molecular-level information, can further help constrain707

the processes involved in particulate matter emissions and pre-708

dict the impact of soot particles on the environment and hu-709

man health. Moreover, aiming for a standardised (generally ac-710

cepted) methodology in treating complex mass spectrometry data711

in aerosol science would certainly allow easier intercomparison712

and the building of extensive shared databases for further spe-713

cific developments. An appealing perspective is the possible ap-714

plication of neural networks to this type of big data, which would715

lead to great advances in automated real-time processing of large716

dataflows.717
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