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ABSTRACT  
 
In this paper, a pseudo translational motion of free asymmetrical rigid body to an absolute reference system is 
studied. A private kind of Theorem of change of generalized body impulse is formulated. This theorem is called 
Theorem of change of pseudo generalized body impulse. A private kind of Condensed Lagrange equations is 
formulated. These equations are called Condensed Lagrange equations for study of pseudo translational motion of 
free asymmetrical rigid body. Using that theorem and those equations, the pseudo translational motion of the rigid 
body is successfully studied. The paper is theoretical, but it gives a base for a number of applications. For example, 
these are investigations of the motion, stability and management of satellite. The other main application is free or 
forced small body vibrations. Moreover, the obtained formulas are appropriate for computer numerical integrations 
by contemporary mathematical programs. 
 
Key words: rigid body, pseudo translational motion, generalized body impulse, condensed Lagrange equations. 

 
 
1. INTRODUCTION 
 
The presented work is a continuation of the article [1]. Here, the obtaining of differential equations, describing a 
rigid body pseudo-translational motion (RBPTM), is treated. This motion is a particular type of rigid body general 
motion (RBGM) when the spherical component is very small [2]. In the mentioned article [2], a linearization of the 
transition matrices and Cardan kinematic equations was performed. 

The rigid body pseudo-translational motion is the basis of very important motions for engineering 
practice. These are the rigid body small three dimensional vibrations and multi-body small three dimensional 
vibrations, where the bodies are connected each others with elastic and damping elements [3, 4, 5]. The 
engineering study of these vibrations requires the use of modern computer programs [6, 7]. One of the most 
convenient programs for such study is MatLab, which works with scalars and matrices. That is why the statement 
in this article entirely in a matrix form is done. 

The small vibrations theory of simple or complex mechanical systems is already developed. Today, using 
this theory, one of the most advanced methods for dynamical study of such mechanical systems is applied. This 
is the Finite Element Method used for dynamical study of complicated mechanical systems [8, 9, 10]. 

In order to obtain the system of differential equations describing RBGM, two basic theorems of Dynamics 
are required: Theorem of change the quantity of motion and Theorem of change the kinetic moment [11, 12, 13, 
14]. In the work [1], these two theorems were united in one. This new theorem was called Theorem of change the 
rigid body generalized impulse (TCRBGI). In this theorem, the actual spherical component of this motion is taken 
into account. When a rigid body pseudo-translational motion is studied, the spherical component is not revealed 
completely. Therefore, it is interesting from a theoretical point of view how TCRBGI can use for RBPTM. In 
addition, Condensed Lagrange equations were defined in the work [1]. The present work shows the specific 
peculiarities of using these equations. 
 
2. KINETICS CHARACTERISTICS 
 

An asymmetric free rigid body ( B ) that achieves a pseudo-translational motion is considered. The movement of 

the body is counted against another body ( A ) conditionally assumed to be immovable. A fixed coordinate 

system ζηξN  is connected to it (Fig.1). 

 Two coordinate systems are introduced at arbitrary point O  in the body ( B ). 

 The first coordinate system ZYXО  moves translational and the second coordinate system zyxО  is 

steadily connected to the body ( B ). 
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The spherical component of the rigid body motion is described by Cardan angles ψ , θ  and ϕ . They are very 

convenient to set the initial conditions and eventually for linearization of the angular rotations [2]. 
 

 
 

Fig.1:  Pseudo translational motion of free rigid body 
 
It is assumed that the two most important Kinematics characteristics are already known. These are the velocity of 

the pole O  and the vector-pseudo angular velocity of the body. They are defined by the following vectors: 

(1)  == OO ρρρρ&v
T

OOO ζηξ &&&  , 

 

(2)  =ωωωω~
T

ZYX

T

zyx θθθ≈θθθ &&&&&&  . 

 
The law of body pseudo translational motion is set with the vector-pseudo generalized coordinates: 
 

(3)  
T

ZYXOOO

T

zyxOOOO θθθζηξ≈θθθζηξ=q~  . 

 
For further presentation of the theory in this article, it is necessary to define a new vector that combines the 

vector velocity of the pole O  and the vector-pseudo angular velocity of the body. It has also a dimension 16 ×  

and has the following type: 
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(5)  
T

ZYXOOO

T

zyxOOOO θθθζηξ≈θθθζηξ= &&&&&&&&&&&&&q~  . 

 

The name of the vector Oq&~  is vector-pseudo generalized velocity of the body at an arbitrary chosen pole O  

from it. 
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The body mass center C  is defined by the absolute radius vector Cρρρρ  and the relative radius vector Cr , 

respectively: 

(6)  Cρρρρ
T

CCC ζηξ=  , 

(7)  
T

CCCC ZYX=r  . 

 

A vector-pseudo generalized velocity of the body at a chosen pole O , which coincides with the mass center C , 
is also defined: 
 

(8)  







=








=

ωωωω

ρρρρ

ωωωω ~~
~ CC

C

&
&

v
q  , 

(9)  
T

ZYXCCC

T

zyxCCCC θθθζηξ≈θθθζηξ= &&&&&&&&&&&&&q~  . 

 
The free ideal rigid body that performs a pseudo translational motion is considered to be homogeneous. 

The mass properties of the body are defined by its mass m  and by the diagonal mass matrix: 
 

(10)  [ ]
3

mdiagM =  . 

 
The inertial properties of the body are defined by two tensors of inertia, which are constructed by constant 

elements. For the pole O  these tensors have the following form: 
 

(11)  










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





−−

−−

−−

≈
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













−−

−−

−−

=

ZYZXZ

ZYYXY
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O

JJJ

JJJ
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JJJ
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J  . 

 

These tensors for the pole O , which coincides to the mass center C , can be written as follows: 
 

(12)  

















−−

−−

−−

≈
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
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Due to the arbitrary choice of the pole O , a reverse symmetrical tensor of the mass static moments is used. It 
also is constructed by constant elements, namely: 
 

(13)  
CC m RS .=  ,  where 

 

(14)  


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













−

−

−

≈
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

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−

−

−

=

0

0

0

0

0
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C
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xz
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R  . 

 

All the forces, acting on the body, are reduced to a point O  to main force F  and a main moment OM . 

The following vector is defined: 
 

(15)  



















=

ωωωω~
.

~ O

OC

T

C

O

v

JS

SM
D  . 

 

Its name is vector-pseudo generalized impulse of a rigid body for the pole O  . 
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The matrix: 

(16)  











=

OC

T

C

O
JS

SM
A  , 

 

defines the mass and inertial properties of this asymmetric rigid body when for a pole is chosen the point O . 
The formula (15) in a shortened vector-matrix form is written as follows: 

 

(17)  OOO qAD &~.
~

=  . 

 

A vector-pseudo generalized impulse of a rigid body for its mass center C  is defined by the following vector-
matrix expression: 
 

(18)  















=

ωωωω~
.

~ C

C

C

v

J0

0M
D  . 

 
The matrix: 
 

(19)  







=

C

C J0

0M
A  , 

 

defines the mass and inertial properties of this asymmetric ideal rigid body when the pole O  is chosen to 

coincide with the mass center C . 

 
Formula (18) can be written in a shortened vector-matrix form as follows: 

 

(20)  CCC qAD &~.
~

=  . 

 

Finally, a vector-pseudo generalized impulse of this rigid body for the immovable pole N  is introduced. That 
vector is defined by the formulas: 
 

(21)  COON DTDD
~

.
~~

+=  ,  where 

 

(22)  







=

0R

00
T

O

O ~  , 

 

(23)  

















ξη−

ξ−ζ

ηζ−

=

0

0

0
~

OO

OO

OO

OR  . 

 
Formulas (17) and (20) in equation (21) are substituted and the following equation is obtained: 
 

(24)  CCOOON qATqAD && ~..~.
~

+=  . 

 
The pseudo kinetic energy of this asymmetrical rigid body has the following vector-matrix form: 
 

(25)  



















=

ωωωω
ωωωω ~..~.

2

1~ O

OC

T

CT

OkЕ
v

JS

SM
v  . 
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Formula (25) could be written in a shortened vector-matrix type as follows: 
 

(26)  OO

T

OkЕ qAq && ~..~.
2

1~
=  . 

If the pole O  coincides with the mass center C , the pseudo kinetic energy will be determined by well known 
König theorem: 
 

(27)  















=

ωωωω
ωωωω ~..~.

2

1~ C

C

T

CkЕ
v

J0

0M
v  . 

 
The formula (27) can be written in a shortened vector-matrix form as follows: 
 

(28)  
CC

T

CkЕ qAq && ~..~.
2

1~
=  . 

 

A vector-real generalized force of this rigid body at pole O  is defined: 
 

(29)  







=

O

O M

F
Q  . 

 

A vector-real generalized force of this rigid body at pole N  is also defined: 

 

(30)  








+
=








=

FRM

F

M

F
Q

.
~

OON

N  . 

 
The relationship between these two vectors is realized by the equality: 
 

(31)  OOON QTQQ .+=  . 

 

The vector NQ  could be defined by other way. 

Let a fixed number of external forces kF  act on the rigid body, applied at points kD , ),...,2,1( hk = , 

and they are defined by radius vectors kρρρρ , (Fig.1). 

 
The possible power of these forces, with a possible infinitely small change of the rigid body real generalized 
velocity, is determined: 
 

(32)  ∑
=

δ=δ
h

k

T

kP
1

.F kv δ= .TF Ov ( ) δ++ ..
~ T

OO FRM =ωωωω~  

 

δ= Fv .T

O δ+ ( ) =+ FRM .
~

.~
OO

Tωωωω δ =
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





+ FRM

F
v

.
~.~

OO

TT

O ωωωω  

 

δ= =





























+






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T

O M

F

0R

00
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F
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δ= ( )OOO

T QTQq ..~ +&  . 
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Then the vector-real generalized forces of the rigid body at pole N  will be obtained: 
 

(33)  =NQ .~

~

~ q

q

q &

&

& δ

δ
=

δ

δ T
P ( ) ( )OOOOOO QTQEQTQ ... +=+  ,      where 

 

(34)  [ ]
6

1diagE =  . 

 
So, the most important Kinetics characteristics in the vector-matrix form are defined. They are necessary to 
introduce a private kind of the Theorem of change the rigid body generalized impulse, which is described in the 
next paragraph. 
 
3. THEOREM OF CHANGE THE RIGID BODY PSEUDO GENERALIZED IMPULSE 
 
The theorem states: The first time derivative of the rigid body pseudo generalized impulse for a fixed pole is 
equal to its real generalized force determined for that pole. 

The mathematical record of the stated above theorem has the form: 

(35)  
N

N

td

d
Q

D
=

~

 . 

 
Formulas (24) and (31) are substituted in equation (35) and the following expression is obtained: 
 

(36)  ( ) OOOCCOOO
td

d
QTQqATqA .~..~. +=+ &&  . 

 
The time derivative in equation (36) is performed: 
 

(37)  OOOCCOCCOOCOOOOO QTQqATqATqATqAqA .~..~..~..~.~. +=++++ &&&&&&&&&&  . 

 
The following detailed calculations are done below: 
 

(38) 







=
























=

0

0v

00

00

0R

00
qAT

ωωωω~
..~

~..
C

O

CCO
&&  , 

 

(39) 







=
















=
























=

COC

C

O

C

CO

CCO vMR

0

J

vM

0R

00v

J0

0M

0R

00
qAT

&&

&

&

&
&&

..
~~.

.
.~~..~

~..
ωωωωωωωω

 . 

 
Taking into account the equations (38) and (39), equation (37) is simplified to the following type: 
 

(40)  







+=








+++

FR

0
Q

vMR

0
qATqAqA

.
~

..
~

~..~.~.
O

O

CO

CCOOOOO
&

&&&&&&  . 

 
Now, the theorem of the mass center motion is used: 
 

(41)  FvM =C
&.  . 

 
Through this theorem, equation (40) takes the following form: 
 

(42)  CCOOOOOO qATQqAqA &&&&&& ~..~.~. −=+  . 

 
So, the equation (42) is obtained by the Theorem of change the rigid body pseudo generalized impulse at the 

fixed pole N . 
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Now, the same theorem, but to the moving pole O  will be applied. For this purpose, a following vector is 
introduced: 
 

(43)  CCOOО
qATQQ && ~..

~ * −=  . 

 
This vector is called vector-real kinetic pseudo generalized force. 

Through this introduced new vector, equation (42) is recorded as follows: 
 

(44)  
*~~.~.
ОOOOO QqAqA =+ &&&&  . 

 
The above equation can be written even shorter, namely: 

(45)  
*~

~

О

O

td

d
Q

D
=  . 

The equation (45) is performed the Theorem of change the rigid body pseudo generalized impulse but applied to 

the moving pole O . 
This variant of the theorem speaks that way: The first time derivative of the rigid body pseudo 

generalized impulse for a movable pole is equal to its real kinetic pseudo generalized force determined for that 
pole. 

Let us assume the pole O  coincides with the mass center C . Then equations (42), (43) and (44) takes 
the following kind: 

(46)  CCCCCCCC qATQqAqA &&&&&& ~..~.~. −=+  . 

(47)  CCCCC qATQQ && ~..
~ * −=  , 

(48)  
*~

~

C

C

td

d
Q

D
=  . 

And now, let us develop in detail the following vector-matrix product: 

(49)  =























=

ωωωω&
&

&
&&

~..~
~..

C

CC

CCC

v

J0

0M

0R

00
qAT  









=








=








=
















=

0

0

RM

0

MR

0

J

M

0R

00

CCCCC

C

C
ρρρρρρρρωωωω

ρρρρ

&
&

&
&&

&

&
.

~
...

~~.

.
.~  . 

Therefore the equations (46), (47) and (48) take the following form: 

(50)  CCCCC QqAqA =+ &&&& ~.~.  , 

(51)  CC QQ =*~
 , 

(52)  
C

C

td

d
Q

D
=

~

 . 

Equation (52) performs the Theorem of change the rigid body pseudo generalized impulse for the pole O , which 

coincides with the mass center C . This variant of the theorem speaks that way: The first time derivative of the 
rigid body pseudo generalized impulse for the body mass center is equal to its real generalized force determined 
for that center. 

It is obvious that this Theorem of change the rigid body pseudo generalized impulse, written by equation 
(35), (45) and (52), has the same structure. 
 
 
 



Greener Journal of Physics and Natural Sciences              ISSN: 2384-6410         Vol. 3 (2), pp. 021-031, October 2017.   

 

www.gjournals.org                                                                              28 

 
4. CONDENSED LAGRANGE EQUATIONS 
 
The following Condensed Lagrange equations are defined: 
 

(53)  OOO

O

k ЕE

td

d
QTQ

q
.~

)
~

(
+=













∂

+∂

&
 . 

 
The scalar quantity is constructed in the following way: 
 

(54)  Fq
~

.~~ T

OЕ &=  , 

 

(55)  CCOCO qATDTF &~..
~

.
~

==  . 

 
Formulas (26) and (54) in equations (53) are substituted: 
 

(56)  ( ) OOOOO
td

d

td

d
QTQ

F
qA .

~
~. +=+&  , 

 

(57)  ( ) ( ) OOOCCOOO
td

d

td

d
QTQqATqA .~..~. +=+ &&  , 

 

(58)  OOOCCOCCOCCOOOOO QTQqATqATqATqAqA .~..~..~..~.~. +=++++ &&&&&&&&&&  . 

 
The equation (58) is fully coincides with the equations (37) but it is obtained by the other way. 

Now, the Condensed Lagrange equations, but with the pole O , which is coincided with the mass center 

C  will be applied. For this purpose, the equation (53) will be written in the following type: 
 

(59)  CCC

C

k ЕE

td

d
QTQ

q
.~

)
~

(
+=













∂

+∂

&
 . 

The scalar Е
~

 is constructed in the following way: 
 

(60)  Fq
~

.~~ T

CЕ &=  ,  where 

 

(61)  CCCCC qATDTF &~..
~

.
~

==  . 

 
Formulas (28) and (60) in equations (59) are substituted and the following equation is obtained: 
 

(62)  ( ) CCCCC
td

d

td

d
QTQ

F
qA .

~
~. +=+&  , 

 

(63)  ( ) ( ) COCCCCCC
td

d

td

d
QTQqATqA .~..~. +=+ &&  , 

 

(64)  CCCCCCCCCCCCCCCC QTQqATqATqATqAqA .~..~..~..~.~. +=++++ &&&&&&&&&&  . 
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The following detailed calculations are performed: 
 

(65)  







=
























=

0

0v

00

00

0R

00
qAT

ωωωω~
..~

~..
C

C

CCC
&&  ,  

 

(66)  







=
























=

CC

C

CC
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&
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Taking into account the equality (65), (66) and (67), equation (64) is simplified to the following form: 
 

(68)  







+=








++

FR

0
Q

vMR

0
qAqA

.
~

..
~

~.~.
C

C

CC

CCCC
&

&&&&  . 

 
Through the Theorem of mass center motion, equation (68) takes the following simpler form: 
 

(69)  CCCCC QqAqA =+ &&&& ~.~.  . 

 
Equation (69) is fully coincides with the equation (50). Moreover, equation (69) can be obtained by the following 
type of Condensed Lagrange equation, namely: 
 

(70)  C

C

kE

td

d
Q

q
=













∂

∂

&~
 . 

 
Therefore the two forms of Condensed Lagrange equations from (59) and (70) lead to the same differential 
equation, namely equation (69). Or in other words, differential equation (69) can be obtained successfully by 
using of Condensed Lagrange equations from (59) or by using of Condensed Lagrange equations from (70). 
 
 
5. DEVELOPMENT OF THE SYSTEM OF DIFFERENTIAL EQUATIONS 
 

First, the variant when the pole O  do not coincide with the mass center C  will be developed. The time derivative 

of matrix OA  is a zero matrix, namely: 

 

(71)  0A =O
&  . 

 
The formula (71) in equation (42) is substituted and then the following equation is obtained: 
 

(72)  CCOOOO qATQqA &&&& ~..~. −=  . 

 
Equation (72) is a vector-matrix record of a non-linear system of six differential equations describing the pseudo 

translational motion of a free asymmetric ideal rigid body at arbitrary chosen pole O . 
Now, the following links are used: 

 

(73)  OCC qKq && ~.~ =  , where 
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(74)  







=

E0

RE
K

T

C

C  . 

 
The formula (73) is substituted in equation (72) and the following equation is obtained: 
 

(75)  OOCCOOO QqKATqA =+ &&&& ~...~.  ,        where 

 

(76)  







=

0R

00
T

O

O &
&

~  , 

 

(77)  

















ξη−

ξ−ζ

ηζ−

=

0

0

0
~

OO

OO

OO

O

&&

&&

&&

&
R  . 

 
After numerical integration of the differential equation (75) the low of absolute pseudo translational motion of a 

free asymmetrical ideal rigid body at arbitrary chosen pole O  will be found. 

Now, the variant when the pole O  coincides with the mass center C  will be developed. The time 

derivative of matrix CA  is a zero matrix, namely: 

 

(78)  0A =C
&  . 

 
The formula (78) is substituted in equations (50) or (69) and the following equation is obtained: 
 

(79)  CCC QqA =&&~.  . 

 
Equation (79) is a vector-matrix record of a non-linear system of six differential equations describing the pseudo 

translational motion of a free asymmetric ideal rigid body when the chosen pole O  coincides with the mass 

center C . 

The differential equations (75) and (79) are very convenient for numerical integration. 
 
 
6. CONCLUSION 
 
Some new kinetic characteristics for an ideal rigid body have been introduced. The main important are the 
vector-pseudo angular velocity, the vector-pseudo generalized coordinates, the vector-pseudo 
generalized velocity, the vector-pseudo generalized impulse and pseudo kinetic energy. 

 A private form of the Theorem of change the rigid body generalized impulse for the fixed pole N  or for 

the movable pole O  is defined. This new kind theorem is called Theorem of change the rigid body pseudo 
generalized impulse. It is applied to study the pseudo translational motion of a free asymmetric ideal rigid body. 
The directly defining of this new kind of theorem became possible thanks to introducing the new kinetics 
characteristics, using the matrix operations, and using the basis type of the Theorem of change the rigid body 
general motion [1, 2]. 
 Condensed Lagrange equation for the rigid body pseudo translational motion is applied successfully. 
This matrix equation leads to the same result as the Theorem of change the rigid body pseudo generalized 
impulse. 
 This theory is very important for study the small three dimensional vibrations of a single rigid body or 
rigid bodies mechanical system with elastic and damping connecting elements. 
 The obtained system of nonlinear and linear differential equations in matrix form is convenient for a 
numerically integrating by the contemporary mathematical programs which is projected to use matrices and 
matrix calculations, for example MatLab, MathCAD, MuPAD and so on. 
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