
Getting Along with 
Relational Databases

Martin Holmes
University of Victoria

Digital Victorian Periodical Poetry



Outline

Background on relational databases and XML

The DVPP project

Why we ended up with a relational database

Implications, problems and solutions

Slides: http://bit.ly/relationaldbs

http://bit.ly/relationaldbs


Relational databases

How do I hate thee? Let me count the ways.

Mysterious and unmemorable keywords (left joins, right joins, inner joins, outer 
joins, full joins, self joins…)

Lousy string-handling library.

Monolithic single-point-of-failure server host.

No built-in version control.

Ugly structures for one-to-many or many-to-many relationships...



RDBs are fine for simple tabular data

But most Humanities data is not simple and tabular. It’s

● deeply nested
● loosely connected
● ambiguous and 

suggestive
● multivalent



But the history is revealing

IBM’s 1960s DBMS IMS represented data as hierarchical 
trees.

It even handled overlapping hierarchies, allowing “a 
secondary data structure” which is “still a hierarchy, but a 
hierarchy in which participant segments have been 
rearranged, possibly drastically” (C.J.Date, An Introduction 
to Database Systems).



But like so many good ideas from the 1960s...

...it turned into something cruder and less imaginative in the 
1970s, with the rise of SQL.

But now we have XML, and life is good, right?



I’m doing some research 
and I need a database.

Are you sure you need a 
database?
Is your data really 
straightforward?
Wouldn’t you be better off 
with XML?

It’s really simple.
I just have a single 
spreadsheet.



Some weeks later...

My spreadsheet has 
2,517 columns...



Eventually reality bites

What seems like simple data turns out to be hugely 
complicated (it’s Humanities, doh).

What appear to be simple relationships turn out to be 
multifarious and nuanced.

What started out as a clean, simple db turns into a monstrous 
concoction.



A poem only has one
author.

Are you absolutely sure 
about that?

Absolutely.



Some days later...

This poem has three authors.
One of them is mythical. 
Another may be any of three 
people. The third is fictional.
What do I enter in the author 
field?



The Digital Victorian Periodical Poetry Project



The Digital Victorian Periodical Poetry Project

Mines a broad range of 19th-century periodicals for the 
poetry they published.

Started as a metadata-only project, with poem files linked to 
page-images.

Data stored in MySQL DB.

Initially simple, but grew in complexity over the years.

https://hcmc.uvic.ca/people/martin/vpn/live/reader/




Then we got funding

Thank you SSHRC!



We’re transcribing/encoding all the poems from the 
decade-years (1920, 1930, 1940…).

This will be around 2,000 poems.

We’re encoding in TEI (of course).

We’re using a version-control system (of course).

So now we have a problem.



Metadata db: 

Canonical source for most metadata

Continuously changed and updated

TEI files:

Canonical source for transcription and 
some metadata

Continuously changed and updated



Added complication

We have a personography for which some fields of some 
records are maintained in the db, and some fields and some 
records are maintained in the TEI.



Luckily this is all temporary

Eventually everything will be maintained in TEI.

We will bury the database.

We will stamp on its grave and rejoice.

But for now, we have to live with it.



The task

Merge the metadata from the db into the TEI file collection.

Without data loss.

Repeatedly.

 



The only good best thing about SQL Dbs is...

… you can dump them to XML!











TEI Poem ids/filenames

Derived from db record id and poem title:

pom_7824_reflections_on_a_brumel_scene

Filenames always match root ids + .xml.





















SVN Changes

● If a file is new and not tracked by svn, it must be added.
● If a file has not changed during this operation, then it is 

obsolete and must be removed from svn.
● If a file has changed during this operation, it can simply 

be committed.



Result

The two teams (poem harvesters and TEI encoders) can work 
in parallel.

Periodic application of the integration process keeps the two 
datasets in sync.

TEI encoding is not in danger of being overwritten.



A few more scenarios where TEI wins

Two pseudonyms may or may not represent the same author.

Some poems claim to be translations but are probably not; 
their “translators” are most likely their authors.

Some pseudonyms represent changing teams of anonymous 
authors, only some of whom we can identify. 



Interim strategy: hashtags in the db

Without complexifying its structure, the db can’t handle 
weird cases like this. But we can flag them for later.

For this, we use hashtags in Notes fields.





Use of hashtags cannot be constrained in the db.

However, we can validate it during the build process by 
creating and applying diagnostic rules based on the 
Hashtags table.

We can also generate a hashtag taxonomy in the TEI and 
convert usages into <catRef> elements.

https://dvpp.uvic.ca/diagnostics.html#badHashTags


Links

The (nascent) project website: https://dvpp.uvic.ca.

The XSLT for merging metadata into poems:
https://hcmc.uvic.ca/svn/dvpp/xsl/sql_to_tei_master.xsl

The Ant task that runs the process:
https://hcmc.uvic.ca/svn/dvpp/buildTEI.xml

The project documentation on this process:
https://dvpp.uvic.ca/dvpp.html#refreshDatabases

https://dvpp.uvic.ca
https://hcmc.uvic.ca/svn/dvpp/xsl/sql_to_tei_master.xsl
https://hcmc.uvic.ca/svn/dvpp/buildTEI.xml
https://dvpp.uvic.ca/dvpp.html#refreshDatabases

