
A Comparison of Approaches for Automated
Text Extraction from Scholarly Figures

Falk Böschen1 and Ansgar Scherp1,2

1 Kiel University, Kiel, Germany
{fboe,asc}@informatik.uni-kiel.de

2 ZBW - Leibniz Information Centre for Economics, Kiel, Germany
a.scherp@zbw.eu

Abstract. So far, there has not been a comparative evaluation of dif-
ferent approaches for text extraction from scholarly figures. In order to
fill this gap, we have defined a generic pipeline for text extraction that
abstracts from the existing approaches as documented in the literature.
In this paper, we use this generic pipeline to systematically evaluate
and compare 32 configurations for text extraction over four datasets of
scholarly figures of different origin and characteristics. In total, our ex-
periments have been run over more than 400 manually labeled figures.
The experimental results show that the approach BS-4OS results in the
best F-measure of 0.67 for the Text Location Detection and the best av-
erage Levenshtein Distance of 4.71 between the recognized text and the
gold standard on all four datasets using the Ocropy OCR engine.

Keywords: Scholarly Figures · Text Extraction · Comparison

1 Introduction

Scholarly figures are data visualizations in scientific papers such as bar charts,
line charts, and scatter plots [7]. Many researchers use a semi-supervised text ex-
traction approach [6, 18]. However, semi-supervised approaches do not scale with
the amount of scientific literature published today. Thus, unsupervised methods
are needed to address the task of text extraction from scholarly figures. This task
is challenging due to the heterogeneity in the appearances of the scholarly figures
such as varying colors, font sizes, and text orientations. Nevertheless, extracting
text from scholarly figures provides additional information that is not contained
in the body text [4]. To the best of our knowledge, no comparison of the different
approaches for text extraction from scholarly figures has been conducted so far.

Based on the related work, we have defined a generic pipeline of six sequen-
tial steps that abstracts from the various works on text extraction from scholarly
figures. We have re-implemented and systematically evaluated the most relevant
approaches for text extraction from scholarly figures as described in the litera-
ture. In total, 32 configurations of the generic pipeline have been investigated.
Fig. 1 shows the pipeline and the investigated methods for each step. We as-
sess each pipeline configuration with regard to the accuracy of the text loca-
tion detection via precision, recall, and F1-measure. In addition, we evaluate



2 Falk Böschen and Ansgar Scherp

the text recognition quality using Levenshtein distance based on the evaluation
methodology of the Born-Digital Image Track of the ICDAR Robust Reading
Competition. In summary, the contributions of the paper are: (i) A systematic
comparison of in total 32 configurations of a generic pipeline for text extraction
from scholarly figures. Each configuration consists of a combination of six to
nine methods from a total of 21 different methods that we have implemented
and evaluated. (ii) We make available four manually labeled datasets of scholarly
figures that allow reproducing and extending our results3. (iii) Furthermore, we
make available the implementation of our generic pipeline which allows to use it
on other datasets.

Hough

PSD

SSODd Ocropy

Tesseract
Character
Filtering

String
Filtering

Quantitative
Assessment

RGBd
tod

Grey

Otsu

AdaptEdOtsu
Niblack

ColordQuantization
Pivoting

CCL
Heuristic
Filtering

DBSCAN

MST
GravitydGrouping

MorphEdGrouping

Angle
MST

(x1d (f1 (31
Lined

Separation

(41
Orientationd
Estimation

(51d (61
Postd

Processing

Figure TextTextdExtractiondPipeline

RegiondExtraction RegiondClassification OCR

Fig. 1. Generic pipeline for text extraction from figures abstracted from the literature

2 Related Work

An early work on text extraction from scholarly figures is by Huang et al. [9].
They use connected component labeling and a series of filters to extract re-
gions from the figure that represents text. Subsequently, text lines are found
by using a derivation of Newton’s formula for “Gravity” from classical physics
and OCR is applied. Sas and Zolnierek [17] propose a three-stage approach for
text extraction from figures. Their approach binarizes the figure, applies con-
nected component labeling, and filters the extracted regions using pre-defined
thresholds. Tesseract4 is used for OCR and after a rotation of 90◦ the process is
repeated. Finally, we have developed a pipeline called TX for unsupervised text
extraction from scholarly figures [2, 3]. The pipeline combines an adaptive bi-
narization method with connected component labeling and DBSCAN clustering
to find text. A minimum spanning tree algorithm is used to estimate text lines
followed by a Hough transformation for calculating the orientation, followed by
OCR with Tesseract. A recent approach for semi-automatic text extraction from
cartographic maps is proposed by Chiang et al. [6]. Cartographic maps use text

3 http://www.kd.informatik.uni-kiel.de/en/research/software/

text-extraction
4 https://github.com/tesseract-ocr/



Text Extraction from Scholarly Figures: A Systematic Comparison 3

elements for city and street names, regions, and landmarks. In contrast to other
approaches, Chiang et al. apply a color quantization algorithm and separate the
text in the map from the rest using a semi-automatic extraction that requires
a positive and a negative example for each text color. Text lines are detected
using morphological operators and recognized using the commercial OCR en-
gine AbbyyFineReader5. A text detection algorithm for biomedical images was
proposed by Xu and Krauthammer [19] as part of the Yale Image Finder. Their
pivoting algorithm uses vertical and horizontal histogram projection analysis to
recursively split the image while classifying each region into text or non-text.
Lu et al. [14] developed a retrieval engine for scholarly figures in chemistry.
Their system works only on 2D plots and uses connected component labeling
and fuzzy rules. Another approach for text extraction from figures by Jayant
et al. [10] uses classic connected component labeling, support vector machines,
minimum spanning trees, Adobe Photoshop (for preprocessing) as well as com-
mercial OCR engines. They extract figures from books and their approach makes
the assumptions that these figures have the same style throughout a book.

3 Pipeline Structure

Based on the discussion of the related work, we derived a generic pipeline for
text extraction from scholarly figures as shown in Fig. 1. The pipeline consists
of six steps and can be implemented through different methods, which are de-
scribed below. This allows to create different configurations of the pipeline and
to conduct a fair comparison of these configurations.

The first step of the pipeline takes a scholarly figure (color raster image) as
input. The figure is converted into a binary image using either Color Quantiza-
tion [5], by reducing the number of colors in an image and taking each resulting
color channel as a separate binary image, or by converting the image to greyscale
using the formula Y = 0.2126R + 0.7152G + 0.0722B and subsequently apply-
ing a binarization method. For binarization, we use Otsu’s Method [15], which
finds the binarization threshold by maximizing the intra-class variance, Niblack’s
Method [13] which is often used for document image binarization, and Adaptive
Otsu Binarization [3], which hierarchically applies Otsu’s Method to adapt to
local inhomogenities. The output of the first step is a set of regions, where each
region is a set of connected pixels. They can be extracted using classic Connected
Component Labeling (CCL) [16], which iterates over the pixel of an image and
connects adjacent foreground pixel into regions. Another option is the Pivoting
Histogram Projection method [19], which iteratively splits the binary image by
analyzing the horizontal and vertical projection profiles. The second step takes
these regions as input and computes a feature vector for each region, consisting
of coordinates of the center of mass, dimension, and area occupation, to classify
them into text or graphics. Heuristic Filtering [17] can be applied, prior to more
complex algorithms, to preprocess the set of regions and remove outliers. The

5 http://www.abbyy.com/ocr-sdk/



4 Falk Böschen and Ansgar Scherp

classification of the remaining regions can be achieved using clustering meth-
ods like DBSCAN [3], since text should be more dense in the feature space, or
Minimum Spanning Tree (MST) clustering [10]. Other approaches are Group-
ing Rules based on Newtons Gravity Formula [9] from classical physics or the
Morphological Method [6], which uses morphological operators to merge regions
on pixel level. Subsequently, the generated sets of regions that are classified as
text are fed into the third pipeline step to determine individual lines of text if
necessary. For this step, we have only found one method in the literature, the
Angle-Based MST clustering [3]. It computes a MST on the centers of mass of
the regions and removes those edges that are not inside a predefined range of
60◦ around the main orientation. The fourth step of the pipeline computes the
orientation for each text line using one of the following methods: The Hough
Transformation [3] can be used on the centers of mass of a text line’s regions to
transform them into Hough space, where the maximal value determines the ori-
entation. A different option is to minimize the Perpendicular Squared Distance of
the bounding box of a text line to identify its orientation [10]. The third option is
the Single String Orientation Detection algorithm [6] which determines the text
line orientation using morphological operators. In the fifth step, existing OCR
engines are used to recognize the horizontal text lines. We have evaluated the
Tesseract OCR engine and Ocropy6, since both are freely available, frequently
updated, and allow to reproduce our results without limitations. We used the
English language models that are provided by the OCR engines and we deacti-
vated any kind of layout analysis. The recognized text is post-processed in the
sixth and last step of the pipeline. Here, we apply either Special Character Fil-
tering that removes all special characters from the text, since they often appear
when text was incorrectly recognized, Special Character Filtering per String [17]
that removes complete text lines, if they contain too many special characters, or
Quantitative OCR Assessment [6]. The latter analyzes the difference between the
number of characters (regions) that went into the OCR process and the number
of recognized characters in order to decide whether to discard a text line.

4 Pipeline Configurations

From the methods defined in the previous section, one can create various pipeline
configurations. Some methods are restricted in how they can be combined as
illustrated in Fig. 1.

Configurations based on the discussion of the state-of-the-art in Section 2:
Each of the seven configurations is identified by (x), an acronym created from
the contributing author(s). The first configuration (SZ13) is inspired by the work
of Sas and Zolnierek [17]. It uses Otsu’s method for binarization, followed by
CCL. Subsequently, it applies heuristic filtering similar to the original approach.
The decision tree used by Sas and Zolnierek is replaced by the line generation
approach based on MST. Since the original work by Sas and Zolnierek does not
include a method for orientation estimation, we do not use any replacement in

6 https://github.com/tmbdev/ocropy



Text Extraction from Scholarly Figures: A Systematic Comparison 5

step 4. Tesseract is used as OCR engine, since it was also used in the original
paper. In the post processing step, all strings are removed that contain too many
special characters.

The second configuration (Hu05) is based on the work of Huang et al. [9].
After region extraction using Otsu binarization and CCL, the Heuristic Filter
method is applied, and the regions are grouped using the Gravity method. Fi-
nally, the grouped regions are processed with Tesseract.

Based on the work of Jayant et al. [10], the configuration (Ja07) starts with
Otsu’s method and CCL. Subsequently, it clusters the regions using a MST and
approximates the orientation by minimizing the perpendicular squared distance.
Text recognition is achieved by applying Tesseract.

Different from the previous configurations, the fourth configuration (CK15)
– inspired by Chiang et al. [6] – uses Color Quantization to generate multiple
binary images, followed by a CCL. Subsequently, it applies heuristic filtering
and Morphological Clustering on the regions. This step differs from the original
paper, where the relevant color levels were manually selected. Thus, we assess all
extracted binary images. The orientation of each cluster is estimated using the
SSOD method, followed by Tesseract OCR, and quantitative post-processing.

Similar to the previous pipeline configuration, the fifth configuration (Fr15),
inspired by Fraz et al. [8], starts with Color Quantization and CCL. The original
approach uses a supervised SVM to form words, which we replaced with unsu-
pervised methods from our methods set. The extracted regions are filtered and
DBSCAN is applied, followed by a MST clustering into text lines. The orienta-
tion of each text line is calculated using Hough method and the text is recognized
using Tesseract.

All configurations so far use CCL to extract regions. The sixth configura-
tion (XK10), motivated by Xu and Krauthammer [19], uses the pivoting al-
gorithm after binarization with adaptive Otsu. The regions are filtered using
heuristics and grouped into lines using DBSCAN and MST. This differs from
the original work, which only applied heuristic filtering to remove the graphic
regions. The reason behind this is that the authors only aimed at finding text
regions and not to recognize the text. Thus, we filled the rest of the pipeline
steps with suitable methods. The orientation of each line is estimated via Hough
and OCR is conducted with Tesseract.

Finally, configuration (BS15) resembles our own work [3]. It uses adaptive
Otsu for binarization and CCL for region extraction. Heuristic Filtering is ap-
plied on the regions and DBSCAN groups them into text elements. Text lines
are generated using the angle-based MST approach and the orientation of each
line is estimated via Hough transformation, before applying Tesseract’s OCR.

Influence of individual methods: In order to evaluate the influence of the
individual methods, we chose the pipeline configuration (BS15) as basis for sys-
tematical modification, since our evaluation showed that it produces the best
results, as reported in Section 6. The systematic modifications are organized
along the six steps of the generic pipeline in Fig. 1. Each of the systematic
configurations has an identifier (BS-XYZ) based on the original configuration,



6 Falk Böschen and Ansgar Scherp

where X is a number that refers to the associated pipeline step and YZ uniquely
identifies the method. The systematically modified configurations are described
below. Modifications of Step (1): The binarization and region extraction is eval-
uated with the following configurations: (BS-1NC) differs from (BS15) by using
Niblack instead of adaptive Otsu for binarization. Configuration (BS-1OC) uses
the third option for binarization, Otsu’s method. Color quantization is com-
bined with the pivoting region extraction in (BS-1QP). Modification over Steps
(2) and (3): The next step is the region classification and generation of text lines.
Configuration (BS-2nF) differs from the base configuration by not applying the
optional heuristic filtering method. Configuration (BS-2CG) uses the Gravity
Grouping instead of DBSCAN and MST. Configuration (BS-2CM) applies MST
to cluster regions and create text lines. Morphological text line generation is
used in configuration (BS-23M). Modifications of Step (4): The following two
configurations assess the methods for estimating the orientation of a text line:
Configuration (BS-4OP) uses the Perpendicular Squared Distance method and
configuration (BS-4OS) uses the Single String Orientation Detection method to
estimate the orientation. Modifications of Step (5): For all configurations, both
OCR engines are used to generate the results. The identifier of a configuration is
extended to (BS-XYZ-T) or (BS-XYZ-O), when referencing the configurations
that use Tesseract or Ocropy, respectively. Furthermore, we assess the direct im-
pact of the OCR engine on the recognition results with configuration (BS15-O),
which only differs with respect to the OCR method from the base configuration
by using the Ocropy OCR engine instead of Tesseract. Modifications of Step (6):
The last step of the pipeline is the post-processing. We use three configurations
to evaluate the different post-processing methods: Configuration (BS-6PC) uses
the Special Character Filter method for post-processing. Configuration (BS-6PS)
uses the String Filter method for post-processing. Configuration (BS-6PQ) uses
the Quantitative Assessment method for post-processing.

5 Evaluation

Datasets: We have used four datasets of varying origin and characteristics with
in total 441 figures in our evaluation. We have created the EconBiz dataset, a
corpus of 121 scholarly figures from the economics domain. We obtained these
figures from a corpus of 288,000 open access publications from EconBiz7 by ex-
tracting all images, filtering them by size and other constraints, and randomly
selecting the subset of 121 figures. The dataset resembles a wide variety of schol-
arly figures from bar charts to maps. The figures were manually labeled to create
the necessary gold standard information. We manually labeled the DeGruyter
dataset as well, which comprises scholarly figures from books provided by De-
Gruyter8 under a creative commons license9. We selected ten books, mostly from
the chemistry domain, which contain figures with English text and selected 120

7 https://www.econbiz.de/
8 http://www.degruyter.com/
9 http://www.degruyter.com/dg/page/open-access-policy



Text Extraction from Scholarly Figures: A Systematic Comparison 7

figures randomly from these books. The gold standard for these figures was cre-
ated using the same tool which has been used for the creation of the EconBiz
dataset. The Chart Image Dataset10 consists of two subsets. The CHIME-R
dataset comprises 115 real images that were collected on the Internet or scanned
from paper. It has mostly bar charts and few pie charts and line charts. The
gold standard was created by Yang Li [20]. The CHIME-S dataset consists of
85 synthetically generated images. This set mainly contains line charts and pie
charts and few bar charts. The gold standard was created by Zhao Jiuzhou [11].

We have also looked at ImageNet, TREC, ImageClef and ICDAR datasets.
But none of them can be used to evaluate the specific challenges of scholarly
figures. They either do not have the necessary ground truth information about
the contained text or the dataset does not consist of scholarly figures. But we
adopted the evaluation scheme of the Born-Digital Images track of the ICDAR
Robust Reading Competition (RRC) [12], which is described below.

Procedure: We have selected three measures to evaluate the pipeline config-
urations and compare their results. Our gold standard consists of text elements
which represent single lines of text taken from a scholarly figure. Each text line
consists of one or multiple words which are separated by blank space. Each word
may consist of any combination of characters and numbers. Every text line is
defined by a specific position, size, and orientation. Each pipeline configuration
generates a set of text line elements as well. These text lines need to be matched
to the gold standard. Since we do not have pixel information per character, we
match the extraction results with the gold standard by using the bounding boxes.
This is based on the first evaluation task of the ICDAR RRC and evaluates the
text localization on text line level. We iterate over all text lines in the gold stan-
dard and take all matches that are above the so-called intersection threshold.
Our matching procedure calculates the intersection area between all pairs of the
pipeline output and gold standard text lines. If the intersection comprises at
least ten percent of the combined area of both text elements, than it is consid-
ered a match. This reduces the error introduced through elements which are an
incorrect match and only have a small overlap with the gold standard. But it still
allows to handle text lines that are broken into multiple parts. We look at each
gold standard element and take all elements from the pipeline as matches that
are above the intersection threshold. Thus, a gold standard element can have
multiple matching elements and an element from the pipeline can be assigned
to multiple elements from the gold standard if it fulfills the matching constraint
for each match. We have defined three measures to assess these matches. The
first two measures analyze the text localization. The third measure compares
the recognized text, similar to the word recognition task of the ICDAR RRC,
although we compare text lines and not individual words. First, we evaluate how
accurate the configurations are at the Text Location Detection.

If at least one match is found for an element from the gold standard set, it
counts as a true positive, regardless of what text was recognized. If no match was
found, it is considered as false negative. A false positive is an element from the

10 https://www.comp.nus.edu.sg/~tancl/ChartImageDataset.htm



8 Falk Böschen and Ansgar Scherp

pipeline output which has no match. From these values, we compute precision,
recall, and F1-measure. This measure is a binary evaluation and assesses only
whether a match to an element exists or not. In addition, we report the Element
Ratio (ER) which is the number of elements recognized by the pipeline divided
by the number of elements in the gold standard and the Matched Element Ra-
tio (MER) which is the number of matched items from the pipeline divided by
the number of elements of the gold standard. These ratios give an idea whether
gold standard elements get matched by multiple elements and whether the con-
figuration tends to find more elements or less elements than it actually should
find.

Second, we investigate the matching in more detail by assessing the Text
Element Coverage. For each gold standard text element, we take the pixel of
the bounding boxes and compute their overlap to calculate precision, recall,
and F1-measure over all of its matches. The true positives in this case are the
overlapping pixel and the false positives are those pixel from the text elements
from the pipeline which are not overlapping. The false negatives are the pixels
of the gold standard element which were not covered by a text element from
the pipeline. The values are averaged over all gold standard text elements in a
figure.

Third, we assess the Text Recognition Quality by computing the Levenshtein
distance between the extracted text and the gold standard. We calculate the dis-
tance for each match and report the average for the whole figure. Since multiple
text elements from the pipeline can be matched to a gold standard text line, we
have to combine their text into one string. We combine the elements using their
position information. Besides a (local) Levenshtein Distance per match, we also
compute a global Levenshtein distance over all extracted text. This means that
for each figure, we combine all characters from the text elements of the gold
standard and add them to one string. Likewise, we create a string from the text
elements extracted by the pipeline. The characters in both strings are sorted
alphabetically and we compute the Levenshtein Distance between these strings.
This approximates the overall number of operations needed to match the strings
without considering position information. Since the global Levenshtein Distance
depends on the number of characters inside a figure, we normalize it to an op-
erations per character (OPC) score, which is computed by dividing the global
Levenshtein Distance by the number of characters in the gold standard. This
makes the results comparable across scholarly figures with different amounts of
characters.

6 Results

We have executed all configurations listed in Section 4 over the datasets de-
scribed in Section 5. For reasons of simplicity, we are only reporting the average
values for Text Location Detection, Text Element Coverage, and Text Recogni-
tion Quality over all datasets. The detailed results per dataset can be found in
our Technical Report [1]. We compute the average Precision/Recall/F1-measure



Text Extraction from Scholarly Figures: A Systematic Comparison 9

Table 1. Average Precision (Pr), Recall (Re), and F1 values for Text Location Detec-
tion and Text Element Coverage, Element Ratio (ER), and Matched Element Ratio
(MER) over all datasets for configurations from the literature

Text Location Detection Text Element Coverage

Config. Pr Re F1 (SD) ER MER Pr Re F1 (SD)

SZ13 0.63 0.47 0.54 (0.23) 0.80 0.59 0.52 0.59 0.47 (0.21)

Hu05 0.61 0.43 0.48 (0.28) 0.77 0.57 0.79 0.54 0.57 (0.20)

Ja07 0.59 0.45 0.49 (0.28) 0.83 0.51 0.41 0.32 0.32 (0.21)

BS15 0.66 0.55 0.58 (0.25) 1.04 0.69 0.60 0.49 0.50 (0.24)

CK15 0.52 0.50 0.53 (0.23) 1.37 0.60 0.53 0.41 0.42 (0.21)

Fr15 0.55 0.51 0.54 (0.25) 1.44 0.72 0.65 0.54 0.54 (0.23)

XK10 0.73 0.35 0.45 (0.26) 0.43 0.39 0.33 0.34 0.30 (0.22)

Table 2. Average local Levenshtein (L), global Levenshtein (G), and Operations Per
Character (OPC) over all datasets for the configurations from the literature using
Tesseract

Config. AV GL(SD) AV GG(SD) OPC

SZ13 6.67 (4.82) 122.28 (141.03) 0.70

Hu05 6.65 (5.41) 126.35 (138.95) 0.71

Ja07 7.92 (5.56) 150.25 (140.59) 1.13

BS15 6.23 (4.93) 108.81 (108.53) 0.67

CK15 6.07 (5.08) 120.12 (125.87) 0.71

Fr15 6.72 (6.02) 135.64 (201.31) 0.85

XK10 7.06 (5.41) 125.45 (134.88) 0.74

over the elements of each figure. We report the average Precision/Recall/F1-
measure in terms of mean and standard deviation over all figures. The local
Levenshtein distance is reported as the average of the mean values per figure
and the average standard deviation. The global Levenshtein distance is defined
by the mean and standard deviation over all figures and the average of the
normalized OPC score.

First, we report the results of the configurations from the literature. Sub-
sequently, we present the results for the systematically modified configurations.
The Text Location Detection and Text Element Coverage results for the config-
urations from the literature computed over all datasets are reported in Table 1.
The best result, based on the F1-measure, is achieved by configuration (BS15)
with a F1-measure of 0.58. The coverage assessment in Table 1 shows the best
precision of 0.79 for (Hu05), the best recall of 0.59 for (SZ13), and the best
F1-measure of 0.57 for (Hu05). The text recognition quality is presented in Ta-
ble 2. We obtain the best results with (BS15) with 0.67 operations per char-
acter (OPC), an average global Levenshtein of 108.81, and an average local
Levenshtein of 6.23. The best local Levenshtein of 6.07 is achieved by configura-
tion (CK15). For the systematically modified configurations, Table 3 shows the



10 Falk Böschen and Ansgar Scherp

Table 3. Systematically modified configurations: Average Precision (Pr), Recall (Re),
and F1 values for Text Location Detection and Text Element Coverage, Element Ratio
(ER), and Matched Element Ratio (MER) over all datasets

Text Location Detection Text Element Coverage

Config. Pr Re F1 (SD) ER MER Pr Re F1 (SD)

BS15 0.66 0.55 0.58 (0.25) 1.04 0.69 0.60 0.49 0.50 (0.24)

BS-1NC 0.64 0.52 0.57 (0.25) 0.96 0.64 0.59 0.44 0.47 (0.24)

BS-1OC 0.67 0.40 0.49 (0.26) 0.74 0.53 0.46 0.40 0.38 (0.26)

BS-1QP 0.61 0.44 0.48 (0.25) 0.96 0.75 0.41 0.57 0.42 (0.23)

BS-2nF 0.60 0.46 0.51 (0.23) 0.86 0.52 0.59 0.54 0.50 (0.21)

BS-2CG 0.62 0.50 0.55 (0.27) 0.90 0.64 0.76 0.54 0.57 (0.20)

BS-2CM 0.61 0.54 0.59 (0.25) 1.19 0.74 0.57 0.47 0.47 (0.24)

BS-23M 0.67 0.55 0.62 (0.23) 1.08 0.65 0.60 0.47 0.48 (0.22)

BS-4OP 0.62 0.53 0.57 (0.24) 1.01 0.66 0.49 0.40 0.41 (0.20)

BS-4OS 0.67 0.63 0.67 (0.22) 1.27 0.88 0.77 0.63 0.65 (0.17)

BS-6PC 0.69 0.54 0.59 (0.25) 0.97 0.70 0.59 0.49 0.49 (0.24)

BS-6PS 0.67 0.55 0.60 (0.25) 1.01 0.69 0.59 0.49 0.49 (0.24)

BS-6PQ 0.66 0.38 0.48 (0.25) 0.60 0.43 0.39 0.29 0.31 (0.21)

Text Location Detection results and the Text Element Coverage. Table 4 shows
the Text Recognition Quality. The best location detection F1-measure of 0.67
is achieved by (BS-4OS), which is also supported by the coverage assessment
with the highest F1-measure of 0.65. Configuration (BS-4OS-O) also produces
the best text recognition results with an average local Levenshtein of 4.71 and
an OPC of 0.53. In addition, configuration (BS-4OS-O) shows the best results
of 95.49 for the average global Levenshtein Distance. Comparing the different,
systematically modified configurations per step of the pipeline shows that the
only major improvement is achieved by (BS-4OS). Please note, a performance
analysis of the different configurations can be found in our Technical Report [1].

7 Discussion

Comparing the different configurations from the literature shows that the best
performing configuration is (BS15). A possible reason is that our pipeline does
not make many assumptions about the figures, e. g. figure type, font, or color.
Thus performing better on the heterogeneous datasets. In the following, we will
discuss the results for the individual pipeline steps based on the results from the
systematically modified configurations. Comparing the configurations for the
first pipeline step leads to the conclusion that the adaptive binarization works
best, because it can adapt to local variations of the appearance in a figure. Otsu’s
method is too simple and Niblack’s method is more suited for document images
which have fewer color variations. The lower results for the pivoting algorithm
can be explained with the larger regions and the possibility that a region can be
a mixture of text and graphic elements due to the only horizontal and vertical



Text Extraction from Scholarly Figures: A Systematic Comparison 11

Table 4. Average local Levenshtein (L), global Levenshtein (G), and Operations Per
Character (OPC) over all datasets for the systematic configurations

Tesseract Ocropy

Config. AV GL(SD) AV GG(SD) OPC AV GL(SD) AV GG(SD) OPC

BS15 6.23 (4.93) 108.81 (108.53) 0.67 5.47 (4.98) 108.55 (106.64) 0.64

BS-1NC 6.27 (4.95) 117.58 (124.23) 0.69 5.70 (5.09) 117.46 (128.73) 0.66

BS-1OC 6.55 (5.06) 131.58 (142.74) 0.75 6.16 (5.21) 131.39 (143.16) 0.73

BS-1QP 8.31 (6.14) 154.54 (168.10) 1.09 7.06 (5.62) 136.40 (132.05) 0.82

BS-2nF 6.55 (4.94) 111.30 (105.13) 0.75 6.29 (5.50) 120.71 (109.18) 0.76

BS-2CG 6.68 (5.65) 108.86 (102.93) 0.66 6.22 (5.75) 130.21 (127.87) 0.69

BS-2CM 6.30 (5.29) 115.43 (113.79) 0.69 5.85 (5.34) 110.74 (107.23) 0.67

BS-23M 6.15 (5.12) 104.61 (105.97) 0.63 5.52 (5.10) 106.71 (104.05) 0.64

BS-4OP 8.30 (5.59) 147.91 (129.55) 1.04 7.23 (5.60) 135.21 (122.48) 0.85

BS-4OS 5.47 (4.39) 96.29 (99.44) 0.58 4.71 (4.66) 95.49 (94.80) 0.53

BS-6PC 5.96 (4.88) 105.50 (107.16) 0.61 5.46 (5.00) 109.07 (104.57) 0.63

BS-6PS 6.20 (4.90) 108.06 (109.38) 0.64 5.45 (4.96) 106.38 (103.29) 0.63

BS-6PQ 6.07 (5.03) 120.78 (122.44) 0.67 5.79 (4.97) 126.92 (124.06) 0.71

subdivision. Looking at step 2 and 3 of the pipeline, only the morphological
clustering shows slightly better results than the DBSCAN-MST combination,
most likely due to its processing on pixel level. The overall best results, when
also considering the systematic configurations, are achieved by (BS-4OS). This
can be explained by the fact that the orientation estimation via Hough works
on the centers of mass of character regions, which is an aggregated region repre-
sentation, while the SSOD in (BS-4OS) computes the orientation on the original
pixels. Thus, it avoids a possible error, which could be induced by the pixel
aggregation. When comparing the OCR engines from step 5, Ocropy generally
produces better results than Tesseract. Ocropy seems to be more conservative,
having built in much more restrictions about what input to accept and when
to execute the OCR. Furthermore, each OCR engine comes with its own En-
glish language model and we did not evaluate their influence. The methods for
post-processing do not improve the results. One reason might be the simplicity of
methods. Thus, some more advanced techniques may be developed in the future.
Overall, there are many more options for the different pipeline steps, e. g., other
binarization methods, different clustering algorithms, or post-processing meth-
ods that could be used. However, we made a selection of relevant approaches and
methods to limit the combinatorial complexity. On the other hand, as stated in
the introduction, we provide the datasets and the implementation of the generic
pipeline that was used in our experiment to the public. This allows for integrating
and comparing new methods as well as the reproduction of our results.

Acknowledgement This research was co-financed by the EU H2020 project MOV-
ING (http://www.moving-project.eu/) under contract no 693092.



12 Falk Böschen and Ansgar Scherp

References

1. Böschen, F., Scherp, A.: A Systematic Comparison of Different Approaches for
Unsupervised Extraction of Text from Scholarly Figures [Extended Report]. Tech.
Rep. 1607, Christian-Albrechts-Universität zu Kiel (2016), http://www.uni-kiel.
de/journals/receive/jportal_jparticle_00000290

2. Böschen, F., Scherp, A.: Formalization and preliminary evaluation of a pipeline for
text extraction from infographics. In: Bergmann, R., Görg, S., Müller, G. (eds.)
LWA 2015 Workshop: KDML. pp. 20–31. CEUR (2015)

3. Böschen, F., Scherp, A.: Multi-oriented text extraction from information graphics.
In: DocEng. pp. 35–38. ACM (2015)

4. Carberry, S., Elzer, S., Demir, S.: Information graphics: an untapped resource for
digital libraries. In: SIGIR. pp. 581–588. ACM (2006)

5. Chiang, Y., Knoblock, C.A.: A general approach for extracting road vector data
from raster maps. IJDAR 16(1), 55–81 (2013)

6. Chiang, Y., Knoblock, C.A.: Recognizing text in raster maps. GeoInformatica
19(1), 1–27 (2015)

7. Choudhury, S.R., Giles, C.L.: An architecture for information extraction from fig-
ures in digital libraries. In: WWW. pp. 667–672 (2015)

8. Fraz, M., Sarfraz, M.S., Edirisinghe, E.A.: Exploiting colour information for better
scene text detection and recognition. IJDAR 18(2), 153–167 (2015)

9. Huang, W., Tan, C.L., Leow, W.K.: Associating text and graphics for scientific
chart understanding. In: ICDAR. pp. 580–584. IEEE Computer Society (2005)

10. Jayant, C., Renzelmann, M., Wen, D., Krisnandi, S., Ladner, R.E., Comden, D.:
Automated tactile graphics translation: in the field. In: ASSETS. pp. 75–82 (2007)

11. Jiuzhou, Z.: Creation of synthetic chart image database with ground truth. Honors
year project report, National University of Singapore (2006), https://www.comp.
nus.edu.sg/~tancl/ChartImageDatabase/Report_Zhaojiuzhou.pdf

12. Karatzas, D., Gomez-Bigorda, L., Nicolaou, A., Ghosh, S.K., Bagdanov, A.D.,
Iwamura, M., Matas, J., Neumann, L., Chandrasekhar, V.R., Lu, S., Shafait, F.,
Uchida, S., Valveny, E.: ICDAR 2015 competition on robust reading. In: ICDAR,
August 23-26, 2015. pp. 1156–1160. IEEE Computer Society (2015)

13. Khurshid, K., Siddiqi, I., Faure, C., Vincent, N.: Comparison of Niblack inspired
binarization methods for ancient documents. In: Document Recognition and Re-
trieval (DRR). pp. 1–10. SPIE (2009)

14. Lu, X., Kataria, S., Brouwer, W.J., Wang, J.Z., Mitra, P., Giles, C.L.: Automated
analysis of images in documents for intelligent document search. IJDAR 12(2),
65–81 (2009)

15. Otsu, N.: A threshold selection method from gray-level histograms. TSMC 9(1),
62–66 (1979)

16. Samet, H., Tamminen, M.: Efficient component labeling of images of arbitrary
dimension represented by linear bintrees. IEEE TPAMI 10(4), 579–586 (1988)

17. Sas, J., Zolnierek, A.: Three-Stage Method of Text Region Extraction from Dia-
gram Raster Images. In: CORES. pp. 527–538. Springer (2013)

18. Savva, M., Kong, N., Chhajta, A., Fei-Fei, L., Agrawala, M., Heer, J.: ReVision:
Automated Classification, Analysis and Redesign of Chart Images. In: UIST. pp.
393–402. ACM (2011)

19. Xu, S., Krauthammer, M.: A new pivoting and iterative text detection algorithm
for biomedical images. Journal of Biomedical Informatics 43, 924–931 (2010)

20. Yang, L., Huang, W., Tan, C.L.: Semi-automatic ground truth generation for chart
image recognition. In: DAS. pp. 324–335. LNCS, Springer (2006)


