Rapid seeding, core segregation, and volatile loss of planetesimal belts isolated in space and time

Tim Lichtenberg

University of Oxford

Joanna Drążkowska (LMU Munich) Maria Schönbächler (ETH Zurich) Gregor Golabek (BGI Bayreuth) Thomas Hands (U Zurich)

EPSC-DPS Joint Meeting 2019, session TP14, Geneva, 18 September 2019

Rapid core formation & distinct reservoirs

Trinquier+ 07, 09; Warren 11

Hunt, Cook, Lichtenberg+ 18

Cause for reservoir separation?

Heliocentric distance

Kruijer+17

But protracted growth for the inner planets?

Heliocentric distance

Kruijer+17

- Hard to form a 20 M_{Earth} planet in \approx 1 Myr
 - Streaming instability (SI) requires favourable local conditions $\approx 10^5 - 10^6 \, \text{yrs}$
 - S/-generated size-frequency distribution $(R_{\rm max} \approx 250 \text{ km})$ limits efficacy of pebble accretion
- Optimistic models of pebble accretion rapid (≈ 10⁴ yr); migration-constrained
- Jupiter is a porous 'filter'
- \rightarrow Early-formed Jupiter scatters >> $M_{ast.-belt}$ into inner Solar System

- Hard to form a 20 M_{Earth} planet in \approx 1 Myr
 - Streaming instability (SI) requires favourable local conditions $\approx 10^5 - 10^6$ yrs
 - S/-generated size-frequency distribution $(R_{\text{max}} \approx 300 \text{ km})$ limits efficacy of pebble accretion
- Optimistic models of pebble accretion rapid (≈ 10⁴ yr); migration-constrained
- Jupiter is a porous 'filter'
- \rightarrow Early-formed Jupiter scatters >> $M_{ast.-belt}$ into inner Solar System

Brügger+ 18, Bitsch+ 19, McNally+ 19

- Hard to form a 20 M_{Earth} planet in \approx 1 Myr
 - Streaming instability (SI) requires favourable local conditions $\approx 10^5 - 10^6 \, \text{yrs}$
 - S/-generated size-frequency distribution $(R_{\text{max}} \approx 300 \text{ km})$ limits efficacy of pebble accretion
- Optimistic models of pebble accretion rapid (≈ 10⁴ yr); migration-constrained
- Jupiter is a porous 'filter'
- \rightarrow Early-formed Jupiter scatters >> $M_{ast.-belt}$ into inner Solar System

Grain size threshold to be blocked by Jupiter

Midplane turbulence

Haugbølle+ 19; see also Drążkowska+ 19 -> EPSC-DPS2019-762

- Hard to form a 20 M_{Earth} planet in \approx 1 Myr
 - Streaming instability (SI) requires favourable local conditions $\approx 10^5 - 10^6$ yrs
 - S/-generated size-frequency distribution $(R_{\text{max}} \approx 300 \text{ km})$ limits efficacy of pebble accretion
- Optimistic models of pebble accretion rapid (≈ 10⁴ yr); migration-constrained
- Jupiter is a porous 'filter'
- \Rightarrow Early-formed Jupiter scatters >> $M_{ast.-belt}$ into inner Solar System

Planetesimal formation in \approx wind-driven disk

Drążkowska & Dullemond 18

Rapid accretion in midplane-quiescent disks

Getting rid of the water: radiogenic heating

Lichtenberg+ 16a,18,19a,b

Compositional bifurcation of reservoirs

Lichtenberg, Drążkowska, Schönbächler, Golabek, Hands, in prep.

Getting rid of the water: radiogenic heating

5

²⁶Al-heated icy planetesimals seeding the inner planets

A. Angelich (NRAO/AUI/NSF)/ALMA (ESO/NAOJ/NRAO); ESA/NASA/M.A.Garlick

Compositional bifurcation of reservoirs

Lichtenberg, Drążkowska, Schönbächler, Golabek, Hands, in prep.

Early compositional bifurcation of planetary building blocks

Lichtenberg, Drążkowska, Schönbächler, Golabek, Hands, in prep.

- Reservoir separation induced by protoplanet seeding
 - Not dependent on the presence of Jupiter, but causing its nucleation and growth
- Rocky planets seeded *before* giant planets
- Water accretion sequence to inner Solar System: water-depleted \rightarrow dry \rightarrow water-rich
 - Qualitatively reproduces latest geochemical constraints < 4 Myr (Sarafian+17a,b; Peslier+ 17; Piani+ 17,18; McCubbin & Barnes 19)

