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The problem:

● About 2,000 poems to encode

● Limited time and money

● Projections showing we were not going to make our 
target

● Encoders frustrated by repetitive and tedious tasks





● Automatic TEI header (SQL database →  XML → TEI)

● Automatic OCR stores output as a <!--comment--> in the 
body of the TEI file

● Encoder proofs and corrects OCR output

1. Automation of teiHeader and OCR







2. Schematron Quickfix for <lg> and <l>

● Encoder removes corrected OCR from <!--comment-->

● Encoder uses Schematron Quickfix (by right-clicking on 
<div>) to autotag all lines <l> and line groups <lg> in the 
text











3. Keystroke shortcut for rhyme

● [Control + Alt + 0] wraps selected text in a <rhyme> tag, 
prompts the encoder to add a rhyme @label

● This keystroke shortcut employs an XPath regular 
expression to identify a likely rhyme @type 
(masculine/feminine) based on syllable count







4. XSLT transformation for rhyme

● Our project reuses rhyme labels. If “love” is labelled “a” 
in stanza 1, “dove” will be labelled “a” in stanza 57. 

● An XSLT transformation scenario helps the encoder to 
find repeated rhyme labels within long poems.

● It does this by searching the entire corpus of encoded 
rhymes for likely matches.







5. CSS efficiency and accuracy

● Encoder uses <rendition> (with @selector) in the 
encodingDesc of the teiHeader to describe the overall 
layout of poem.

● Encoder uses an XSLT transformation scenario to get 
instant visual feedback on TEI and CSS encoding and 
alters their encoding as needed.









6. Feedback and error reporting

● In addition to providing visual feedback for the encoder’s 
CSS, the HTML rendering reports on errors such as:

○ Inconsistency between the @rhyme pattern in the <lg> and 
the sequence of <rhyme> @labels within the stanza

○ Omission of a @rhyme pattern in the <lg>

○ Omission of a declared width in the poem <div>





7. Sonic devices

● The HTML rendering uses a simple similarity metric to 
notify the encoder of potential sonic devices within the 
poem (e.g. choruses, refrains, anaphoras)

● Encoder evaluates the sonic device report and tags 
confirmed sonic devices within the text





8. Tracking labour

● After a prompt from the DVPP schematron, encoder adds 
their <respStmt> (with a unique @xml:id) to teiHeader









Summary

● Pre-build as much as possible.
● Automate repetitive tagging.
● Provide instant rendering with diagnostics.
● Make your programmer do encoding!



For code and additional details:
http://bit.ly/encoding_speed

@poetry_digital

http://bit.ly/encoding_speed

