
How we tripled our encoding
speed in the Digital Victorian

Periodical Project
Kaitlyn Fralick, Kailey Fukushima,
Martin Holmes, and Sarah Karlson

(University of Victoria)

Digital Victorian
Periodical Poetry

Dr. Alison Chapman (PI), Martin Holmes, & team
@poetry_digital

The Team

Kailey Fukushima

Sarah KarlsonKaitlyn Fralick

The problem:

● About 2,000 poems to encode

● Limited time and money

● Projections showing we were not going to make our
target

● Encoders frustrated by repetitive and tedious tasks

● Automatic TEI header (SQL database → XML → TEI)

● Automatic OCR stores output as a <!--comment--> in the
body of the TEI file

● Encoder proofs and corrects OCR output

1. Automation of teiHeader and OCR

2. Schematron Quickfix for <lg> and <l>

● Encoder removes corrected OCR from <!--comment-->

● Encoder uses Schematron Quickfix (by right-clicking on
<div>) to autotag all lines <l> and line groups <lg> in the
text

3. Keystroke shortcut for rhyme

● [Control + Alt + 0] wraps selected text in a <rhyme> tag,
prompts the encoder to add a rhyme @label

● This keystroke shortcut employs an XPath regular
expression to identify a likely rhyme @type
(masculine/feminine) based on syllable count

4. XSLT transformation for rhyme

● Our project reuses rhyme labels. If “love” is labelled “a”
in stanza 1, “dove” will be labelled “a” in stanza 57.

● An XSLT transformation scenario helps the encoder to
find repeated rhyme labels within long poems.

● It does this by searching the entire corpus of encoded
rhymes for likely matches.

5. CSS efficiency and accuracy

● Encoder uses <rendition> (with @selector) in the
encodingDesc of the teiHeader to describe the overall
layout of poem.

● Encoder uses an XSLT transformation scenario to get
instant visual feedback on TEI and CSS encoding and
alters their encoding as needed.

6. Feedback and error reporting

● In addition to providing visual feedback for the encoder’s
CSS, the HTML rendering reports on errors such as:

○ Inconsistency between the @rhyme pattern in the <lg> and
the sequence of <rhyme> @labels within the stanza

○ Omission of a @rhyme pattern in the <lg>

○ Omission of a declared width in the poem <div>

7. Sonic devices

● The HTML rendering uses a simple similarity metric to
notify the encoder of potential sonic devices within the
poem (e.g. choruses, refrains, anaphoras)

● Encoder evaluates the sonic device report and tags
confirmed sonic devices within the text

8. Tracking labour

● After a prompt from the DVPP schematron, encoder adds
their <respStmt> (with a unique @xml:id) to teiHeader

Summary

● Pre-build as much as possible.
● Automate repetitive tagging.
● Provide instant rendering with diagnostics.
● Make your programmer do encoding!

For code and additional details:
http://bit.ly/encoding_speed

@poetry_digital

http://bit.ly/encoding_speed

