
The Prefabricated Website
Who needs a server anyway?

Martin Holmes and Joseph Takeda
University of Victoria Humanities Computing and Media Centre

bit.ly/Prefabricated

https://bit.ly/Prefabricated

Quick summary
The projects: Endings and The Map of Early Modern London (MoEML)

What is a static site, and why would you build one?

The site build process

Advantages

Disadvantages

 The Map of Early Modern London
Currently version 6.3 / 6.4, versions dating back to 1999

2,000+ documents, 1,600+ locations, 6,500+ people, 1800+ bibliography items

Gazetteer / encyclopedia / digital edition publication platform

/e Project Endings
Endings is a four-year project funded by the Social Sciences and Humanities

Research Council (SSHRC) that is creating tools, principles, policies and

recommendations for digital scholarship practitioners to create accessible, stable,

long-lasting resources in the humanities.

Thank you SSHRC!

http://www.sshrc-crsh.gc.ca/

Endings principles

● Data

● Products

● Processing

● Documentation

● Release Management

Endings principles

● Data

● Products

● Processing
● Documentation

● Release Management

Static sites: what and why?

www.tei-c.org, early 2019...

http://www.tei-c.org

Dependencies
The TEI site depends on WordPress.

WordPress depends on PHP and MySQL (single point of failure).

Getting a new server running requires

● Installing PHP and MySQL

● Restoring the DB from backup

● Configuring WordPress

● ...

No such problem with the Guidelines
The online version of the TEI Guidelines consists only of HTML, CSS and

JavaScript.

It’s always in multiple places.

You can put a copy of it on any server.

You can use it from a local drive.

You can put as many copies as you like wherever you want.

That’s a static site.

Static sites:

Have no dependencies (other than a web server) ✔

Are pure HTML, CSS and JavaScript ✔

Can be replicated endlessly ✔

Need little or no curation ✔

Therefore have more chance of survival ✔

We’re not the only people who think so...
Jamstack.org is an initiative to champion “modern web development architecture

based on client-side JavaScript, reusable APIs, and prebuilt Markup,” in the

interests of “better performance,” “cheaper, easier scaling,” “higher security,” and a

“better developer experience.”

https://jamstack.org/

MoEML’s static site build process: Part 1

MoEML’s static site build process: Part 1
● Validate (Relax NG)

MoEML’s static site build process: Part 1
● Validate (Relax NG)

● Validate (Schematron)

MoEML’s static site build process: Part 1
● Validate (Relax NG)

● Validate (Schematron)

● Diagnose
○ Coherence: all links point to things.
○ Consistency: all documents conform to encoding and editorial guidelines.
○ Completeness: everything mentioned actually exists.

(See Holmes and Takeda 2019, http://dx.doi.org/10.1093/llc/fqz011)

http://dx.doi.org/10.1093/llc/fqz011

MoEML’s static site build process: Part 1
● Validate (Relax NG)

● Validate (Schematron)

● Diagnose
○ Coherence: all links point to things.
○ Consistency: all documents conform to encoding and editorial guidelines.
○ Completeness: everything mentioned actually exists.

(See Holmes and Takeda 2019, http://dx.doi.org/10.1093/llc/fqz011)

If anything is wrong, then stop. A Website with errors is not worth building.

http://dx.doi.org/10.1093/llc/fqz011

In the bad old days before Endings...

...project members would happily upload anything they
thought was finished into the live web application.

They linked to things that didn’t yet exist or might never
exist.

They added images and documents that were never
linked to.

The site was always slightly broken in numerous ways.

In the bad old days before Endings...

...project members would happily upload anything they
thought was finished into the live web application.

They linked to things that didn’t yet exist or might never
exist.

They added images and documents that were never
linked to.

The site was always slightly broken in numerous ways.

We’ll have no more
of that.

MoEML’s static site build process: Part 2
Make more XML!

MoEML’s static site build process: Part 2
Make more XML!

“Original” TEI: Better versions of our actual encoded files.

MoEML’s static site build process: Part 2
Make more XML!

“Original” TEI: Better versions of our actual encoded files.

“Synthesized” TEI: New documents computed from existing pages.

MoEML’s static site build process: Part 2
Make more XML!

“Original” TEI: Better versions of our actual encoded files.

“Synthesized” TEI: New documents computed from existing pages.

“Standalone” TEI: Versions with no external dependencies.

MoEML’s static site build process: Part 2
Make more XML!

“Original” TEI: Better versions of our actual encoded files.

“Synthesized” TEI: New documents computed from existing pages.

“Standalone” TEI: Versions with no external dependencies.

“Standard” TEI: Versions with less common encoding practices normalized.

MoEML’s static site build process: Part 2
Make more XML!

“Original” TEI: Better versions of our actual encoded files.

“Synthesized” TEI: New documents computed from existing pages.

“Standalone” TEI: Versions with no external dependencies.

“Standard” TEI: Versions with less common encoding practices normalized.

TEI Lite and TEI simplePrint: Versions for simple interchange.

MoEML’s static site build process: Part 2
Make more XML!

“Original” TEI: Better versions of our actual encoded files.

“Synthesized” TEI: New documents computed from existing pages.

“Standalone” TEI: Versions with no external dependencies.

“Standard” TEI: Versions with less common encoding practices normalized.

TEI Lite and TEI simplePrint: Versions for simple interchange.

(See Holmes 2017, http://dx.doi.org/10.1093/llc/fqw048)

http://dx.doi.org/10.1093/llc/fqw048

MoEML’s static site build process: Part 3

● Build the HTML, CSS and JavaScript.

● Validate all the HTML.

● Validate all the CSS.

If anything is wrong, then stop. A Website with errors is not worth building.

Rules for Website generation

Rules for Website generation

● Every entity (location, person, org, article etc.) has a unique id, and its own

unique page on the site.

Rules for Website generation

● Every entity (location, person, org, article etc.) has a unique id, and its own

unique page on the site.

● No URL is ever abandoned. Obsoleted ids still get a page, redirecting as

appropriate.

Rules for Website generation

● Every entity (location, person, org, article etc.) has a unique id, and its own

unique page on the site.

● No URL is ever abandoned. Obsoleted ids still get a page, redirecting as

appropriate.

● Every page stands alone and complete in terms of content.

Rules for Website generation

● Every entity (location, person, org, article etc.) has a unique id, and its own

unique page on the site.

● No URL is ever abandoned. Obsoleted ids still get a page, redirecting as

appropriate.

● Every page stands alone and complete in terms of content.

● All pages live together in the same folder.

“But but but ….”

But massive duplication of
content across the site!

We don’t care.

But thousands of files
no-one may ever see!

We don’t care.

But 10,591 files all in the
same folder!

We don’t care.

Advantages: 1

You can build hugely complex resources that could not be built on the fly.

For example:

● the Gazetteer (9000 entries)

● the A-Z Index (a single page with 10,500 entity ids)

(Because Control + F.)

https://mapoflondon.uvic.ca/azindex.htm

Advantages: 2

You can do really complicated, multi-pass processing of gnarly markup.

For example: @style, <rendition>/@selector

● Collect all identical @style on elements into a <rendition>

● Convert all <rendition>/@selectors into XPath, then to @rendition

● Then generate HTML/CSS

Advantages: 3

Archiving the site is easy:

cp -r site somewhere_else/

Replicating the site is easy:

cp -r site somewhere_else/

Advantages: 4

Everything is there.

Internal links never break.

Everything works.

Everything is valid.

Everyone is happy.

Disadvantages
Deferred gratification.

● Builds take a long time.

● Builds often fail.

● It can be hours before you can see your work on

the build server.

But guess what?

Disadvantages
Deferred gratification.

● Builds take a long time.

● Builds often fail.

● It can be hours before you can see your work on

the build server.

But guess what?
We don’t care.
Patience is a virtue.

Conclusions

Conclusions

● Everything that can be prefabricated should be prefabricated.

Conclusions

● Everything that can be prefabricated should be prefabricated.

● Everything that could conceivably be useful should be created and

included.

Conclusions

● Everything that can be prefabricated should be prefabricated.

● Everything that could conceivably be useful should be created and

included.

● Redundancy is beneficial; in fact it is elegant.
○ If the same personography entry is replicated in fifty pages that mention that person, then

good; any of those pages can now be used outside the context of the collection without loss.

Conclusions

● Everything that can be prefabricated should be prefabricated.

● Everything that could conceivably be useful should be created and

included.

● Redundancy is beneficial; in fact it is elegant.
○ If the same personography entry is replicated in fifty pages that mention that person, then

good; any of those pages can now be used outside the context of the collection without loss.

● Patience is a virtue: let your build take a long time; let your releases be

well-separated.

Thanks for listening!

https://mapoflondon.uvic.ca

https://projectendings.github.io/

mholmes@uvic.ca

joey.takeda@gmail.com

https://bit.ly/Prefabricated

https://mapoflondon.uvic.ca
https://projectendings.github.io/
mailto:mholmes@uvic.ca
mailto:joey.takeda@gmail.com
https://bit.ly/Prefabricated

