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Abstract

Research has shown the efficacy of using convolutional neural networks (CNN) with au-

dio spectrograms in machine listening tasks such as acoustic scene classification (ASC).

There is, however, a knowledge gap when it comes to standardizing preprocessing prac-

tices for this form of ASC. Researchers using these methods have been moving forward

in relative darkness about how to best represent their audio data for consumption by

a CNN, often relying on transfer learning from adjacent machine listening tasks. This

work explores the relationship of frequency limens and channel depth on ASC accu-

racy with CNNs of three different varieties: generic, deep, and wide. Results show

that variability in the representation of spectral audio information plays a crucial role

in classifier performance. Classification accuracy improved when using multi-channel

representations of audio data over a single channel alternative. Classification accuracy

also decreased when the representative spectra contained less frequency information,

albeit to a lesser degree. This pattern was nearly consistent across each of the proposed

CNN architectures. These findings have direct implications for several academic and

industrial machine listening applications. In the academic realm, they work towards

codifying audio data preprocessing practices and network architectural decisions. In

industry, the results open the door for exploring the usage of substandard microphones

in technologies that employ machine listening such as commodity hardware.

Keywords: acoustic scene classification; computational auditory scene analysis; ma-

chine listening; convolutional neural networks, commodity hardware;





Chapter 1

Introduction

“The proselytisation of machine learning has preached its endless applicability; the

idea that all phenomenon will be explicable with enough data and enough

computational power professes to have no limitation.” -Martin Disley

1.1 Background and Motivation

The era of big data is upon us. Machine learning is powering technological advance-

ments in nearly every facet of our electronically connected world. Its influence per-

meates into all corners of science, from autonomous systems to computer vision to

artificial intelligence assisted healthcare to smart home and other internet-of-things

(IoT) devices. These are just some of the many innovative technologies, all built upon

the marriage of machine learning and big data. From a layman’s perspective, machine

perception is perhaps one of today’s more recognizable forms of machine learning. Ma-

chine perception most notably comes in the form of computer vision1 and machine

listening2.

1image and video recognition
2recognition of sounds such as voice or music

1
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A burgeoning subgenre of machine listening is Computational Auditory Scene Analysis

(CASA) - “the study of auditory scenes by acoustic means,” [1] where auditory (or

“acoustic”) scenes refer to taxonomized contexts understood through psychophysical

descriptors, e.g., in nature, at a sports arena, in the kitchen, on a bus, etc. While

researchers have been working on CASA related tasks for decades, the community has

received a significant amount of interest in the last five years or so. The advancement of

acoustic event and scene analysis has been propelled by its deployable industrial value

be it in surveillance, healthcare industries, context-aware applications, or a host of other

sectors that require advanced media retrieval [2]. Evidence of the growing interest in

CASA research can not only be found from indicators like the rise of public evaluation

campaigns or the increase of research community growth but also in the participation

of significant industrial players [3, 4, 5].

One field of CASA research with high levels of engagement is acoustic scene classifica-

tion (ASC) [6]. Increased involvement in ASC research has led to a compilation of ASC

related datasets ripe for analysis. Although none are perfect, or perhaps as comprehen-

sive as some of the foundational datasets that fueled the proliferation of computer vision

[7, 8, 9], each has improved with time, helping invite more of the research community to

participate in machine listening tasks. At the forefront of CASA public evaluation cam-

paigns is the now-annual Detection and Classification of Acoustic Scenes and Events

(DCASE) Challenge. Using their acoustic scenes dataset I have set out to answer the

following question: can a machine learn to accurately classify an acoustic scene when

presented with substandard audio? Breaking down this question from a macro level

reveals a number of smaller problems that need to be reconciled: finding an appropri-

ate machine learning architecture, defining “substandard audio”, identifying a means of

extracting relevant information from said audio, determining evaluation criteria, and

finally implementing it all. The answers to these questions have profound implications

on the production of machine listening systems designed to be contextually aware. Con-

sidering the rampant growth of IoT devices, context-aware applications, and “smart”
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commodity hardware in the marketplace, this research is relevant to any stakeholder

with ties to these technologies. Understanding the threshold of audio information nec-

essary to successfully classify acoustic scenes has ramifications that span from greater

efficiency, such as improved machine learning processes, to economic incentives, in the

form of reduced computational resources or product design decisions.

1.2 Organization

With the intention of elucidating untrodden territory in ASC research, making plainly

clear the processes of this work, and relaying its importance, the remaining contents of

this study are structured in the following manner: 2) State of the Art - an exhaustive

summary, cataloging the current state of affairs of ASC research, telling its story from

past to present towards future implications, highlighting the technologies and techniques

used along the way. 3) Methodology - a look at the procedures taken to create a viable

research environment. These include the approach to sourcing relevant data, defin-

ing the problem set, data preprocessing techniques, the proposed system architecture

along with the various parameters and technologies needed to make its implementation

possible. 4) Experiment - a detailed survey into the investigation undertaken, con-

veying the expected outcomes, all while accounting for every variable and parameter

tuned in the process. 5) Discussion - an examination of the experiments’ empirical

findings, communicated in a variety of contexts, e.g., graphical, tabular, and written.

6) Conclusions - closing comments on the findings together with their shortcomings,

practical implications, and actionable insights on both future work and industrial value.



Chapter 2

State of the Art

2.1 Acoustic Scene Classification

The DCASE community formally defines Acoustic Scene Classification as “[the] recog-

nition of the environment in which a recording has been made, relying on the assump-

tion that an acoustic scene, as a general characterization of a location or situation,

is distinguishable from others based on its general acoustic properties” [10]. From a

computational standpoint, ASC is a multi-label classification problem, one that looks

to identify the contextual information of a given audio clip. As its industrial value has

increased, so have the efforts towards solving this problem. Proof of these endeavors

is found at the heart of the DCASE community, which has served as one of the most

salient congregations of ASC research to-date. Starting as an Institute of Electrical

and Electronics Engineers challenge in 2013, DCASE sought to help the audio signal

processing (ASP) community in advance its research in a uniform manner. Since its

inception, DCASE has successfully elicited hundreds of academic papers introducing

innovative solutions working towards an optimal acoustic scene classifier [11].

The first DCASE challenge submissions were very much of their time, using the best-

known practices with what data was available. Often the technology and procedures

4
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used in these early proposals were procured from proximate research circles working in

a similar domain, but wholly different problem set: speech recognition. Procedurally,

one of the hallmarks of state-of-the-art speech recognition was its approach to feature

engineering1. Speech processors relied on extracting audio level features, e.g., low-level,

tonal, energy, spectral, and cepstral information along with some of their derivatives.

As a result of these pre-existing solutions, the representations of acoustic scenes in

ASC research followed suit [12]. Early challenge submissions featured classifiers built

atop Gaussian Mixture Models (GMM), Hidden Markov Models (HMM), and Support

Vector Machines (SVM); with the latter showing out as one of the best performers. As

the access to improved computational power and strongly labeled audio data has been

made available, ASC task solutions have evolved accordingly.

2.2 Classifiers Used in Early ASC

Hidden Markov Models are statistical models founded upon the Markov chain used

to predict a sequence of state changes. The term “hidden” refers to the notion that

the Markov processes are unobserved, indicating that its output, not the states, are

available to the external observer. The model itself is a finite set of states generally

associated with a probability distribution, wherein transition probabilities determine

each state change. The predictive abilities of the model are informed by its state tran-

sition probabilities, which alongside the emission, or “output” probabilities, effectively

serve as its learnable parameters for classification.

Gaussian Mixture Models are probabilistic models that treat each point of input

data as if it came from a Gaussian distribution. In doing so, it clusters data in ac-

cordance with what it believes to be alike. The GMM works similarly to the much

simpler K-means clustering [13]: they both look for latent variables2 to cluster into

classes, but unlike K-means, the GMM incorporates covariance found within the data,

1i.e., the process of extracting relevant variables from raw data for machine learning
2variables that are not directly observed, but instead inferred from their observable counterparts
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all while accounting for a mixture of unimodal Gaussian distributions3. In the context

of a classification task, a trained GMM classifies examples based on the cluster with

which it most closely aligns. GMMs are often used in unsupervised learning tasks but

are also applicable in other domains.

Support Vector Machines work to find a hyperplane4 that capably separates classes

in a multidimensional feature space. In the context of a classification task, SVMs create

a model representation of the input data such that each class is grouped with as much

distance between them as possible5. When examples are introduced for classification,

they are projected into the model and predicted based on their proximity to predeter-

mined class boundaries. Given this trait, SVMs are typically employed in supervised

learning tasks.

All of these classifiers were popular choices because they had been successfully used in

other audio related tasks [14]. Through transfer learning, it was reasonable to assume

that they might exhibit some efficacy when presented with an adjacent classification

problem. These models were ideal because they could perform a classification task

without the massive amount of data needed for effective deep learning6. The preliminary

classifiers scratched the surface of ASC’s potential given their relative computational

efficiency and the lack of widely circulated audio datasets (for the explicit purpose of

ASC research). Nevertheless, these models were not without their faults. HMMs require

manual selection of optimal parameters for it to be useful, a process that involves a

significant amount of trial and error. GMMs are generally limited to problems that don’t

include a high number of dimensions, meaning that as the number of components the

GMM is asked to cluster increases, its effectiveness decreases. SVMs also require fine-

tuning parameters to be effective, with the understanding that those same parameters

3often referred to as a “bell curve”
4a subspace whose dimension is one less than that of its ambient space, for example: a 3D ambient

space will have a 2D hyperplane
5imagine points on a graph with boundary lines drawn between each cluster of categories
6“deep learning” refers to training [sometimes very large] neural networks; any network with more

than 2-layers, input layer excluded, can be considered a “deep” neural network
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may not readily translate to another classification task. With these limitations in

mind, the ASC research community began a gradual shift away from these technologies,

towards those powering the exponential growth in machine perception research. The

onset of strongly labeled audio data in CASA facilitated the potency of more complex

classifier models, so much so, that the top-performing algorithms in the most recent

DCASE challenge were almost exclusively made up of solutions that involved neural

networks7 or ensemble-based classifiers [15].

2.3 The Rise of Neural Networks

Neural networks (NNs), or at least their foundational algorithms, have been around for

decades. Only with powerful computers and robust datasets could we leverage their

theorems into reality. This work was pioneered in the late 20th century by Geoffrey

Hinton, David Rumelhart, and Ronald Williams [16] in their seminal paper, “Learning

representations by back-propagating errors”, then further evangelized in the new mil-

lennium by countless members of the machine learning research community. Without

their work, we would not see the applications of neural networks diffusing through ev-

eryday modern life. Of all machine perception sub-tasks, computer vision has arguably

matured the most8 in the last ten years. Its growth is directly attributable to the scal-

ing of both robust datasets and enhanced computing power. Therefore, it should be

no surprise that with the organization, standards, and resources made available by the

CASA research community, ASC work has seen an observable uptick in academic and

industrial engagement. As of late, the overwhelming majority of ASC task submissions

have incorporated a neural network of some kind. In taking a look at how they work, we

can start to understand why they are the popular modality for solving these problems.

Neural networks comprise of mathematical functions called “neurons” (or “nodes”) -

which are stacked together in successive layers. Neurons accept numerical inputs which,

7in the form of multilayer perceptrons, convolutional layers, and recurrent units.
8a trend particularly evident in the context of consumer electronics
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alongside their respective weights (w) and biases (b)9, are used to compute an output,

often a form of logistic regression. In the context of a neural network, this output

is referred to as an “activation.” The resulting activations are then passed through a

nonlinear function, known as an “activation function”10.

Figure 1: A neuron (or node), with a regression function z = wtx+ b followed by an activa-
tion function a = σ(z) where ŷ is the predicted output

While there are countless possible arrangements for nodes in a neural network, there are

almost always at least three requisite layers consistent to a standard NN architecture:

the input layer, the hidden11 layer[s]12, and the output layer13.

The input layer consumes the training data represented as a set of feature vectors, and

outputs - through its activation function - into a hidden layer. In a process known

as “forward propagation,” continual regression functions are then computed using the

successive data feed, where it is sent to the output layer and ultimately classified. Each

complex set of operations within the processes of a neural network has its own level

of import in terms of successful classification. Therefore every operation needs to be

meticulously accounted for when designing a NN based classifier. Below I’ll examine

some of the essential building blocks that make neural networks useful classifiers.
9the learnable parameters in a trained model

10Activation functions set the foundation for neural networks to be well equipped to handle non-
linearity (unlike a GMM which requires smoothing, or an SVM that requires the kernel method to
achieve nonlinearity).

11The term “hidden” refers to fact that during training, the true values of nodes in a given hidden
layer are not observed; this means that the expected input and outputs are known, however the
processes by which they are computed are effectively a black box.

12While only one hidden layer is required, more can help varying problem sets; the greater the
amount of hidden layers the “deeper” the network.

13this is actually a two-layer neural network, the input layer is not counted
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Figure 2: A basic NN with an input layer, hidden layer, output layer (left to right).

Parameters

According to the Universal Approximation Theorem [17], a neural network with at

least a single hidden layer given the appropriate parameters is capable of representing

almost any continuous function, thus making it an effective “universal approximator.”

Their parameters are the aforementioned weights (w) and biases (b) that neurons rely

on for their computations. Fine-tuning these parameters involve a whole subset of

hyper-parameters which can influence the learning process.

Loss & Cost Functions

A loss function is computed during forward propagation and represents the error cal-

culated for a single training example of the input data. While a loss function focuses

on a single example, a cost function is an indicator as to how the classifier is doing on

the whole training set. You can think of these as the distance between how well your

classifier is performing, and where you want it to be. Mathematically the cost function

is the average of loss functions on the entire training set, measuring the classification

performance given the influence of parameters w and b.

Gradient Descent

Gradient descent works to train the parameters, such that the cost function minimizes

towards global optima. This process starts at a given point in the intersectional feature



10 Chapter 2. State of the Art

space of the dataset, and quite literally descends the gradient towards the global min-

ima14. The choice for each progressive step of descent is informed by slope derivatives,

where the greatest derivative - or steepest downward slope - is the next best step down

towards converging on the minima.

Figure 3: A graphic representation of gradient descent in a multidimensional feature space.
Each blue dot references one epoch of training towards global optima [18].

Backpropagation

Backpropagation is used to minimize the loss function by taking the derivative of a

function, cognizant of variable dependencies, and identifying which variables need to

be modified. Backpropagation breaks down into four distinct steps: the forward pass,

the loss function, the backward pass, and the weight update. Mathematically it is

the derivative of the forward propagating linear and activation functions, which, when

backtraced to the first layer, can adjust the weight parameters accordingly.

14i.e., where the cost function is lowest
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Hyper-Parameters

A hyper-parameter is a parameter set before the training process begins:

Learning Rate

Learning rate, represented mathematically as alpha (α), determines how your parame-

ters evolve. By controlling how much the weights are adjusted relative to the calculated

loss, it modifies the slope at which a network-in-training descends the gradient.

Epochs

A single training iteration in a neural network is known as an epoch. This formally

includes one round of forward and backward propagation. Finding the right number of

epochs needed to train a model can make the difference between creating an accurate

classifier versus one that is overfitted15 and underperforms on the test data.

Units & Layers

The number of neurons in a given layer is referred to as the number of units in that

layer, as such the units on a hidden layer are referred to as “hidden units.” The number

of units on each layer is a reference to the “width” of said layer [19]. Meanwhile, the

number of hidden layers between the input and output layers is a reference to the

networks “depth”, which directly informs the amount of time and power needed to

compute an epoch. Although having a single hidden layer allows a neural network to

serve as a universal approximator, it must be a very wide network to accomplish this.

Therefore there is a real benefit trade-off between network depth and width to consider

when designing a neural network-based classifier.

Activation Functions

Activation functions transform the output of a given neuron. Not only do they help

avoid the reliance on linear functions, which would effectively introduce identity func-
15biased towards the training data
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tions to the neural network16, they simultaneously highlight notable latent variables

while working to prevent the vanishing gradient problem17. Four of the more com-

monly used nonlinear activation functions are the hyperbolic tangent function (TanH),

the sigmoid function, the rectified linear unit (ReLU), and the leaky rectified linear

unit.

TanH: f(x) = tanh(x) =
(ex − e−x)

(ex + e−x)
Sigmoid: f(x) = σ(x) =

1

1 + e−x

ReLU: f(x) =

0 for x < 0

x for x ≥ 0

Leaky ReLU: f(x) =

0.01x for x < 0

x for x ≥ 0

While these aren’t the only hyper-parameters at play18, the rest will be attended to

as needed in the contexts which make them relevant. Similarly to SVMs and HMMs,

hyper-parameters do not readily transfer from task to task, and optimizing this process

is still an area of opportunity for research. Relative to the shortcomings of other clas-

sification modes, neural networks make for the obvious choice. Their lack of uniform

hyper-parameter optimization easy to look past, especially when considering the bene-

fits drawn from having robust data. The most significant benefit neural networks offer is

that they improve with the amount of data that they ingest. With large audio-specific

datasets made available such as Google’s AudioSet, NYU’s UrbanSound8K, CHiME

Home, and the DCASE ASC set, neural networks have plenty to learn from when solv-

ing CASA tasks. Further, as the size of a neural network increases, so does its ability

to represent high-level features in the input data. The union of these two resources

have shown outstanding classification accuracy compared to the earlier classification

methods.

Like all other classifiers, there is not a one-size-fits-all solution to each subset of ma-
16combining linear functions will only lead to more linear functions, resulting in a linear classifier
17when activation values decrease or increase exponentially as a function of the number of layers in

the network
18e.g., momentum, batch size, regularization/dropout, normalization, weight initialization, optimiza-

tion, etc.
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chine learning tasks, as different classification problems lend themselves to distinct NN

architectures. Large scale data science operations such as recommender systems do

well with multilayer perceptrons. Machine translation and other tasks that involve

sequenced data are well served by a recurrent neural network such as gated recurrent

units or long-short-term memory units. Meanwhile, machine perception tasks such as

computer vision have been effectively tackled using convolutional neural networks

2.4 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a class of neural networks that have found

remarkable success in image analysis19. Like any standard neural network, CNNs are

composed of layers that, through backpropagation, are able to teach learnable param-

eters to make classifications. The trademark difference of a CNN is in its use of con-

volutional layers as opposed to fully connected ones. Unlike a multi-layer perceptron,

convolutional layers are sparsely connected and its feature vector is represented as a

multidimensional20 matrix of values. For instance, an RGB encoded image can be rep-

resented as a stacked set of three two-dimensional matrices, one for each color channel

(red, blue, & green), or because it has a single color channel, a grayscale image could be

represented as a single two-dimensional matrix. Audio can be similarly represented as

an image, making convolutional neural networks an effective classifier choice for ASC

work.

CNNs perform calculations on subsections of the input feature vector using a multidi-

mensional grid of values21 called a “filter” or “kernel.” Filters stride22 across a matrix

representing the feature vector, performing element-wise multiplication, then use the

19so much so that CNN usage is responsible for the boon of computer vision
20expressed as height x width x depth (channels)
21By design, the size of a filter must be less than that of the input, therefore it can only process the

data in chunks; while the height and width of a filter can vary from the input data, its depth must
match the number of channels in the input; though less frequently used, 1x1 filters have very specific
applications.

22stride length is a hyper-parameter, along with others such as filter size, # of filters, padding, etc.
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Figure 4: A 3x3x3 filter (with a stride of 1) operating on a 6x6x6 feature vector will produce
a 4x4x1 matrix, effectively reducing the dimensionality

product to reduce the matrix dimensionality from layer to layer. Like any other hyper-

parameter, there are many possible choices for the best set of values to work with when

considering a filter. While there are popular static filters to choose from, there is a

greater benefit to learning the best filter set to meet your classification needs. Treating

filter values as a parameter introduces the ability for backpropagation to find an optimal

set of numbers which best captures the statistical dynamism of your data. Additionally,

unless a chosen filter size & stride combination works out to equally cover every element

in the feature vector, there is a chance that some values will be over-represented while

others go under-represented. This pitfall can be accounted for by adding a border of

constant values to the outer edges of the input matrix, in a process known as “padding.”

The use of padding helps capture additional features found in these bordering spaces.

Utilizing multiple filters can help capture features at a varying level of granularity, their

shapes and sizes ultimately influencing the volume of its successive layers.

By design, the first layer in a CNN is always a convolutional layer, while successive

layers in can come in the form of either more convolutional layers, pooling layers23,

or fully connected layers. Fully connected layers are flattened into a single dimension

akin to those found in a multilayer perceptron. Alternatively, pooling layers reduce

the size of the feature vector in successive layers. Once the network finds a feature in

23also referred to as a “downsampling” layer; formally a convolutional layer immediately followed by
a pooling layer composes one full layer in a CNN
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the original input volume24, its location in the input matrix becomes less important

than its relative position to the other features. Downsampling effectively reduces the

computation time in successive layers by whittling the number of parameters while also

controlling for overfitting on the whole feature vector.

Figure 5: An example of max-pooling, where the highest value is passed onto subsequent
layers (winner takes all), compared to an example of average-pooling, where the mean of
values captured are passed on.

Conventional downsampling techniques include max-pooling and average-pooling. Max-

pooling takes the most significant value seen by the filter and projects it into a smaller

successive layer, while average pooling takes the mean of the numbers seen by the

filter. Although pooling layers have no learnable parameters, they have three25 hyper-

parameters: filter size, stride, and type of pooling (average or max); each of which plays

a role in determining the success of a CNN’s classifying abilities.

In the context of building out an acoustic scene classifier, CNNs make for a clear

choice because the network architecture has proven itself in the context of machine

perception. It has been observed as one of the top-performing networks in the DCASE

ASC challenge year after year. When comparing it to other neural network classes,

CNNs are particularly advantageous in that they often feature fewer parameters. CNNs

accomplish this through two key attributes: parameter sharing and sparse connectivity.

Parameter sharing occurs when a parameter that is useful in finding a feature in one

part of the input matrix is also valuable for other regions. Sparse connectivity refers to
24by virtue of a high activation value
25four if you include the rarely modified padding size on a pooling layer
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the fact that in a convolutional layer, output values to the successive layer are dependent

only on what is captured by the filter over each stride. This means that the element-

wise product is not calculated on the entire input matrix at once. These attributes

allow for robust classification without necessarily more computations being performed

to accomplish it.

2.5 Areas of Opportunity for Research

Over the years, the increased complexity of solutions submitted to the ASC task of the

DCASE challenge has highlighted a tendency of researchers to throw as much computing

power towards the problem as one can afford. The trend of eschewing computational

efficiency, for maximal classification accuracy is inspiring, but ultimately unrealistic

in terms of its practicality for a large subset of real-world applications, especially for

firms and researchers with limited computational resources at their disposal. Recently

work has been done to show the efficacy of wide, but shallow, convolutional neural

networks [20] on ASC tasks. This network architecture provides a reduced need for

computational power and is implementable for systems that have hardware limitations

such as embeddable devices or commodity hardware. A classification system that can

be embedded on inexpensive equipment could be incredibly beneficial to those who seek

to reduce production costs. For instance, if a machine listening device can employ a low-

fidelity microphone, but still maintain a respectable classification accuracy comparable

to more advanced systems, the producers of such a device would be inclined to take the

lower cost measure, using software fixes to facilitate the shortcomings of the hardware

instead.

The need for this work has been noted by the community as there is a lack of research

conducted to understand the causal relationship between audio degradation and clas-

sification accuracy. The DCASE challenge has attempted to simulate the conditions

of commodity hardware by providing filtered and resampled audio for a sound event



2.5. Areas of Opportunity for Research 17

detection task26, however, this has yet to be applied to ASC. There are a wide vari-

ety of audio preprocessing practices employed by CASA researchers that are of direct

interest to finding some clues towards understanding this relationship. Common prac-

tices include downmixing the audio to one channel, or downsampling the audio such

that the full range of audible frequencies is not represented in their totality prior to

classification. While work has been done showing that the entire audible range of audio

information27 is not needed for certain advanced audio-related tasks [21], recent studies

have shown that some of these practices may have detrimental effects on the classifiers

performance [22, 23, 24].

Given the direction ASC research is heading, I’ve set out towards creating a system that

emulates conditions of relevant interest to stakeholders in this field. This work seeks to

understand the relationship between audio quality and classification performance.

26sound event detection, or SED, is similar to ASC in that they both analyze acoustic scenes, but
SED also seeks to identify the temporal cues of a distinct sound event

27i.e., the breadth of channels and frequency range available in a given piece of audio
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Methodology

3.1 Defining a Standard

Before jumping into the weeds of the problem set, we must first define “substandard,”

meaning we must also identify the standard from which it deviates. In determining

the limens above which a neural network can be an effective acoustic scene classifier,

we look to the perceptible qualities of digitally represented sound and define what is

considered standard, or “full-range” audio. For our purposes, full-range is representative

of the totality of sound perceivable by a fully-abled human. The human experience of

sound can be detailed with variables like volume, channels, and frequency range [25].

Volume, in an auditory context, is the degree of loudness (or intensity) of a sound.

Volume is often represented in terms of decibels, a wholly subjective mode of expression

relative to the scale from which it is derived. In an acoustic context decibels1 are most

commonly in reference to sound pressure level2 (or dB SPL) relative to the threshold of

human hearing, however, in a digital context decibels are a measurement of waveform’s

amplitude. Audio channels reflect the number of directions from which a single sound is

1Decibels (dB) are fundamentally ratios, therefore they’re only intelligible when it is understood
what they are in reference to, e.g., dB SPL does not represent the same ratio as dbV, or dbSWL, etc.

2in the air

18
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recorded. Mono audio is indicative of a single audio channel, while stereo and binaural

audio indicates the presence of two channels: left and right3. Frequency is a reference

to the pitch of the sound and is measured in Hertz4 (Hz). High pitched sounds will

resonate at a higher frequency while low pitched sounds will do so at lower frequencies.

Studies have shown that a healthy, fully developed human can hear frequencies between

20 Hz and 20 kHz. Recording technology allows us to capture audio into the digital

realm within the contexts of such variables. Given these parameters of perception, our

“standard” is the aforementioned full range. Therefore any audio, or representation

thereof, that does not capture this full range can be deemed substandard.

3.2 Data Source

As discussed, a large acoustic scene dataset is needed to accomplish the goal of training

a NN-based classifier for ASC work. While other source material was available from

institutions such as the previously mentioned Google AudioSet, NYU’s UrbanSound8K

dataset, and the Real World Computing Group’s Sound Scene Database, I found the

2019 DCASE ASC task5 dataset to be the most robust in its offerings. The audio data

provided comes from a controlled setup that includes full-range binaural recordings,

is neatly organized, and is the most recently updated6. In the development set there

are 40 hours worth of accurately labeled recordings of acoustic scenes, taxonomized

into the following 10 categories: “airport,” “indoor shopping mall,” “metro station,”

“pedestrian street,” “public square,” “street with medium level of traffic,” “traveling by

tram,” “traveling by bus,” “traveling by underground metro,” and “urban park.” Each

scene contains recordings from several different cities, providing tonal variability to the

training data. There are a total of 14,400 ten-second segments in the development set,

3While multi-channel audio greater than two channels exists in a number of capacities, the over-
whelming majority of digitally represented audio comes in 1-ch or 2-ch format.

4number of cycles per second, where 1 Hz = one cycle per second
5The ASC challenge includes various sub-tasks, this work uses the set [26] relevant to “task 1A”,

however in prior iterations of the challenge this was known simply as “task 1.”
6as of this writing
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evenly divided such that each scene has 1,440 samples, totaling 240 minutes of audio

per scene. Given its size, preparation, and organization, the DCASE ASC dataset very

directly meets the needs of this work given the scope of the research question. The

sheer size of Google’s AudioSet made it a compelling alternative option. However,

their audio comes from YouTube; therefore, they have no control mechanism in place

to standardize recording quality. Using audio from a variety of recording setups risks

allowing the classifier to key into differences from recording conditions as opposed to

the intended audio scene properties. Considering my proximity to researchers who have

either participated in previous challenges or are regularly engaged with the DCASE

community, working with a DCASE affiliated dataset was an easy choice.

3.3 Preprocessing & Organization

We’ll use ASP domain knowledge to engineer an optimal representation of the au-

dio data. Although optimal classification accuracy isn’t guaranteed, a well-tailored

data model can help eliminate margins for error throughout the experimental process.

Preparing the dataset for consumption by a convolutional neural network involves a

host of preprocessing steps. To represent the audio appropriately, we must first ex-

tract its features to generate an image from the sound. Luckily, numerous works have

demonstrated this process by generating a spectrogram from audio. Spectrograms serve

as a visual representation of a given signal’s frequency as it varies over time. We can

scale the frequency axis logarithmically to better represent the importance of frequency

ranges most relevant to the human ear. This step helps capture the nuances of a sound

using a spectrogram. The resulting graphic can be described just like an image repre-

sented by a multi-dimensional matrix of numerical values. Instead of its height, width,

and depth corresponding to pixel (h) x pixel (w) x color channels (d), the spectro-

gram’s matrix is measured as frequency (h) x time (w) x sound channels (d). In this

type of “image,” mono audio is represented as d = 1 while stereo or binaural audio is

represented as d = 2.
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Figure 6: Example 40-band log-Mel TxF spectrogram; x = time, y = frequency.

To understand the limes for a CNN-based classifier, we’ll need to simulate a variety of

audio conditions. Simulations must include two-channel audio represented in its original

recording state as well as downmixed to mono, along with set constraints at several

frequency ranges. I’ve chosen to compare full frequency range audio7, against audio

filtered down8 to 10 kHz, and even further down to 1 kHz. 10 kHz was an acceptable

boundary because of the wide availability of low-budget embeddable microphones that

detect only up to this value. 1 kHz was selected as the lower boundary because of the

tremendous amount of potentially valuable auditory information that occurs just above

1 kHz [27]. Motivated by similar work in this arena, we’ll use Essentia [28] to apply a

short-time Fourier transform with 50ms Hamming windows at 50% overlap to create the

input spectrogram. The resulting values are then processed through a Mel-filter bank

across 40 bands9. This step helps us capture the full audible range10 logarithmically.

The spectrogram is then split into equidistant non-overlapping time x frequency (TxF)

patches, with the class label appended to each patch. Our log-Mel spectrogram patches

thus provide a compact format for audio representation that is digestible by CNNs

7sampled at 44.1 kHz
8using a low-pass filter as opposed to sample rate reduction
9the spectrograms of degraded audio were purposefully not rescaled for improved resolution

10up to 22.05 kHz
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where each patch accounts for one full second of audio. Furthermore, by using one-

second patches which are one-tenth of each provided segment, our data is augmented

by turning 14,400 samples in the development set to 144,000 samples.

Figure 7: Example TxF spectrogram patches, that are equidistant and non-overlapping
generated from the spectrogram in Figure 6.

The generated spectrogram patches are then organized for CNN consumption. To make

the “train,” “test,” and “validation” subsets, the development dataset is randomly split

80/20 for training and testing respectively; then the train set is randomly split once

more (80/20) for training and validation respectively. The result of this operation leaves

92,160 samples for training, 23,040 for validation, and 28,800 for testing. All data is

normalized to zero-mean and unit variance11 before classification to facilitate efficient

learning cycles. This process effectively reduces the overall range of numeric values the

classifier has to compute. Normalizing sample data as a whole lends itself to overfitting

a classifier and will hinder its predictive capabilities. Scaling the entire dataset, before

splitting it into subsets, effectively introduces information about the eventual test and

validation data to the training set. By allowing a global scale to be set relative to all

the data samples, the trained model will be predicting on “seen” data, and we lose the

purity of the model [29]. Instead, the training set is reduced to zero mean and unit

11this operation occurs individually on each channel
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variance in isolation, with its scale used to transform the validation and test sets. Lastly

“one-hot encoding” is used to binarize the appended class labels, allowing a computer

to distinguish one label uniquely from another12.

3.4 System Architectures

To ensure that the results of the forthcoming experiment are applicable to CNN based

acoustic scene classifiers of all shapes and sizes, we’ll use three networks to test the

preprocessed data against: wide, deep, and generic. Understanding the effects of sub-

standard input on each of these architectural paradigms is key to understanding their

effect as a whole.

Generic Network

Figure 8: Generic CNN Diagram.

My proposed generic network features three convolutional layers and one densely con-

nected output layer. The input layer, or Conv1, use filters with a 3x3 receptive field

and unitary stride. Its outputs are channeled through a ReLU activation function,

regularized with batch-normalization and dropout, then reduced through max-pooling.

The second convolutional layer, or Conv2, accepts the activations from Conv1 and

convolves over them with filters, again with a 3x3 receptive field and unitary stride.
12Categorical (i.e., non-numerical) data must first be re-contextualized for a machine by converting

them into numerical values that are binary representations of the categories.
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Conv3 repeats the same process as Conv1 and Conv2 but with additional filters. Ul-

timately the outputs from Conv3 are condensed into a fully connected output layer

which uses softmax activation to make classification distinctions. The motivation for

such banal design was to have a generically simple model, one that could, in theory, be

trained using a machine that features the technical limitations of commodity hardware,

all to show the effect of frequency and channel variance on its classification abilities.

Wide Network

Figure 9: Wide CNN Diagram

My accompanying wide CNN is shallower than its predecessor with only two convolu-

tional layers. Conv1 is an ensemble of four convolutional layers, ordered with alphabetic

subscripts Conv1a through Conv1d, concatenated depth-wise along the 3rd axis. Each

of the four layers in Conv1 has varying filter sizes with unitary stride, same padding, and

relies on a ReLU activation function to output. They also feature non-equilateral filters

(taller along the frequency axis) varying in size and quantity: Conv1a has 3x5 shaped

filters, Conv1b has 3x9 shaped filters, Conv1c has 3x15 shaped filters, and Conv1d

has 3x21 shaped filters. This ensembling allows the input layer to key into a variety of

spectro-temporal features [30] before being fed into a dimension reducing second convo-

lutional layer. Conv2 is a traditional convolutional layer (read: no ensembling), it uses

5x5 shaped filters with unitary stride, while also featuring successive batch normaliza-
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tion, dropout, and max-pooling layers. The output from Conv2 is flattened into a dense

fully connected output layer that uses softmax activation to make classification predic-

tions.

Deep Network

Figure 10: MobileNet Diagram

For the deep CNN, we’ll reconfigure Google’s MobileNet13 to be our acoustic scene clas-

sifier. MobileNet is a neural network built with size and speed in mind, that is to say,

its intended use is directed towards platforms with limited computing power. It differs

from traditional CNNs in its use of depthwise separable layers14 that effectively perform

convolutions at a reduced computation time15. MobileNet relies on a traditional convo-

lutional layer as its input layer, after which it leverages the power of depthwise separable

convolutions for all subsequent layers. Its architects offer two hyper-parameters that

can tune the network for virtually any number of classification projects: the width mul-

tiplier and the resolution multiplier. The width multiplier serves to thin the network

13As of this writing there are 3 iterations of MobileNet [31, 32, 33]. To identify which model would be
optimal for our purposes, MobileNet v1 was tested against v2, with the latter performing surprisingly
worse when provided the same dataset and a matching number of learnable parameters. MobileNet
v3 was released during the writing of this work and was omitted from these tests. Henceforth when
discussing MobileNet, we are referencing MobileNet v1.

14Depthwise separable convolution [34] is a process that combines depthwise convolutions (which
filter the input feature map) with pointwise convolution (1x1 convolutions) to generate features.

15approximately 8-9x faster than traditional convolution
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uniformly, reducing its overall count of learnable parameters. The resolution multiplier

works to reduce the overall computation cost of the network. Tooling these parame-

ters offer to reduce the standard number of 2.3 million parameters down to 500k or

below. Our custom configuration of MobileNet is 15-layers deep16. The input is a tra-

ditional convolutional layer featuring zero-padding, batch normalization, and a ReLU

activation function. All subsequent hidden layers are of the depthwise separable va-

riety, also featuring zero-padding, batch normalization, and ReLU activation. Lastly,

the final hidden activations undergo global average pooling and are passed through a

densely connected layer with softmax activation for classification. Instead of designing

a deep network from scratch, MobileNet affords us the opportunity to use a network

specifically for the class of devices relevant to this work.

Shared Hyper-Parameters

For consistency, each model is trained with identical hyper-parameters where possible.

Each convolutional layer features random weight initialization and is outfitted with

a ReLU activation function for its output. Since neural networks are susceptible to

overfitting, an essential step in designing a classifier is to account for regularization. To

keep our model from grossly overfitting each convolutional activation is regularized using

batch-normalization and dropout17, to be then reduced using a subsequent max-pooling

layer. Mini-batch gradient descent is used to keep training cycles expedient [37]. Each

model trains on a mini-batch of 128 samples per epoch, a subset substantially smaller

than the whole training data. The adaptive moment estimation (ADAM) optimization

algorithm is used to facilitate efficient training. It’s implemented with the learning rate

(α = 0.001) prescribed when originally published [38]. Because each acoustic scene

corresponds to one class and one class only, we can use categorical cross-entropy as
16counting the combination of depthwise and pointwise convolutions as one distinct “depthwise sep-

arable” layer
17Until recently utilizing dropout in collaboration with batch normalization was an unpopular archi-

tectural choice as their disharmony had been well noted [35]. Recent work has shown that the effective
placement of a dropout layer immediately following batch normalization, but before the succeeding
weight layer, offered classification improvements across several deep neural networks presented with a
variety of classification tasks [36].
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the network’s loss function. Training occurs for 50 epochs. While a form of early

stopping would be nice to curtail the training time for each experiment, it makes fine-

tuning a neural network a near-impossible task. By keeping the number of epochs

consistent, we allow each network the same amount of training time to reach their

optima during gradient descent. Their primary metric for evaluation is classification

accuracy, averaged across each class. Once trained, the models can be used to make

predictions on our test sets, from which we can gather empirical data regarding the scale

at which varying modes of audio feature representation affects a CNN during acoustic

scene classification.
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Experiment

4.1 Surveying the Problem Set

Each test involved asking one of the three models to classify audio using the dataset

preprocessed in one of six different manners. The audio data used is offered as either

downmixed to a single-channel or kept in its original two-channel format. This audio

information is then provided with unfiltered frequencies or filtered down either to 1 kHz

or 10 kHz. This combination of variables presents 18 different simulations to compare

and evaluate. The explicit intention of the experiment is to identify the effect of reduced

audio information on an acoustic scene classifier. Therefore, classification accuracy will

be our primary performance metric for comparative evaluation. Each test was simulated

in Python1 using the Keras machine learning library within a Google Colaboratory2

environment atop NVIDIA Tesla T4 and K80 GPUs. Since computations on a GPU

are non-deterministic and often exhibit variance, each test was run five times with their

results averaged to account for variability.

1version 3.6.8
2https://colab.research.google.com

28
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4.2 Model Tuning

For their performance to be comparable, the models need to share similar amounts of

learnable parameters. Identifying this magic number involved a fair amount of trial and

error. Each model was tuned by training with audio downmixed to mono and its full

frequency range represented. Their resulting classification accuracies offered a baseline

performance of sorts to tweak hyperparameters as needed. The goal was to be mindful

that no model should be over-engineered for the problem task3. It was also incumbent

to ensure that no model was poorly tuned such that it might be prone to overfitting.

The tuning process started with setting lower and higher bounds for desired learnable

parameters: 400k - 500k on the low end and 2.6m - 2.7m on the high end. From there

specific hyper-parameters4 were tweaked to raise and lower the learnable parameter

count until the three models observed classification accuracies that were within ±4

percentage points away from one another

Input: (40 x 40 x 1 or 2)
Conv1: 128x (3 x 3) + ReLU + BN

Max-Pooling : (5 x 5) s = 2
Dropout : 25%

Conv2: 256x (3 x 3) + ReLU + BN
Max-Pooling : (5 x 5) s = 2

Dropout : 25%
Conv3: 384x (3 x 3) + ReLU + BN

Max-Pooling : (5 x 5) s = 1
Dropout : 25%

Dense: 10 units + softmax
∼ 1.2 million parameters

Table 1: Proposed Generic CNN Architecture

After careful consideration, the number of parameters chosen for each model fell be-

tween 1.2m - 1.3m. Leaning into the higher end of learnable parameters could improve
3such that the experimental findings would generalize poorly to other acoustic scene classifiers
4number of filters, the addition/subtraction of zero-padding, max-pooling stride distance
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classification accuracy, but would do so at the cost of training time5. While 2m+ pa-

rameters might offer an extra 1% accuracy, they push the problem set in a direction

away from the limited reality of commodity hardware computing. Alternatively rely-

ing on too few parameters can trend towards severe overfitting, leaving no room to

derive actionable insights from the simulations. Manual hyper-parameter selection is

an innately imperfect process, especially so when generalizing for a variety of CNN

architectures, in the end, our selected values fit the needs and requirements for this

experiment well (see: Tables 1, 2, & 3 ).

Input: (40 x 40 x 1 or 2)
Conv1: 16x (3 x 3) + ReLU + BN
Conv2: 32x (3 x 3) + ReLU + BN
Conv3-4: 64x (3 x 3) + ReLU + BN
Conv5-6: 128x (3 x 3) + ReLU + BN
Conv7-12: 256x (3 x 3) + ReLU + BN
Conv13: 512x (3 x 3) + ReLU + BN
Conv14: 512x (3 x 3) + ReLU + BN

Average-Pooling : (7 x 7) s = 1
Dense: 10 units + softmax
∼ 1.3 million parameters

Table 2: Proposed Custom MobileNet Architecture

4.3 Expectations

I believe there are auditory clues to be found in higher frequencies6 that provide addi-

tional contextual information about an acoustic scene, that may be lost otherwise when

filtered to lower ranges. It is also reasonable to suspect that there may be spatial cues

specific to particular acoustic scenes. Some of these cues may provide added context

that could be lost when the audio is downmixed to a single channel. I theorize that

when presented with information obtained from full-range audio, an acoustic scene clas-

sifier will perform better than when presented with filtered audio. Similarly, I propose
5as it would require more computing power than afforded
610 kHz - 22 kHz frequency range
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Input: (40 x 40 x 1 or 2)
Conv1: 80 (3 x 5) | 64 (3 x 9) | 32 (3 x 15) | 16 (3 x 21) + ReLU + BN

Max-Pooling : (5 x 5) s = 2
Dropout : 20%

Conv2: 224 (3 x 3) + ReLU + BN
Max-Pooling : (5 x 5) s = 1

Dropout : 20%
Dense: 10 units + softmax
∼ 1.3 million parameters

Table 3: Proposed Wide CNN Architecture

that an acoustic scene classifier will perform better when presented with data obtained

from multi-channel audio as opposed to a single channel. As it pertains to each model

paradigm, my educated guess is that the more complex the model, the better it will be

able to account for the substandard audio. That is to say, the expected reduction in

classification performance will be mitigated by the model’s depth and width. I expect

the deep model, with its 15 layers, to hold up to substandard audio information more

so than the wide and generic models (in that order).

4.4 Results

As previously defined, classification accuracy is the primary metric by which we’ll

compare classifier performance. It is, however, not the only metric worth accounting

for during the experiment. To better understand the implications of degraded audio

information on CNN-based acoustic scene classifiers, we can take a more granular look

at model performance. By capturing each model’s training progression, we can map its

performance over time. These logs keep track of the model’s classification accuracy and

loss performance on the training and validation data subsets over each epoch. They help

identify commonalities and nuances across the various models in the training process.

Another great insight regarding classification performance comes in the form of a “con-
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fusion matrix”7. Confusion matrices are tables detailing a model’s performance along

class lines for each data point in the evaluation data subset. One axis represents the

predicted class, juxtaposed against a second axis representing the actual class. Each

classified data point is tallied up as either a “true positive,” “true negative,” “false pos-

itive,” or “false negative,” and tabulated accordingly. These values directly inform the

precision8 and recall9 metrics of a model, which can be used to determine their harmonic

average, or “F1-score”10.

Precision =
∑

True positive /
∑

Predicted condition positive

Recall =
∑

True positive /
∑

Condition positive

F1-Score = 2 x (Precision x Recall) / (Precision + Recall)

Outcomes from the experiment for the primary metric:

Generic Wide Deep

Hz Range 1ch 2ch 1ch 2ch 1ch 2ch

0 - 01 kHz 81.6% 91.5% 76.9% 86.3% 86.3% 91.7%

0 - 10 kHz 82.7% 92.5% 79.4% 87.5% 87.7% 92.7%

0 - 22 kHz 82.6% 92.6% 79.5% 86.2% 88.3% 93.0%

Table 4: Classification Accuracy by CNN Model

7also known as an error matrix
8also known as positive predicted value
9also known as sensitivity

10also known as F-measure
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Chapter 5

Discussion

5.1 Effect of Channel Depth

Generic Wide Deep

Hz Range 1-2ch ~∆ 1-2ch ~∆ 1-2ch ~∆

0 - 01 kHz -9.9% -9.4% -5.4%

0 - 10 kHz -9.8% -8.1% -5.0%

0 - 22 kHz -10.0% -6.7% -4.7%

Table 5: Difference of Accuracy Between Channel Depths

Channel depth appears to have made the most significant difference in all classification

accuracy outcomes. All simulations performed markedly worse when offered single-

channel audio information as opposed to the multi-channel alternative. The generic

network appears to have been the greatest affected, averaging a loss of 9.9% ± .082 ir-

respective of the frequency band. The wide network did not fare much better, averaging

a loss of 8.07% ± 1.1. Ultimately MobileNet held up best to the loss of multi-channel

information with an average difference of 5.03% ± 0.286. There is also an observable

39
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relationship with the number of layers in a network and the degree to which channel

depth impacts classification accuracy. MobileNet, with its many depthwise separable

layers, offered the greatest buffer to the observed poorer performance. The wide net-

work, while shallower than the generic network, features two more convolutional layers

overall due to its ensembled first layer. It appropriately withstood the information loss

better than its three-layered counterpart.

The most considerable insight from these results is in determining why channel depth

made such a difference. While preparing the dataset, we scaled everything1 down to

zero mean and unit variance2 to help expedite the training process. On the single

channel audio data, this operation occurs only once; however, on the multi-channel

alternative, we perform this operation individually on each channel. The resulting

spectra include two similar yet uniquely scaled portraits for every training example.

It is thus reasonable to assume that in a multi-channel classification environment, the

uniquely scaled spectrogram provided by the additional channel only serves to bolster

the training process.

5.2 Effect of Frequency Range

Generic Wide Deep

Upper Bound 1ch ~∆ 2ch ~∆ 1ch ~∆ 2ch ~∆ 1ch ~∆ 2ch ~∆

01 - 10 kHz -1.1% -1.0% -2.5% -1.2% -1.4% -1.0%

10 - 22 kHz 0.1% -0.1% -0.1% 1.3% -0.6% -0.3%

Table 6: Difference of Accuracy Across Frequency Bands

When introduced with substandard frequency information, most simulations observed

a negatively impacted classification accuracy. However, the influence of frequency in-

1relative to the training data
2using SciKit Learn’s Standard Scalar [39]
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formation is not nearly as substantial as what we’ve found with channel depth. All

models averaged a loss of 1.1% ± .525 in classification accuracy when dropping from

the middle-tier (0 - 10 kHz) to the lower (0 - 1 kHz) frequency bands. Alternatively,

there seemed to be a negligible effect on classification accuracy between the middle-

tier and unfiltered bands with an average loss of .05% ± .599. However, upon further

inspection, there is an outlier with the wide network performing 1.3% worse when pre-

sented with standard3 audio information. While all other simulations either stagnated

or observed marginal losses, the wide model did better. Removing this outlier brings

our mean to -0.2% ± 0.236. Based on the range of loss for each model, we can see that

the generic network stood firm against the reduced frequency information as it featured

the least variability. The wide network, however, observed the most variability when

presented with differences in frequency information.

In trying to understand why the imposed frequency constraints were virtually insignif-

icant (debunking one of my expectations), we can look to the frequencies present in

the typical stimuli of our day to day lives. When you consider that a piccolo, one

of the highest-pitched instruments, caps out around 5 kHz [40], or that the range of

most bird vocalization occurs between 1 kHz and 8 kHz [41], it’s easier to acknowledge

that the vast majority of perceptible audio information occurs in the lower half of the

human audible frequency range. There may not be that much going on in those higher

frequency ranges that are salient to the human listening experience. Therefore, in the

context of an acoustic scene, the various excitations that contribute to its soundscape

are likely to fall in this reduced frequency range. Furthermore, because our hearing

experience is defined at a logarithmic scale, we can disregard a large amount of this

information in both natural and machine perception.

3two-channels and full frequency range as originally recorded
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5.3 Implications by Class

The park and street traffic acoustic scenes were featured in the top three performing

categories across all simulations. The traveling by metro, metro station, and pedestrian

street scenes were routinely in the bottom three performing classes across all simula-

tions. Each of the three networks struggled with the latter two categories while the

deep network handled the airport acoustic scene a bit worse than the traveling by metro

scene.

With consideration of the impact channel depth had on classification accuracy, it merits

looking into how this particular form of audio degradation affected performance across

class lines.

Generic Wide Deep

Scene 1-2ch ~∆ 1-2ch ~∆ 1-2ch ~∆

airport -13.49% ±1.27 -9.24% ±1.03 -9.02% ±0.71

shopping mall -11.58% ±0.72 -12.52% ±1.51 -6.05% ±1.25

metro station -13.4% ±1.5 -11.71% ±3.19 -5.13% ±2.07

pedestrian street -12.5% ±1.22 -12.76% ±2.11 -6.68% ±1.71

public square -13.97% ±0.35 -11.04% ±1.68 -6.53% ±0.34

street traffic -5.56% ±0.28 -4.3% ±1.99 -1.46% ±0.79

travel by tram -9.65% ±1.6 -4.99% ±1.33 -3.3% ±1.66

travel by bus -5.95% ±1.81 -5.81% ±0.28 -3.86% ±1.61

travel by metro -11.53% ±1.88 -7.73% ±0.66 -6.38% ±2.37

urban park -1.42% ±0.92 -0.71% ±1.88 -1.65% ±0.43

Table 7: Class Specific Loss Between Channel Depths
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The top-performing urban park scene remained mostly unaffected by the change in chan-

nel depth, observing an average difference of 1.25% in classification accuracy. Mean-

while, half of the acoustic scenes - pedestrian street, airport, public square, metro station,

and shopping mall - averaged a double-digit increase in classification accuracy when us-

ing multi-channel audio data. The pedestrian street, airport, and public square, scenes

were the most affected of the group with increases of 10.65%, 10.58%, and 10.51%

respectively.

Scratching just under the surface of those numbers, we can see the impact of reduced

channel information on classes relative to network architecture. Of the scenes with

double-digit differences, shopping mall and pedestrian street saw the greatest change in

the wide network, while airport, public square, and metro station, were most affected in

the generic network.

5.4 General Observations

In terms of overall classification accuracy, the deepest network performed the best un-

der all circumstances, followed by the generic network, with the wide network coming

in last. These results indicate that network depth may have played the largest factor

in classification accuracy, irrespective any modifications made to the dataset. Our sim-

ulations also showed that increased network width helped compensate for substandard

audio. Therefore, raising the overall number of layers, be it in terms of depth and

width, offers us the best opportunity to withstand degraded audio information. While

MobileNet performed the best, the generic network provided comparable classification

accuracy when provided the two-channel dataset. That boost from the extra channel of

information served as an equalizer of sorts between the top two performing simulations.

Mitigating the need for deeper networks in ASC with preprocessing techniques that

preserve multi-channel information is certainly worth investigating further.



Chapter 6

Conclusions

6.1 Future Work

The scope of this project was forcibly limited to two variables of audio representation

and three “styles” of CNNs. While it would have been a fool’s errand to account for

every network architecture or variable in these 50-odd pages, the opportunity remains

to investigate further. Compared to the networks considered here, many other archi-

tectures are deserving of this type of analysis. From well-documented classifiers such

as ResNet [42] or VGG [43], to the recently published SubSpectralNet [44] and plenty

of its yet-to-be-named contemporaries, examining each could shed more light on the

relationship of model design to handling substandard audio. Research is also needed to

determine if ensembling wide layers into deep networks is a viable solution for buffering

accuracy loss. Of the variables associated with audio representation and organization,

there remain several elements worth exploring in a similar analysis. It remains to be

seen if there is a threshold of channels after which the benefits of increased channel

depth is lost, or if the findings related to channel depth hold true when compared to

different ways of downmixing multiple inputs. It would also be nice to see if the accu-

racy loss caused by downmixing can be restored using data augmentation. Lastly, ASC

44
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preprocessing research has shown that increased spectrogram resolution aids in classi-

fier performance [45]. Whether the classification difference introduced by substandard

conditions can be accounted for by increased frequency resolution merits a look as well.

6.2 Applicability

The findings of this work have a direct impact on future academic endeavors in ASC,

as well as industrial applications of machine listening technology. In academia, it’s

worth investigating whether the preprocessing techniques demonstrated here transfer

well to state-of-the-art solutions for other CASA tasks1. It was also certainly encour-

aging to see the classification performance of MobileNet applied to machine listening.

This “plug-and-play” style of a neural network offers an existing solution that is both

deployable and extensible to machine perception, particularly with commodity hard-

ware in mind. Given the small degree by which frequency loss made a difference in

classification accuracy, it is feasible for manufacturers of machine listening applications

to work with substandard microphones in their projects. Furthermore, based on the

significant influence of channel depth, microphone arrays that provide multiple input

channels might be the best path forward for technologies that incorporate ASC.

6.3 Meaning

With each inquiry into acoustic scene classification, another set of contributions be-

come procedural references towards the canon of optimal machine listening. This work

offers a perspective of ASC that puts the focal point on preprocessing rather than the

classification models themselves. While the classification model is an essential factor,

obsessing over a hyper engineered architecture might lead to overlooking other equally

important steps in the ASC process. By examining the representation of our data, we

can unlock higher potentials for existing ASC solutions. My simulations showed that

1such as sound event detection, localization, and audio tagging
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the reduction of frequency information on audio data does not have a substantially

detrimental impact on a CNNs ability to classify acoustic scenes. They also revealed

that each tested model architecture performed significantly better when offered multi-

ple channels of uniquely scaled spectrograms for each training example. These findings

open a door of possibilities to both industrial and academic pursuits as we collectively

navigate the novel problem spaces of artificial perception.
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