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Abstract. We present in this paper the quantum treatment of self-organization phenomena of 
excitons and biexcitons in the geometry of a ring cavity. Applying the adiabatic elimination method 
of the exciton and biexciton variables, the Fokker-Planck equation for the transmitted field was 
obtained. The spectrum of transmission and second order correlation function were calculated. 
Thus, the spectrum of transmission describes a hysteresis cycle character, where a narrow spectral 
line in the end of cycle can be observed. The phenomena of optical bistability and switchings of 
excitons and biexcitons are investigated theoretically. 
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 1. Introduction 
 During the last decade the phenomenon of optical bistability has been the subject of 
numerous theoretical and experimental investigations. It is one example of optical self-
organisation of a system far from thermodynamic equilibrium. On the other hand, it opens 
up enormous opportunities for practical applications as optical logic device. A detailed 
classical description of optical bistability can be found in the monograph of Gibbs [1]. The 
first indication of optical bistability of excitons was done by Elesin and Kopaev [2]. The 
theoretical and experimental aspects Bose - Einstein condensation of excitons and 
biexitons are reported in [3]. The theory of stationary and dynamic optical bistability and 
self-pulsations of excitons and biexcitons in condensed media was elaborated in [4-6] and 
references are cited there.  The prediction of optical bimodality induced by external additive 
noise with a finite bandwidth  in the exciton-biexciton system is reported [7]. Theoretical 
investigation of controlling the optical bistability and optical multistability in a GaAs 
quantum well inside a unidirectional ring cavity is reported in [8]. 

In the last decade many studies implying self-organization effects of exciton systems 
were published. For exemple, a method of studying the dark dipolar excitons in transition 
metal dichalcogenide monolayers, considering a bilayer system of two-dimensional Bose-
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Einstein-condensed dipolar dark excitons was proposed in [9]. It was demonstrated that 
interlayer interaction leads to a mixing state between excitations from different layers.  An 
interesting idea to generate traveling pulses from an excitonic system created in a double 
quantum well heterostructure by a laser illumination is suggested in [10]. The dynamics of 
the excitons density for various illumination conditions is explored. Other model implying 
the formation of the excitonic condensed phase in quantum wells with defects of 
macroscopic size for planar quantum wells with various thickness was proposed recently by 
Sugakov [11]. The appearance of different types of structures in the exciton density 
distribution for large size of defects studied. New effects that appear at the control of 
exciton and self-organization of a quasi-two-dimensional nonequilibrium Bose-Einstein 
condensate in an in-plane potential were studied in [12, 13]. 
  In this paper we propose a quantum treatment of the self-organization phenomena 
(optical bistability) of excitons and biexcitons of a semiconductor settled in a ring cavity 
with high quality factor Q. 

 

2. Hamiltonian model, Fokker- Planck and Langevin equations 
Our model consists of an ensemble of photons, excitons and biexcitons coupled to 

the thermostat and external field [7]. We consider in our analysis only one mode of 
excitons, biexcitons and photons. The full Hamiltonian of the systems, in the second order 
quantization, is given by 
 ,F E I DH H H H H     (1) 
where 
 1 2 ,FH a a b b c c          

 

  0 0 ,i t i t
EH i Ec e E ce     

 

     ,IH g c a a c g a bc c b a            
 

  1 1 2 2 3 3
1

. .
n

D j j j
j

H a b c c c    



        

 

HF represents the Hamiltonian of free excitons, biexcitons and photons, with 
     , ,a a b b c c   being the annihilation (creation) operators of excitons, biexcitons and 

photons, respectively. ω is the cavity mode frequency. 1  ( 2 ) is the energy of exciton 
(biexciton) creation. HE describes the Hamiltonian of interaction between the cavity field 
and external coherent field with amplitude E and frequency ω0.  HI is the Hamiltonian of 
interaction between quasiparticles (photons, excitons and biexcitons). g is the constant of 
coupling between exciton and photon, and σ describes the conversion of excitons into 
biexcitons. HD is the Hamiltonian of interaction of excitons, biexcitons and photons with the 
thermostats. The annihilation (creation) operators      1 1 2 2 3 3, ,j j j j j j

         correspond to 

excitonic, biexcitonic and photonic reservoirs, respectively while χ1, χ2, χ3 are the coupling 
constants between the reservoirs and quasiparticles of the system. 

From eq. (1) follows that the Hamiltonian H is time dependent. In order to eliminate 
this dependence, we use the rotating coordinate system with the frequency ω0, that implies 
a new wave function V  . 0i tNV e   is an unitary operator, and N represents the total 
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number of quasi-particles. Thus, we can obtain an independent time Hamiltonian, where HF  
and HE parts of  (1) have the following form: 

 

 1 2FH a a b b c c            ,     .EH i c E cE     (2) 
 

1 1 0     is the detuning between the incident light (external) and exciton transition 
frequencies.  2 2 02     corresponds to the detuning between frequencies of the 

biexciton transition and incident light.  On the other hand,  
0

     is the detuning 

between frequency of the cavity photons and incident light. 
Eliminating the reservoir variables, we obtain the following master equation 

 

  1
, ,F E I

ex ph biex ph f d

d
H H H

dt i t t t

   
  

                         
 (3) 

Where 
 

    1 1 1 11 , , , , ,
ex ph

n a a a a n a a a a
t

         



                       
 

 

    2 2 2 21 , , , , ,
biex ph

n b b b b n a a b b
t

         



                       
 

 

    1 , , , , .
f d

n c c c c n c c c c
t

         



                       
 

 

The parameters 1 2, ,    represent the amortization rates of the excitons, biexcitons and 

photons, respectively (
2 2 2

1 1 2 2 3, ,           ). 1

exp 1
i

i

n

kT




   
 


 is the average 

value of the thermal particles of the reservoirs at temperature T. 
Using the generalized non-diagonal p representation Drummond-Gardiner [14, 15], 

the master equation (3) can be transformed in the Fokker-Planck equation. The complex 
space of representation is generated defining the correspondence between the operators 
and complex parts as follow: 1 2 3 1 2 3, , ; , , .a b c a b c              The 

statistic operator ̂  can be associated with a complex distribution function p, via the 
relation 

 

      1 2 3 1 2 3, , , , , , ,i i

l l

f p d          


    (4) 

 

where  ,i i

 
  

 




  is the operator of projection and 

1 2 3 1 2 3d d d d d d d        represents the measure of integration of domain D. It 
worth to mention, that the contours of integration l  and l  are independent. The Fokker-
Planck equation can be written from master equation using the relations of the following 
correspondence 
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   

   

; ;

; .

a P a P

a P a P

     


     


 

 
    

     

 

 
 (5) 

 

   Using expressions (5) we obtain the new form of Fokker- Planck equation 

   1 1 3 3 2 1 1
1

, ,i iP t
i ig i g

t

 
      


  

        
 

 

 2 2 1 3 2 2 3 1
2 3

(i i g i ig       
 
 

         
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)i g E i ig i g          



        

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 

 
        
 

 

 

    
2 2

1 2 3 2 2
1 3 1 3

i g i g i g       
   
 

     
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    
2 2

2 2
1 1 3 3

2 2n n P 
   

 
      

.  (6) 

 

It is well known that each Fokker - Planck process can be associated with a system of 
stochastical differential equations called Langevin equations 

 

 
1

1
1 1 3 3 2 1 1 ,

d
i ig i g t

dt 
                

 

 
2

2
2 2 1 3 2 2 ,

d
i i g t

dt 
              

 

 
3

3
3 3 1 1 2 ,

d
E i ig i g t

dt 
             

 

 
1

1
1 1 3 3 2 1 1 ,

d
i ig i g t

dt 
              (7) 

 

 
2

2
2 2 1 3 2 2 ,

d
i i g t

dt 
             

 

 
3

3
3 1 1 3 3 ,

d
E i ig i g t

dt 
               

 

where the stochastical Langevin forces are connected with the coefficients of diffusion of 
Fokker-Planck equation through the correlation relations: 
 

      
1 3 2 ,t t i g t t          (8) 
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      
1 3 2t t i g t t           (9) 

 

      
1 1 1 12t t n t t         (10) 

 

      
2 2 1 22t t n t t         (11) 

 

      
3 3

2t t n t t         (12) 

Considering 1  and 2 much higher than  , so that the exciton and biexciton variables can 
be neglected, we obtain a system of stochastical differential equation: 

1 2 1 2 0
t t t t

      
   

   
. In the exact resonance case, i.e., 1 2 0      , the relations 

for exciton and biexciton variables have the following form: 
 

 𝛼ଵ ൌ
௜௚ఈయ
ெఊభ

൅ ௜ఙ௚ఉయ
ெఊభఊమ

𝛤ఈమሺ𝑡ሻ ൅
ଵ

ఊభெ
𝛤ఈభሺ𝑡ሻ, (13) 

 

    
1 2

2 2 2 2
3 3 3 3
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1
,

g i g g
t t

M M M 
      
      

 
       

 
 (14) 

 

    
2 1

3 3
1

1 1 2 1

1
,

ig i g
t t

M M M 
  
   

       (15) 

 

    
2 1

2 2 2 2
3 3 3 3

2 2
1 2 1 2 2 1 2

1
,

g g i g
t t

M M M 
      
      

 
       

 
 (16) 

 

where  
2 2

3 3

1 2

1
g

M
M

  
 

  . 

 

Introducing the equations (13) – (16) into  (8) – (9), one can obtain the correlation 
expressions that depend only on the stochastic terms. In what follows we approximate the 
expressions for 2  and 2  with the deterministic stationary relations 

 

2 2 2 2
3 3

2 2
1 2 1 2

; .
g g

M M

    
   

    (17) 

 

After elimination of the exciton and biexciton variables, the correlation relations (8)–(9) can 
be written in the following form 

 

      
1 3

2 3 2
3

1 2

,
i g

t t t t
M 
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 

        (18) 

 

      
1 3

2 3 2
3

1 2

.
i g

t t t t
M 

  
 

      (19) 

 

We calculate the drift coefficients introducing eqs. (13)–(16) into (7). Finally, we obtain the 
Langevin equations for the field 
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  
2 4 2 2 6 8 3 2

3 3 3 3 3 3
3 2 2 4 3 4

1 1 2 1 1

4
,

d g g g
E t

dt M M M 
       

    
       (20) 

 

  
2 4 2 2 6 8 2 3

3 3 3 3 3 3
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4
,

d g g g
E t
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    
        (21) 

 

where the new stochastic terms have the form 
 

            
1 2 1 2 3

,t A t B t C t D t t                 (22) 
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And 
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,

,

,

.
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A

M M

g
B

M
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C

M

g
D

M

  
  
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 

 
 

 
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 




 
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 (24) 

 

Thus, the correlations of the new stochastical terms (22) – (23) can be written in the new 
form 

 

        
2 4 2 2 2

3 3 3
2 2
1 2 1 2

2
1 ,

g g
t t D t t t t

M M 
     
   

  
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  
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       
4 6 2 2

3 3
3 2 3
1 2

2
.

g
t t D t t t t

M  
   
 

         (26) 

 

In the case of very low temperature of reservoirs, we can neglect in expressions for 
stochastical correlation (14)-(15) the terms proportional to 1 2, , ,n n n  being very small i.e. 

.iT    We are interested only in the quantum fluctuations that appear at non-linear 
interaction of excitons and biexcitons. Thus, the thermal fluctuations (fluctuations due to 
the reservoir interaction) could be  neglected. Taking into account the equivalence between 
the Langevin and Fokker-Planck equations, a new Fokker-Planck relation for field behavior 
can be obtained 
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                      
 (27) 

 

In what follows we are interested in the behavior of transmitted light amplitude. Thus, it is 
more convenient to consider the polar coordinates 
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
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The general expressions of drift and diffusion coefficients of Fokker-Planck equation [16] 
are given by 
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 (29) 

 

Taking into account the equations (28) and (29) it become easy to obtain the phase and 
amplitude coefficients of Fokker-Planck equation 
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2
3

Im ,
2r

Dr
D 

 
 

   
 

 

 

where 
3

A , 
3

A , D , D  are the drift and diffusion terms of Fokker – Plank equation 

(27).  Substituting these coefficients into (28) we obtain the Fokker-Planck equation as 
function of  variable   and   
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 (31) 

 

where 
0

r
x


  and

0

E
y

n
  describe the normalized amplitude of transmitted and 

incident light, respectively. kt   is the normalized time and 
2

12

g
C

 
  is a constant. 

0

2C
q

n
   

represents the parameter that describes the quantum fluctuations and 1 2
0 2 2

.n
g

 


  

Neglecting the phase variation, one can obtain the Fokker-Planck equation only for 
amplitude: 
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P J

t x
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(32) 

 

where J is the density flow with the form 
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                           
. (34) 

 

We have to check the balance condition at the steady state case considering 
 

 0J  . (35) 
 

The equation (35) represents a first order differential equation, where the density of 

probability  P x  is an unknown function and has the following solution 
 

    2
exp ,P x N x

q


 
  

 
 (36) 

 

where N is the normalized constant and  x  describes the potential function that is given 

by 
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    
 

 
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 
 
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                           
  (37) 

 

On the other hand, in the deterministic case, the steady states of a system that implies 
quantum fluctuations, characterize points for which the density of probability take extreme 
values. For function  P x , the maximum of these points corresponds to the most probable 

states, while the minimum corresponds to less probable states. The extremes of function 
 n  coincide with those of  P x , i.e. the points for which  P x  is maximal correspond to 

the points with minimal values for  x , and vice-versa. It is known that the steady states 

of a system are given by the condition   0x  , which implies 
 

  , , ,y f x c q  (38) 
 

where 
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Following the assumption [7], we determine the diagram q as function of new parameter C, 

that describes a behavior  , ,f x q C . The critical values of q and C can be obtained from 

conditions 0,x xxf f    which are equivalent to the next system of equations 
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From equations (39) follows the relations for parameters C and q [7] 
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
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 (42) 

 

The system (42) represents the parametric equation of separatrice in the space (C, q). This 
separatrice is plotted in the Figure 1. As one can see, the domain of parameters q and C is 
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separated into two regions. In the region I the system is mono-stable. The region II is 

characterized by bistable states. We mention that, the critical value 54

17
C   corresponds to 

the deterministic case (see point A in Figure 1). 
 

 
Figure 1. The separatrice line in space (q,C). 

 

3. Fluctuation evaluation. Optical bistability. 
In what follows, we analyze the case of small fluctuations for the transmitted field 

through the semiconductor. The correlations and spectral line expressions of transmitted 
radiation can be evaluated via the linearization of stochastical differential equations around 
the stable steady states. This type of linearization transforms the stochastical equations in 
those of Ornstein-Uhlenbeck, which solutions are known and allow easy to calculate all 
characteristic values of fluctuations. Applying the linearization procedure of stochastical 
differential equations one can obtain the system: 
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(43) 

 

where 
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A 
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










 characterize the coefficients of linearization associated with the drift 

and  0D   is the matrix of diffusion. Both characteristics, i.e., the diffusion and drift are 

evaluated in the point  0 3 3,     
  , and describe the solution of equation  0 0A  

  . 

From the system of equation  0 0A  


 we obtain the curve of steady states plotted in 

Figure 2. 
 

 

 
 

2
0

0 22
0

2 1 2
1 .

1

C x
y x

x

   
    

(44) 



 Quantum treatment of self-organization phenomena of excitons and biexcitons 33 

Journal of Engineering Science  September, 2019, Vol. XXVI (3) 

 
Figure 2. Stationary curve of bistability calculated from relation (44). 

 

The drift and diffusion matrixes have the form 
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where , , ,a b d   are given by 
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(46) 

 

The parameters 23
0 0

0

; ,s
s s sx x

n

     satisfy the relation (44). We consider an Ornstein-

Uhlenbeck process.  Thus, for the correlation matrix [6] the following expression can be 
used: 
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(47) 

 

Introducing the expression (45) and (46) into (47) we obtain the following correlation 
matrix 
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We introduce (46) in (49) and obtain 
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Assuming  1q  , in coefficients a  and b, the terms proportional to parameter q can be 

neglected. The same approximation will be considered and in the following calculations. 
The second order correlation function it is calculated using the relation 
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Using the correlation matrix (48) we obtain 
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Finally, we replace the coefficients (46) in (52) 
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The spectrum  S   of the light that cross a crystal is proportional to the Fourier 

transform of the autocorrelation function    3 3 0t  , and it is composed by the coherent 

and incoherent parts 
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The coherent spectral part of transmitted light    2
0 0 0cohS n x      is just a function 

of the  incident light frequency ω0, while the incoherent component of the spectrum is 
given by [14] 
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We are interested only in the incoherent component of the spectrum and it can be obtained 
by introducing (45) in (55)  
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Taking into account the parameters , , ,a b d   we get the next relation for the spectrum 
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The plots of the spectral fluctuations for different values of x0 from the optical bistability 
curve shown in Figure 2, are represented in Figure 3. 
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Each plot of Figure 3 corresponds to the marked point (A-F) of optical bistability curve 
shown in Figure 2. From these pictures we can observe a hysteresis cycle of spectrum, 
where the extreme regions are marked by two extremely narrow spectral lines for 
conditions of points C and E in Figure 2. These situations correspond to the jumped points 
from one region (branch) of the stationary curve of optical bystability to another, as shown 
in Figure 3 (c) and (e). On the lower branch of optical bistability curve (small values of x0) 
the spectrum width is high see Figure 3 (a). When increasing parameter x0 (see Figure 3 b) 
the line width become narrow,  achieving a critical value at the jumped point C of Figure 2. 
On the uppers branch of optical bistability curve, the spectrum width is narrow (see Figure 3 
(d)) and continues to diminish when x0 is moving to the next jumped point E. Thus, based on 
the quantum description, we demonstrated  in this paper the presence of optical bistability 
for a system of excitons and biexcitons with a geometry of a ring resonator with high 
quality factor Q. Finally, it worth to mention that the obtained results are in a good 
agreement with those obtained by in [17, 18]. 

 

 
 

Figure 3. Spectrum of the fluctuations calculated using eq. (57) for marked points of Figure 
2 with different values of x0: A (x0=0.25), B (x0=0.5), C (x0=1.38), D (x0=5), E (x0=8.5), F (x0=30). 

 

4. Conclusions 
 In this paper we demonstrate that in a ring cavity the quantum treatment of optical 
bistability phenomena occurs for an excitons and biexcitons system. This treatment is done 
based on the method [14,15] and the cavity is excited via an external coherent field. The 
excitons, biexcitons and cavity field modes are damped due to the reservoirs interaction of 
the system. Following the adiabatic elimination of the exciton and biexciton variables, the 
Fokker-Planck equation for the transmitted field was obtained. In order to obtain this 
equation, we used the generalized p representation that was introduced by Drummond and 
Gardiner [15]. In this description only the quantum noise is considered, i.e. the fluctuations 
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of the nonlinear interaction between the particles (quasi-particles), the thermal fluctuations 
that happen due to the reservoir’ interaction being neglected. It is worth to mention that 
quantum noise does not have any classical analogue. Thus, based on the approximation of 
linearization, the spectrum of transmission and second order correlation function were 
calculated. The spectrum of transmission describes a hysteresis cycle character, where a 
narrow spectral line in the end of cycle can be observed. The obtained result is similar to 
that of optical bistability case for two-level atom system. Finally, we believe that our work 
provides a good basis for future study, and, in particular, provides some pointers for more 
detailed experimental and theoretical investigations of optical bistability for a high Q cavity 
case. 
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