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The present report describes the work carried out in the fourth project year
regarding Natural Multimodal Interaction. It summarises the Deliverable
D4.4: “Natural multimodal interaction final prototype”.
Most efforts in year 4 are targeted towards the final integrated system for
the experiments over an extended time range. New activities and modules
have been added, many already existing ones been extended, most of these
additions or extensions also affecting in some way or other the multimodal
interaction. The dialogue policies and the linguistic resources have been
adapted accordingly.

In addition, some new functionalities were at the core of human-system
interaction, namely a new module for first time use of the system, and an
integrated Off-Activity-Talk prototype, consisting of robot self disclosure
and a social talk part.

The Episodic Memory has been extended, and interaction modules for
the following activities have been added: Standalone Break & Sort, new
Dance activity, the so-called Tip of the Day and the Task Suggestions, and
for the Explainable AI module.

Furthermore, support for an experiment with different interaction styles,
using modulated gestures, has been added, and the VOnDA compiler and
run-time system has been heavily improved. Version 2.0 of the framework
has been released on GitHub. For less experienced users, a graphical editor
and compiler for hierarchical state machines has been implemented and is
now ready for use.
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Executive Summary This document describes the research and imple-
mentation work on multimodal interaction in work package 4 (WP4) for the
PAL system in the last year. The overall objective of WP4 is to support
the goals set for a patient using the PAL system by developing the means
to conduct verbal communication, and to analyse textual data and extract
relevant information. The components implemented in this work package
must support this communication in a way to foster sustainable long-term
interactions between a robot (or its avatar) and a human. This requires user-
adaptive communication, coupling of verbal and non-verbal communication
and grounding communication in long-term memory. WP4 provides the hu-
man interaction layer to the numerous sub-activities in the background, and
is responsible for the interactive behaviour of the virtual agent.

During Year 4, WP4 developed new interaction functionality and pro-
vided language and dialogue support for numerous extensions of the PAL
agent that were requested for the upcoming experiments. Almost all ad-
ditions to the MyPAL app in some way or other required extensions in
the WP4, either by extending the natural language resources, or by adding
completely new dialogue strategies.

This comprises verbal feedback for new activities like the standalone
break & sort game, the new dance activity, but also for the new solution
for targeted task suggestions. An Explainable AI module has been added,
which provides explanations why certain suggestions are given to the user,
or what exactly the correct answer to a quiz question will help the user
with. In addition, the module also provides tips to active goals, which can
be actively retrieved by the user.

Episodic Memory: The episodic memory module (EMM) has been
extended to cover more episodes, e.g. about sports activities or information
about physical conditions that was entered by the user into the timeline,
making it more versatile and than its predecessor.

Off-Activity-Talk: We added Off-Activity-Talk (OAT) into the system
in two ways, firstly, integrating the ontology-backed prototype that was
developed in year 3, and an improved version of the self-disclosure that was
developed in year 2. This way, we tried to get more interaction data from
the children by providing proactive behaviour of the robot and expecting
some natural language answers in return. Interpretation is done using the
robust NLU prototype from year 3, to which we added more training data,
and adding another interpretation layer with support for enhanced SRGS
(Speech Recognition Grammar Specification)1 grammars. The OAT module
also exploits results from the Sentiment Analysis to assess the emotions
connected with an utterance.

Behaviour Styles: To study the effect of variation in non-verbal be-
haviour on system usage, we implemented stylised behaviours that are ap-

1https://www.w3.org/TR/speech-grammar/
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plied systematically during the different activities. For this purpose, the ac-
tivities are linked with a teaching style, and the corresponding style, which
may vary from child to child, is then applied to the robot’s movements.

Dialogue Framework: The VOnDA framework was heavily improved,
adding new features in the language as well as the functionality part, fixing
many problems, and making compilation between 10 and 20 times faster
than before. The visual debugger has also been improved, and a graphical
editor for hierarchical state machines, together with a compiler into VOnDA
code, has been implemented. We have released the version 2.0 of VOnDA
on GitHub on October 1st, 2018.

Automatic Speech Recognition: We have also integrated an ASR (au-
tomatic speech recognition) module that can use either the Nuance Cloud
infrastructure, or a local Kaldi server for recognition. This integration will
be shown at the final review, small experiments with child speech (for En-
glish) are under way.

The results of Year 4 are also presented in an accepted conference paper,
and a master thesis.

EU H2020 PAL (PHC-643783) 4
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The role of Multimodal Natural Interaction in PAL

WP4 focuses on the multimodal interaction around mHealth-Apps and
additional conversational functionality in support of the high-level targets
set in WP2 and actions selected in WP3. The challenge is to produce natu-
ral, flexible, personalised interactions that are sustainable in the long term
as well as being useful in collecting important health data about the user.
To achieve this, we are incorporating findings from the literature about what
aspects are important for long term engagement.

The processing challenges for this work package are the robustness of
input interpretation, flexibility and personal adaptation of the generated
output, handling different situational contexts for both the physical and
graphical embodiment of PAL, and allowing for interactions with one child
alone or in the presence of an audience of multiple children. Additional
challenges are posed by the need for extendable thematic and linguistic
coverage.

The core functional component developed in WP4 is a multimodal di-
alogue system with a repertoire of multimodal dialogue acts (combining
verbal and non-verbal means) modulated by affect. Generation as well as
interpretation will use parameterised dialogue acts as an interface schema
to other modules to abstract away from specific aspects of, e.g., natural
language or emotion expression. Based on the high-level targets from WP2,
action selection from WP3, the dialogue state (including the latest child’s
input and interaction history) as well as a long-term memory, the multi-
modal output generation module decides which act to activate (“what to
express”) and how to realise it multimodally in the given context (“how to
express it”).

In order to avoid repetitiveness in the long term, it is important to
have flexible dialogue strategies and a rich repertoire of verbal and non-
verbal expressions to allow for variation. The multimodal input processing
module interprets verbal and non-verbal input. Interpretation is guided
by information from the user model and the strategic planning (WP2 &
3) and provides information back to them. First, verbal input is needed
for the dialog interaction itself as the dialogue’s flow takes input from the
child to progress. Second, an interpretation of the child’s affective state is
needed for engagement analysis used in WP2 to adapt the high-level goal
self-management goals. Third, feedback is needed for WP3 as basis for
adapting a child’s preference model, and the long-term memory.

EU H2020 PAL (PHC-643783) 5
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1 Tasks, objectives, results

The overall objective of WP4 is to develop the technologies for personalised
multimodal natural interaction serving to actively foster long-term engage-
ment with the robot and its avatar. Voluntary long-term use is required as a
prerequisite for other system objectives. This encompasses natural language
interpretation and multimodal generation, as well as dialogue management.

1.1 Planned work

The objective of WP4 in year 4 was to support the extended functionality
of the final system, and to improve its interactivity with respect to multi-
modal interaction, for targeted (i.e., goal-oriented) as well as non-targeted
interactions, serving the purpose of increasing the adherence of the child to
the system. To achieve this, the following steps were planned:

• Develop and improve language and dialogue support for new and ex-
isting activities, such as games, but also for explanations, tips, more
feedback, etc.

• Integrate an off-activity talk module, together with natural language
understanding, to elicit more child utterances, and to improve the
connection of the child to the virtual agent

• Extend the Episodic Memory, exploiting the long-term memory better
by covering more episodes, especially with information from the child

• Improve the dialogue management framework VOnDA to make it more
attractive to new users

• Integrate an English ASR (automatic speech recognition) module as a
proof of concept and link it to the OAT / interpretation module

All planned activities were successfully pursued and either resulted in
an implementation or a research prototype for the topic in question. The
following section will describe the work on these items and the results that
have been achieved.

EU H2020 PAL (PHC-643783) 6
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2 Actual work performed

2.1 Extension of dialogue functionality

In the final phase, several extensions to the system functionality required
adaptation and enhancement of the dialogue functionality.

The biggest part in this respect are the new modules for supporting
the children in achieving their tasks: The Explainable AI, targeted Task
suggestions and the so-called Tip of the day. These modules guide the child
towards better behaviour and improved knowledge for their active tasks.
They do so by proactively suggesting tasks which can be achieved shortly
and give an immediate reward, or supporting the learning by giving reasons
for these suggestions or giving explanations for elements of the games, such
as quiz questions.

The hospital flavour of the application has been improved to provide
selection dialogues for the standalone Quiz and Break & Sort Games that
can be played with the robot, and also for the Dance activity, where the
child can play the dance moves he/she has created on his/her tablet, which
will then be executed by the real NAO. In addition, the introductory part
has been improved, providing more guidance to first-time users than in the
last period.

The number of basic semantic structures (dialogue acts) that are used
for natural language generation have again increased, from around 460 to
536 for English in the current prototype, not counting all variations in the
arguments. The number of supported dialogue acts, and the number of
different utterances that are produced for the three supported languages,
again not exploiting the full set of possible arguments, is shown in table 1.

Dutch Italian English

Covered Dialogue Acts 494 533 536

Generated Utterances 35735 62134 66090

Table 1: Number of utterances generated for the 557 currently supported
dialogue acts (shallow semantic representations)

The increased number of dialogue acts in English is mainly due to the
extension of the OAT prototype that was build for the PAL end event, and
the Italian generation profits from coverage extensions already created in a
previous project.

2.2 Episodic Memory

The episodic memory module (EMM) exploits information and interactions
of the past to conduct short dialogues in convenient situations. The goal

EU H2020 PAL (PHC-643783) 7
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of this module is to make the agent more believable [1, 11] and improve
the social bond between the user and the agent by showing that there are
recollections of past events, a property that is highly valued in human com-
munication.

The EMM and the feedback module (which reacts immediately to events
in the application, e.g., user input, or game results), directly exploit the
dynamic information about user input and agent-user interaction contained
in the database, showing the benefit of maintaining a long-term memory.

To make the EMM even more versatile and attractive, new episodes to-
gether with the corresponding natural language resources have been added,
notably for regular sports activities, physical conditions such as sickness,
and exceptional emotional states. Additionally, sparse or missing usage of
the timeline or the application itself for a longer period of time are also
noted and discussed with the user.

2.3 Off-Activity-Talk

We integrated an enhanced prototype of the off-activity talk (OAT) [6, 8]
module into the system, which consists of two sub-modules. The first at-
tempts to elicit information from the user using so-called self disclosures.
The robot actively starts in phases of prolonged inactivity, prompting the
user if she/he is interested in knowing something about the virtual agent.
If the user agrees, the agent continues by revealing some facts of itself and
then prompts the child for similar experiences. The research for this part
was done in year 2, an enhanced version of the experimental system has been
integrated in the final system, requiring larger extensions of the ontology and
the dialogue strategies.

The goal of this module was to elicit some more verbose utterances from
the children during the experiment, which in turn would allow to build a
data-driven extension for longer dialogues. Unfortunately, only in 40 of 452
Italian sessions and in 54 of 233 dutch sessions children answered at all, and
only 15 respectively 11 contained meaningful answers.

The second sub-module is an improved version of the OAT module of
year 3 that uses WordNet information to conduct more flexible dialogues.
This part is still very experimental, and we found that it will require a much
stronger open-domain interpretation module and even more background
knowledge, e.g., from VerbOcean2, to be able to produce free conversations.
Currently, we are trying to also exploit dbpedia, but that requires internet
access, while the current prototype could rely fully on local resources. To
make this work in the integrated system, we improved the NLU module,
adding new training data and using its already available functionality for
morphological tagging and lemmatisation. The results of the lemmatisa-

2http://demo.patrickpantel.com/demos/verbocean/
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tion help to identify the right synsets (concepts) in WordNet, since they are
labelled with the lemmatised forms.

Some example dialogues can already be demonstrated, and were shown
at the PAL end event in the Netherlands, in conjunction with automatic
speech recognition.

2.4 Robust Interpretation Module

As already described, the NLU module was improved in several ways. Firstly,
we added more training data to be able to process a wider range of utter-
ances. Secondly, we passed the results from lemmatization and morpho-
logical tagging on to the interpretation module in the dialogue manager to
support the social talk.

In addition, we integrated a parser for SRGS grammars (Speech Recog-
nition Grammar Specification)3. The integrated parser can use the XML as
well as the ABNF (augmented Backus-Naur form) grammars, and contains
extensions to the original specification, such as the possibility of matching
regular expressions, and a more flexible use of the semantic content of non-
terminals in a rule. While it is in general not possible to provide very general
grammars with such a formalism, it is very useful to implement a core set of
utterances that have little variation, and the results are absolutely reliable,
in contrast to systems learned from data. Additionally, such grammars can
be used for rapid prototyping of limited dialogue systems. In the PAL sys-
tem, if this parser returns an analysis, it is always preferred over possible
analyses coming from the NLU. We also plan to add this parser to the base
functionality of VOnDA.

We also conducted research in the area of multi-task learning for di-
alogue with deep neural networks. The aim is to reduce the amount of
necessary training data by jointly learning the objective functions of several
overlapping tasks, such as dialogue state tracking and argument identifi-
cation. Multi-task learning has proven effective in many NLP areas, and
the achieved results show some promising effects. Due to the very diverse
nature of the available corpora and, as a consequence, limited experiments,
there is no definite trend towards the right neural network architecture yet.
The results are presented in [9], a paper to be submitted to ACL 2019 is
currently prepared.

2.5 ASR Integration

We studied the new EU General Data Protection Regulation and the infor-
mation provided by the Automatic Speech Recognition (ASR) cloud service
providers Nuance and Google concerning data protection. From the avail-
able information, we could not deduce that we can safely use them as back

3https://www.w3.org/TR/speech-grammar/
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ends for ASR. This led us to the conclusion of dropping our goal to use ASR
for the upcoming prototype, since the work package does not have the re-
sources of setting up a local ASR infrastructure. ASR would be interesting
for open-domain talk since for short, foreseeable reactions, other means of
input are more efficient. For open-domain application, however, the local
services that could be set up are not of sufficient quality, at least not with-
out a considerable amount of additional data collection for the languages in
question, and retraining, which is beyond the scope of this project.

Given that the companies providing Cloud ASR services will have to
implement the EU General Data Protection Regulation in the future, and
that commercial applicants of the PAL technology will have more resources to
handle the privacy and ethical issues, the use of this services may be feasible
in the future, and in fact very desirable for a more natural communication.

If time permits, we will also investigate the possibility of using state-of-
the-art free systems like Kaldi4, but to set them up is not trivial and may
exceed our means.

2.6 VOnDA framework

The VOnDA framework has undergone a major revision, fixing many prob-
lems that became obvious during implementation of the PAL dialogue func-
tionality, but also improving the base functionality of the run-time system.
In addition, the analysis stage of the compiler is now based on another parser
generator (bison instead of antlr) and a better grammar, leading to more
than 10 times faster compile times for the VOnDA source code.

We also added new syntax features, such as type inference for complex
types like function types or complex collection types. This helps to support a
better and more concise treatment functional programming expressions, and
of relational RDF property values, which are presented to the implementer
as sets of objects. The functionality of extended assignment operators like
+= and -= has been extended for the use with those values. VOnDA now
also features full Koenig binding for variables in for loop headers, which
was not working in version 1.

Version 2, which was released October 1, 2018, also contains a strongly
improved documentation and a small introductory example for first-timers.
We also continued the work on a pre-compiler for hierarchical state automata
into VOnDA code, for rapid prototyping as well as implementing strongly
structured parts of dialogue functionality.

A paper describing VOnDA and its ecosystem has been accepted for the
International Workshop on Spoken Dialogue Systems Technology (IWSDS
2019) in April. The paper is included in the non-public version of this
document in appendix A.1.1.

4http://kaldi-asr.org/
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Graphical Editor and Automata Pre-compiler To make creating the
automata even more convenient, we adapted the graphical editor from Vi-
sualSceneMaker5 for our purpose. Although the new version looks quite
similar on the surface, the code has been massively reworked to allow the
necessary adaptations. The editor now has a GitHub project of its own
(https://github.com/bkiefer/GraVE).

Figure 1: Screenshot of GraVE, the graphical VOnDA editor

2.7 Supporting work on the RDF storage

While not being really at the core of WP4, the decision to use an RDF
database as the central data hub of the PAL system was driven by the
conviction that this representation helps with the needs that arise from
a dialogue system with long-term memory. Insofar has the extension of
the database functionality always affected the work in WP4, and led to
improvements in HFC whose value has immediate impact on the dialogue
framework and will extend the project lifetime.

Many functionalities in the MyPAL app needed such extensions, starting
with the goal achievement calculator, the episodic memory manager, the
gamification with the reward system and high score table, up to the Dance
manager that stores user-specific choreographies in the database. Based on

5http://scenemaker.dfki.de/index.html
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the work for stream reasoning, we implemented an efficient synchronisation
mechanism with the tablet app.

For the data access policies, we implemented an access control schema,
based on a role system that exploits the membership of a user to a spe-
cific RDF class such as Administrator or Professional to determine if some
information stored in the database is accessible to this person, using a set
of declarative rules, e.g., that a professional can only look into the data of
persons treated by him-/herself.

2.8 Behaviour Styles

In inter-human communication, non-verbal behaviour, especially body lan-
guage, not only has a communicative meaning but also informs about the
relationship and about likes and dislikes [10]. This means non-verbal be-
haviour is moderated depending on the context. For artificial agents (both
robotic and virtual), to engage in meaningful interactions with humans, the
importance of social intelligence is widely acknowledged [2, 13].

For the PAL Actor (robot and avatar), providing cognitive support, the
expression of appropriate teaching style is crucial. Based on the hypothesis
that non-verbal behaviour shapes interactions, we explored the effect of the
PAL Actor’s (robot and avatar) display of various teaching styles on chil-
dren’s interaction with the PAL system. The teaching styles were selected
and appointed to specific activities based on educational psychology [14, 3].
The style expressions were designed based on results of earlier research [12].

For each behaviour that the PAL Actor can display, alternative versions
were created expressing either a neutral, direct (instructor), or friendly (tu-
tor/coach) style. Every activity in the MyPAL app was linked with a teach-
ing style, for example, a quiz was considered a collaborative gaming activity
and was appointed the friendly style whereas filling the timeline is more task
oriented and therefore appointed the direct style.

The purpose of this feature is to explore the effect of variation in stylised
non-verbal behaviour on system usage (i.e., frequency, duration, activity)
and learning outcome (e.g., goal-progress, quiz responses).

EU H2020 PAL (PHC-643783) 12
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3 Conclusions

The main work in year 4 was dedicated to support the system extensions
requested by the experimenters, and to improve the overall interactivity.
This was achieved by adding dialogue policies and linguistic resources for
new activities, the Explainable AI module and an extended episodic memory.

The prototypical module of off-activity talk has been integrated into
the systems, together with a module for self-disclosure, which makes use of
the prototype for robust natural language understanding and a new natural
language parser based on SRGS/VoiceXML grammars.

As a proof of concept, automatic speech recognition for English, being
able to use either cloud or local services, has been integrated with the robust
recognition and off-activity-talk.

The multi-party interaction that is part of this milestone manifests in the
multi-player modes of the memory and break & sort games of the MyPAL
app, and was already implemented in year 3.

Overall, the WP-tasks provided the following major outcomes:

• Extended dialogue and language support for new or extended activities
in the PAL system

• A module for Off-Activity Talk with self disclosure

• A parser using SRGS/VoiceXML grammars for natural language anal-
ysis

• A second, strongly improved release of the VOnDA dialogue framework

• A graphical editor and compiler for hierarchical finite state machines
into VOnDA modules

With these outcomes, work package 4 achieved milestone 4.4, Support
for multi-party interaction, further improved adaptivity.

4 Future Extensions for Personalized Communi-
cation

The current version of the multimodal verbal communication already sup-
ports a fair amount of personalised interactions with the user based on per-
sonal data and information gathered otherwise, across almost all activities.

Previous studies ([5]) have shown that off-activity talk has a positive
effect on system usage, both in duration and adherence to the goals. Inte-
grating better such-like functionality in an extended version of the system
will therefore most likely improve its acceptance.

The current knowledge-based approach for social interaction will require
its own data collection experiment to explore if such an approach is feasible

EU H2020 PAL (PHC-643783) 13
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for a clinical trial version of the PAL system. A Wizard-of-Oz experiment
that would result in 5 hours of spoken dialogue (e.g. 20 children for 15 min-
utes each) would suffice to get enough seed data for extending the current
system to a reasonable coverage. When collecting such a corpus with chil-
dren, it is vital that all participants, including the parents, are aware that
the conversation will be pre-processed also by human annotators to avoid
privacy violations.

An alternative approach would be to train a persona-based chatbot6 that
uses user utterances to compute a persona representation to retrieve answers
resp. avatar utterances from a preconstructed set. The task is then to find
or create a dialogue corpus for the target languages that is sufficiently large
and covers the most popular topics. A possible source to generate such
corpora can be, e.g., crawled from social media or extracted from subtitle
corpora (www.subtitles.org, [7]).

While all these procedures require a certain amount of human prepara-
tion and processing, reasonable results can be expected by investing 6 person
months for data collection and preparation with medium to low skilled per-
sonnel, and 3 to 6 person months of a NLP and/or machine learning expert.

During the trial period, more real application data could be collected
using a privacy-presevering procedure by providing the participants a portal
to edit the collected data and explicitely authorize what will be visible to
the experimenters.

6
https://medium.com/huggingface/how-to-build-a-state-of-the-art-conversational-ai-with-transfer-learning-2d818ac26313
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A Annexes

A.1 Accepted Papers

A.1.1 B. Kiefer, A. Welker, C. Biwer (2019), “VOnDA: A Frame-
work for Ontology-Based Dialogue Management”

Abstract We present VOnDA, a framework to implement the dialogue
management functionality in dialogue systems. Although domain-independent,
VOnDA is tailored towards dialogue systems with a focus on social com-
munication, which implies the need of a long-term memory and high user
adaptivity. For these systems, which are used in health environments or
elderly care, margin of error is very low and control over the dialogue pro-
cess is of topmost importance. The same holds for commercial applications,
where customer trust is at risk. VOnDA’s specification and memory layer
relies upon (extended) RDF/OWL, which provides a universal and uniform
representation, and facilitates interoperability with external data sources,
e.g., from physical sensors.

Relation to WP This is a strongly modified resubmission of the paper
submitted to ACL 2018¸ which was not accepted for the demonstration
section.

Making the results of the PAL project open source was one of the first
decisions taken at the beginning of the project. We are taking one step
towards this goal by providing a first open-source release of VOnDA and
make it known in the computational linguistics community.

Availability Accepted for IWSDS 2019. Included only in the non-public
version of this deliverable (Annex B.1).

A.2 Master Theses

A.2.1 Sarah McLeod (2019), “Multi-Task Learning for Goal-Oriented
Spoken Dialogue Systems”

Abstract Dialogue Systems are an active area of research for Natural
Language Processing (NLP). Advancements in machine learning and the
increasing availability of corpora have facilitated advancements in language
technologies that make it easier for humans to interact with systems through
spoken languages. Conversational agents such as Siri and Alexa are quickly
finding their way into every home and onto every cell phone.

The focus of this thesis is modern goal-oriented spoken dialogue systems,
specifically, a methodology to use Multi-Task Learning (MTL) to bootstrap
dialogue management is proposed. The typical approach in machine learning
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is to focus on one task at a time. Large problems are segmented into smaller
subtasks and each subtask is learned independently. Rather than learning
a single task with a single loss function, MTL uses multiple loss functions
to learn more than one task simultaneously to profit from generalizations in
the data

Relation to WP This research was conducted at the MLT lab of DFKI,
as an attempt to learn dialogue systems from a relatively moderate sized set
of data. This effort fits into task 4.3: Techniques for extending linguistic and
background knowledge, which with modern methods is implemented using
machine learning methods in general, and deep neural networks in particular

This thesis is still under review. For that reason, it is not yet publicly
available.

Availability Restricted. Included in the non-public version of this deliv-
erable (annex C.1).
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VOnDA: A Framework for Ontology-Based
Dialogue Management

Bernd Kiefer and Anna Welker and Christophe Biwer

Abstract We present VOnDA, a framework to implement the dialogue manage-
ment functionality in dialogue systems. Although domain-independent, VOnDA is
tailored towards dialogue systems with a focus on social communication, which im-
plies the need of a long-term memory and high user adaptivity. For these systems,
which are used in health environments or elderly care, margin of error is very low
and control over the dialogue process is of topmost importance. The same holds for
commercial applications, where customer trust is at risk. VOnDA’s specification and
memory layer relies upon (extended) RDF/OWL1 , which provides a universal and
uniform representation, and facilitates interoperability with external data sources,
e.g., from physical sensors.

1 Introduction

Natural language dialogue systems are becoming more and more popular, be it
as virtual assistants such as Siri or Cortana, as Chatbots on websites providing
customer support, or as interface in human-robot interactions in areas ranging
from human-robot teams in industrial environments [17] over social human-robot-
interaction [1] to disaster response [12].

A central component of most systems is the dialogue manager, which controls
the (possibly multi-modal) reactions based on external triggers and the current in-
ternal state. When building dialogue components for robotic applications or in-car
assistants, the system needs to take into account inputs in various forms, first and
foremost the user utterances, but also other sensor input that may influence the dia-
logue, such as information from computer vision, gaze detection, or even body and
environment sensors for cognitive load estimation.

Bernd Kiefer, Anna Welker, Christophe Biwer
German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany e-mail:
kiefer@dfki.de,anna.welker@dfki.de,christophe.biwer@dfki.de

1 Resource Description Framework https://www.w3.org/RDF/

Web Ontology Language https://www.w3.org/OWL/

1



2 Bernd Kiefer and Anna Welker and Christophe Biwer

In the following, we will describe VOnDA, an open-source framework initially
developed to implement dialogue strategies for conversational robotic and virtually
embodied agents. The implementation mainly took place in the context of the ALIZ-E
and PAL projects, where a social robotic assistant supports diabetic children manag-
ing their disease. This application domain dictates some requirements that led to
the decision to go for a rule-based system with statistical selection and RDF/OWL
underpinning.

Firstly, it requires a lot of control over the decision process, since mistakes by
the system are only tolerable in very specific situations, or not at all. Secondly, it is
vital to be able to maintain a relationship with the user over a longer time period.
This requires a long-term memory which can be efficiently accessed by the dialogue
system to exhibit familiarity with the user in various forms, e.g., respecting personal
preferences, but also making use of knowledge about conversations or events that
were part of interactions in past sessions. For the same reason, the system needs high
adaptability to the current user, which means adding a significant number of vari-
ables to the state space. This often poses a scalability problem for POMDP-based
approaches, both in terms of run-time performance, and of probability estimation,
where marginal cases can be dominated by the prominent situation. A third require-
ment for robotic systems is the ability to process streaming sensor data, or at least
use aggregated high-level information from this data in the conversational system.

Furthermore, data collection for user groups in the health care domain is for
ethical reasons even more challenging than usual, and OWL reasoning offers a very
flexible way to access control.

VOnDA therefore specifically targets the following design goals to support the
system requirements described before:

• Flexible and uniform specification of dialogue semantics, knowledge and data
structures

• Scalable, efficient, and easily accessible storage of interaction history and other
data, like real-time sensor data, resulting in a large information state

• Readable and compact rule specifications, facilitating access to the underlying
RDF database, with the full power of a programming language

• Transparent access to standard programming language constructs (Java classes)
for simple integration with the host system

VOnDA is not so much a complete dialogue management system as rather a
fundamental implementation layer for creating complex reactive systems, being able
to emulate almost all traditional rule- or automata-based frameworks. It provides
a strong and tight connection to a reasoning engine and storage, which makes it
possible to explore various research directions in the future.

In the next section, we review related work that was done on dialogue frame-
works. In section 3, we will give a high-level overview of the VOnDA framework,
followed by a specification language synopsis. Section 5 covers some aspects of the
system implementation. Section 6 describes the application of the framework in the
PAL project’s integrated system. The paper concludes with a discussion of the work
done, and further directions for research and development.
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2 Related Work

The existing frameworks to implement dialogue management components roughly
fall into two large groups, those that use symbolic information or automata to specify
the dialogue flow (IrisTK [18], RavenClaw [3], Visual SceneMaker [7]), and those
that mostly use statistical methods (PyDial [20], Alex [8]). Somewhat in between
these is OpenDial [13], which builds on probabilistic rules and a Bayesian Network.

For reasons described in the introduction, VOnDA currently makes only limited
use of statistical information. A meaningful comparison to purely learned systems
like PyDial or Alex therefore becomes more complex, and would have to be done
on an extrinsic basis, which we can not yet provide. We studied comparable systems
focusing mainly on two aspects: the specification of behaviours, and the implemen-
tation of the dialogue memory / information state.

The dialogue behaviours in IrisTK and SceneMaker are specified using state
charts (hierarchical automata). Additional mechanisms (parallel execution, history
keeping, exception mechanisms like interruptive edges) make them more flexible
and powerful than basic state charts, but their flexibility and generalisation capabil-
ities are limited.

RavenClaw [3] uses so-called task trees, a variant of flow charts that can be
dynamically changed during run-time to implement dialogue agents for different
situations in the dialogue, and an agenda, which selects the appropriate agent for
the current dialogue state. The resemblance to agent-based architectures using pre-
constructed plans is striking, but the improved flexibility also comes at the cost of
increased complexity during implementation and debugging.

OpenDial [13] tries to combine the advantages of hand-crafted systems with sta-
tistical selection, using probabilistic rules which can be viewed as templates for
probabilistic graphical models. The parameters for the models can be estimated us-
ing previously collected data (supervised learning), or during the interactions with
reinforcement learning techniques. Being able to specify structural knowledge for
the statistical selection reduces the estimation problem if only a small amount of
data is available, and allows to explicitly put restrictions on the selection process.

3 High-Level System Description

VOnDA follows the Information State / Update paradigm [19]. The information
state represents everything the dialogue agent knows about the current situation,
possibly containing information about dialogue history, the belief states of the par-
ticipants, situation data, etc., depending on the concrete system. Any change in the
information state will trigger a reasoning mechanism of some sort, which may re-
sult in more changes in the information state, or outputs to the user or other system
components.

VOnDA implements this paradigm by combining a rule-based approach with
statistical selection, although in a different way than OpenDial. The rule specifica-
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tions are close to if-then statements in programming languages, and the information
state is realised by an RDF store and reasoner with special capabilities (HFC [10]),
namely the possibility to directly use n-tuples instead of triples. This allows to at-
tach temporal information to every data chunk [9, 11]. In this way, the RDF store
can represent dynamic objects, using either transaction time or valid time attach-
ments, and as a side effect obtain a complete history of all changes. HFC is very
efficient in terms of processing speed and memory footprint, and has recently been
extended with stream reasoning facilities. VOnDA can use HFC either directly as a
library, or as a remote server, also allowing for more than one database instance, if
needed. The initial motivation for using an RDF reasoner was our research interest
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Fig. 1 VOnDA Architecture

in multi-session, long-term interactions. In addition, this also allows processing in-
coming facts in different layers. Firstly, there is the layer of custom reasoning rules,
which also comprises streaming reasoning, e.g., for real-time sensor data, and sec-
ondly the reactive rule specifications, used mainly for agent-like functionality that
handles the behavioural part. This opens new research directions, e.g., underpinning
the rule conditions with a probabilistic reasoner.

The RDF store contains the terminological and the dynamic knowledge: specifi-
cations for the data types and their properties, as well as a hierarchy of dialogue acts,
semantic frames and their arguments, and the data objects, which are instantiations
of the data types. The data type specifications are also used by the compiler to infer
the types for property values (see section 4), and form a declarative API to connect
new components, e.g., for sensor or application data.

We are currently using the DIT++ dialogue act hierarchy [4] and shallow frame
semantics along the lines of FrameNet [16] to interface with the natural language
understanding and generation units. Our dialogue act object currently consist of
a dialogue act token, a frame and a list of key-value pairs as arguments to the
frame (Offer(Transporting, what=tool, to=workbench)). While this form
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of shallow semantics is enough for most applications, we already experience its
shortcomings when trying to handle, for example, social talk. Since the underlying
run-time core is already working with full-fledged feature matrices, only a small
syntax extension will be needed to allow for nested structures.

A set of reactive condition-action rules (see figure 4) is executed whenever there
is a change in the information state. These changes are caused by incoming sensor
or application data, intents from the speech recognition, or expired timers. Rules
are labelled if-then-else statements, with complex conditions and shortcut logic, as
in Java or C. The compiler analyses the base terms and stores their values during
processing for dynamic logging. A rule can have direct effects, like changing the
information state or executing system calls. Furthermore, it can generate so-called
proposals, which are (labelled) blocks of code in a frozen state that will not be
immediately executed, similar to closures.

All rules are repeatedly applied until a fixed point is reached where no new pro-
posals are generated and there is no information state change in the last iteration.
Subsequently, the set of proposals is evaluated by a statistical component, which
will select the best alternative. This component can be exchanged to make it as sim-
ple or elaborate as necessary, taking into account arbitrary features from the data
storage.
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Fig. 2 A schematic VOnDA agent

A VOnDA project consists of an ontology, a custom extension of the abstract
Agent class (the so-called wrapper class), a client interface to connect the com-
munication channels of the application to the agent, and a set of rule files that are
arranged in a tree, using import statements. The blue core in Figure 2 is the run-
time system which is part of the VOnDA framework, while all elements above are
application specific parts of the agent. A Yaml project file contains all necessary
information for compilation: the ontology, the wrapper class, the top-level rule file
and other parameters, such as custom compile commands.
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The ontology contains the definitions of dialogue acts, semantic frames, class and
property specifications for the data objects of the application, and other assertional
knowledge, such as specifications for “forgetting”, which could be modeled in an
orthogonal class hierarchy and supported by custom deletion rules in the reasoner.

Every rule file can define variables and functions in VOnDA syntax which are
then available to all imported files. The methods from the wrapper class are available
to all rule files.

The current structure assumes that most of the Java functionality that is used
inside the rule files will be provided by the Agent superclass. There are, however,
alternative ways to use other Java classes directly, with support for the same type
inference as for RDF classes.

4 Dialogue Specification Language

VOnDA’s rule language at first sight looks very similar to Java/C++. However, there
are a number of specific features which make it convenient for the implementation
of dialogue strategies. Maybe the most important one is the handling of RDF objects
and classes, which can be treated similarly to those of object oriented programming
languages, including the (multiple) inheritance and type inference that are provided
by the RDF class hierarchies.

1 user = new Animate;

2 user.name = "Joe";

3 set_age:

4 if (user.age <= 0) {

5 user.age = 15;

6 }

Agent
name: xsd:string

Animate
age: xsd:int
Inanimate

Fig. 3 Ontology and VOnDA code

Figure 3 contains an example of VOnDA code, and how it relates to RDF type
and property specifications, schematically drawn on the right. The domain and range
definitions of properties are picked up by the compiler and used in various places,
e.g., to infer types, do automatic code or data conversions, or create “intelligent”
boolean tests, such as the one in line 4, which will expand into two tests, one testing
for the existence of the property for the object, and in case that succeeds, a test if the
value is greater than zero. If there is a chain of more than one field resp. property
access, every part is tested for existence in the target code, keeping the source code
as concise as possible. Also, for reasons of brevity, the type of a new variable needs
not be given if it can be inferred from the value assigned to it.

New RDF objects can be created with new, similar to Java objects; they are im-
mediately reflected in the database, as are all changes to already existing objects.

Many operators are overloaded, especially boolean operators such as <=, which
compares numeric values, but can also be used to test if an object is of a spe-
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cific class, for subclass tests between two classes, and for subsumption of dialogue
acts. There are two statements with a special syntax and semantics: propose and

1 if (!saidInSession(#Greeting(Meeting)) {

2 timeout("wait_for_greeting", 7000){ //Wait 7 secs before taking initiative

3 if (! receivedInSession(#Greeting(Meeting))

4 propose("greet") {

5 da = #InitialGreeting(Meeting);

6 if (user.name) da.name = user.name;

7 emitDA(da);

8 }

9 }

10

11 if (receivedInSession(#Greeting(Meeting))

12 propose("greet_back") { // We assume we know the name by now

13 emitDA(#ReturnGreeting(Meeting, name={user.name}));

14 }

15 }

Fig. 4 VOnDA code example

timeout. propose is VOnDA’s current way of implementing probabilistic selec-
tion. All (unique) propose blocks that are in active rule actions are collected, frozen
in the execution state in which they were encountered, such as closures known from
functional programming languages. When rule processing stops, a statistical com-
ponent picks the “best” proposal and its closure is executed.

timeouts also generate closures, but with a different purpose. They can be used
to trigger proactive behaviour, or to check the state of the system after some time
period, or in regular intervals. A timeout will only be created if there is no active
timeout with that name.

Figure 4 also contains an example of the short-hand notation for shallow seman-
tic structures (starting with #). Since they predominantly contain constant (string)
literals, this is the default when specifying such structures. The special syntax in
user={user.name} allows to insert the value of expressions into the literal, simi-
lar to an eval.

This section only described the most important features of VOnDA’s syntax. For
a detailed description, the reader is referred to the user documentation2.

5 Compiler / Run-Time Library

The compiler turns the VOnDA source code into Java source code using the informa-
tion in the ontology. Every source file becomes a Java class. Although the generated
code is not primarily for the human reader, a lot of care has been taken in making
it still understandable and debuggable. The compile process is separated into three

2 https://github.com/bkiefer/vonda/blob/master/doc/master.pdf
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stages: parsing and abstract syntax tree building, type checking and inference, and
code generation.

The VOnDA compiler’s internal knowledge about the program structure and the
RDF hierarchy takes care of transforming the RDF field accesses into reads from and
writes to the database. Beyond that, the type system, resolving the exact Java, RDF
or RDF collection type of (arbitrary long) field accesses, automatically performs the
necessary casts for the ontology accesses.

The run-time library contains the basic functionality for handling the rule pro-
cessing, including the proposals and timeouts, and for the on-line inspection of the
rule evaluation. There is, however, no blueprint for the main event loop, since that
depends heavily on the host application. It also contains methods for the creation and
modification of shallow semantic structures, and especially for searching the inter-
action history for specific utterances. Most of this functionality is available through
the abstract Agent class, which has to be extended to a concrete class for each ap-
plication.

There is functionality to directly communicate with the HFC database using
queries, in case the object view is not sufficient or too awkward. The natural lan-
guage understanding and generation components can be exchanged by implement-
ing existing interfaces, and the statistical component is connected by a message
exchange protocol. A basic natural language generation engine based on a graph
rewriting module is already integrated, and is used in our current system as a tem-
plate based generator. The example application also contains a VoiceXML based
interpretation module.

Debugger / GUI

VOnDA comes with a GUI [2] that helps navigating, compiling and editing the
source files belonging to a project. It uses the project file to collect all the necessary
information.

Upon opening a project, the GUI displays the project directory (in a file view).
The user can edit rule files from within the GUI or with an external editor like
Emacs, Vim, etc. and can start the compilation process. After successful compila-
tion, the project view shows what files are currently used, and marks the top-level
and the wrapper class files. A second tree view (rule view) shows the rule struc-
ture in addition to the module structure. Modules in which errors or warnings were
reported during compilation are highlighted, and the user can quickly navigate to
them using context menus.

Additionally, the GUI can be used to track what is happening in a running system.
The connection is established using a socket to allow remote debugging. In the rule
view, multi-state check boxes are used to define which rules should be observed
under which conditions. A rule can be set to be logged under any circumstances, not
at all or if its condition evaluated to true or to false. Since the rules are represented
in a tree-like structure, the logging condition can also be set for an entire subgroup
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Fig. 5 The VOnDA GUI window

of rules, or for a whole module. The current rule logging configuration can be saved
for later use.

The logging view displays incoming logging information as a sortable table. A
table entry contains a time stamp, the rule’s label and its condition. The rule’s label
is coloured according to the final result of the whole boolean expression. Each base
term of the condition is coloured accordingly, or greyed out if short-cut logic led
to premature failure or success of the expression. Inspecting the live system helps
pin-point problems when the behaviour is not as expected. The log shows how the
currently active part of the information state is processed, and the window offers
easy navigation using the mouse from the rule condition to the corresponding source
code.

6 Applications

VOnDA is used in the integrated system of the EU project PAL [15], which uses
human-robot interaction to support children with diabetes type 1 in coping with
their disease. Children interact with a real NAO robot3, or with an Android app that
connects to the core system and exhibits a virtual character that is as similar to the
robot as possible, also in its behaviour.

The dialogue component, which is largely responsible for the agent’s behaviour,
is implemented using the VOnDA framework. In addition, HFC, the RDF store that
VOnDA builds upon, is the main database of the system, storing all relevant infor-
mation and being the central data exchange hub. The system runs as a cloud-based
robotic solution, spawning a new system instance for every user. It has been success-

3 Softbank Robotics https://www.ald.softbankrobotics.com
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fully tested with more than 40 users at a time on a medium sized virtual machine4

with only moderate load factors, giving a positive indication of the scalability of
HFC and the VOnDA approach.

There are two helper modules integrated into the dialogue component which
quite extensively exploit the connection between the database and the rule part,
namely the Episodic Memory and the Targeted Feedback. While the targeted feed-
back reacts to current events in the running session, like entering a bad or good
glucose value, or the current achievement of a task, the episodic memory aggregates
data from the past and eventually converts them into so-called episodes that are used
for interactions in subsequent sessions. Both are only triggered if relevant changes
in the database occur, for example incoming data from the MyPAL app about games
or achievements, and serve different conversational purposes, namely showing fa-
miliarity with the user and her/his everyday life, versus reacting to current positive
or negative incidents.

VOnDA has also been used in a recent project aiming to implement a gener-
alised, ontology-based approach to open-domain talk [21]. The Smoto system uses
an additional HFC server running WordNet [14, 6] as semantic database, thereby
gaining knowledge about semantic concepts that can be used in the dialogue and to
find appropriate reactions on arbitrary user input.

7 Discussion and Further Work

We believe that there are still many interesting application areas for hybrid statistical
and hand crafted systems, e.g., if they are relatively small, or there is little domain-
specific data available. Many currently deployed systems that build on much sim-
pler technology like VoiceXML can certainly profit from hybrid approaches such as
OpenDial or VOnDA.

VOnDA is under active development. We designed it such that it can be inte-
grated in most applications and opens many ways for improvements and additions.
As a rule-based framework that is close to being a programming language, VOnDA
is able to completely emulate the automata-based frameworks. In fact, we are cur-
rently working on a graphical editor à la SceneMaker and the precompilation of hi-
erarchical state charts into VOnDA code. We hope this will facilitate the implemen-
tation of new applications for inexperienced users and help with rapid prototyping,
while retaining the greater flexibility and modularization capabilities. In this way,
we combine the intuitive way of specifying simple strategies with the full flexibility
of the framework.

VOnDA could also be used to implement modules that simulate the agents of
RavenClaw. To get a functionality similar to RavenClaw’s agenda, its action selec-
tion module would have to be implemented as a dialogue state tracker, activating
the most probable agent at each dialogue step.

4 4 core Xeon E5-2683@2.00GHz, 16 GB RAM
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Using the well-established RDF/OWL standard as specification layer makes it
very easy to add or change application specific data structures, especially because
of the existing tool support. We already use the reasoning facilities for type and par-
tially for temporal inference, but given the possibility of attaching also confidence
or credibility information to the RDF data, a more integrated probabilistic approach
with soft preconditions could be implemented, e.g., on the basis of Dempster-Shafer
theory [5]. Moreover, additional meta knowledge, such as trustworthiness or validity
periods could be declared using multiple inheritance, which opens many interesting
research directions.

Other next steps will be the addition of default adaptors for obviously needed
external modules like automatic speech recognition, more flexible language under-
standing, and the like. We will also work on the improvement of the GUI, including
features such as a watch window and/or a timeline to track changes of specific val-
ues in the database, and a tool that analyses the dependencies between rules on the
basis of the conditions’ base terms.

From the research perspective, there are two very interesting lanes: integrating
probabilistic reasoning as a first-class option, which is directly integrated with the
rule conditions, and adding an additional layer to facilitate the implementation of
BDI-like agents, to study the connections and dependencies between conversational
and non-conversational behaviours.

Source Code and Documentation

The VOnDA core system can be downloaded at git@github.com:bkiefer/vonda.git.
The main page has detailed instructions for the installation of external dependen-
cies. The debugger currently lives in a separate project: git@github.com:yoshegg/

rudibugger.git. Both projects are licensed under the Creative Commons Attribution-
NonCommercial 4.0 International License5, and are free for all non-commercial use.
A screen cast showing the GUI functionality and the running PAL system is avail-
able at https://youtu.be/nSotEVZUEyw.
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Introduction

Dialogue Systems are an active area of research for Natural Language Processing
(NLP). Advancements in machine learning and the increasing availability of cor-
pora have facilitated advancements in language technologies that make it easier
for humans to interact with systems through spoken languages. Conversational
agents such as Siri and Alexa are quickly finding their way into every home and
onto every cell phone. The history of spoken dialogue systems dates back to the
first chat bot, ELIZA, developed in 1966. Since then spoken dialogue systems
have been used for travel planning (Georgila, Lemon, Henderson, and Moore
2009), finding restaurant information (Su et al. 2016), in car navigation (Lemon,
Georgila, et al. 2006), and intelligent robots (Lemon, Gruenstein, and Peters
2002). The focus of this thesis is modern goal-oriented spoken dialogue systems.
Specifically, a methodology to use Multi-Task Learning to bootstrap dialogue
management is proposed. This work will support the development of dialogue
systems for human-robot interaction in the Talking Robots group in the Ger-
man Research Center for Artificial Intelligence (Deutsches Forschungszentrum
für Künstliche Intelligenz, DFKI) Multilingual Language Technologies Lab.

To give context to the research goals, a brief overview and history of spoken
dialogue systems and Multi-Task Learning (MTL) is provided. The section on
spoken dialogue systems closely follows Chapter 29 of (Jurafsky and Martin
2017) with input from (D.-N. Chen et al. 2016). We also summarize important
topics in MTL presented in (Caruana 1998), (Y. Zhang and Yang 2017) and
(Reuder 2017a). The proposal section outlines the motivation for the thesis,
available data, and work plan. The experimentation section includes statistics
on the data used, descriptions of the neural architectures that were tested, and
results of model evaluation.

Spoken Dialogue Systems

A spoken dialogue system is a computer system that enables human computer
interaction, primarily through speech. Spoken dialogue systems can generally
be grouped into two categories: task oriented systems and non-task oriented
systems, also called chatbots. task-oriented (or goal-oriented, or task-based)
systems are designed for conversations with users where the goal is to facili-
tate completion of a specific task, for example booking a flight or making a
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Figure 1: Components of a dialogue system. Image taken from (Serban, Lowe,
et al. 2015)

restaurant reservation. These systems have specific measures of success that
drive the actions taken by a dialogue manager. Chatbots are designed to en-
gage with users in unstructured conversations that mimic the chit-chat observed
in human-human communication. Chatbots are intended for longer dialogues,
whereas task-oriented dialogues to date are typically shorter, although not by
definition. In both cases the dialogue system must be able to understand the
user, decide how to respond, and be capable of conducting a conversation be-
yond just question answering. Applications for spoken dialogue systems include
travel planning, automatic call routing, tutoring systems, personal assistants
such as Siri, Cortana, Alexa, and systems a user can query to get information
about restaurants or local weather.

Spoken dialogue systems are either rule-based or corpus based. The first rule-
based systems include ELIZA (Weizenbaum 1966) and PARRY (Colby, Weber,
and Hilf 1971), ELIZA being the most famous early chatbot. Both systems
were built with a focus on clinical psychology, but ELIZA was built to simulate a
Rogerian Psychologist; PARRY to study schizophrenia. In Rogerian psychology
the goal is to draw a patient out by reflecting patients statements back at them.
ELIZA mimicked this by applying a set of pattern/transformation rules. For
example, if the patient were to say, ”You hate me” a rule would transform this
into the system response, ”What makes you think I hate you”. The PARRY
system, which appeared a few years after ELIZA, included a model of its own
mental state as well as affect variables for its level of anger and fear. Topics
identified in the input would cause the agent’s level of anger or fear to rise or
fall, affecting the responses it would give. An interesting historical note - the
PARRY system is the first known system to pass the Turing test; psychiatrists
couldn’t distinguish text transcripts of interviews with PARRY from transcripts
of interviews with real paranoids, and this was in 1972! (Colby, Weber, and Hilf
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1971).
The focus of this thesis is goal-oriented dialogue systems, however a brief

description of chatbots is included here to help distinguish the important dif-
ferences between the two technologies. Corpus based chatbots fall into two
subcategories: those based on information retrieval and those based on machine
learning and the sequence transduction model. The principle behind informa-
tion retrieval based chatbots is to respond to a user’s turn X by repeating some
appropriate turn Y from a corpus of natural (human) text. Alternatively, one
can treat response generation as a task of transducing from the user’s turn to
the system’s turn. These models for response generation use current sequence
to sequence (seq2seq) models, with some modifications to the basic seq2seq
model needed for response generation. An important difference between chat-
bots and task-oriented systems is that chatbots do very little modeling of the
conversational context. Instead they determine the best response given the users
immediate input. For this reason they are frequently referred to as response gen-
eration systems. (Jurafsky and Martin 2017) describe the ELIZA and PARRY
algorithms in more detail and provide recent examples of corpus based chatbots.

Modern goal-oriented dialogue systems are based on a domain ontology, or
a structure that represents the information the system can extract from a user.
The domain ontology is captured in a frame, denoted as characteristic set of
features, called slots, and their values. The frame-based architecture was first
introduced with the GUS system in 1977 (Bobrow et al. 1977) and elements of
that architecture are still used today. Figure 1 shows the typical components of
a modern goal-oriented spoken dialogue system. If the system interacts with a
user through speech the automatic speech recognition component converts the
user’s speech into text, and the Text-to-Speech unit converts the text of the sys-
tem response to speech. If the dialogue system interacts with users through text
alone then these components can be left out. The natural language understand-
ing unit converts the text to a frame representation. Actions such as domain
classification, user intent (dialogue act) classification, or entity extraction are
also commonly done as part of natural language understanding. The dialogue
manager controls the structure of the dialogue and contains two subcomponents:
the dialogue state tracker and the dialogue response selection. The state tracker
uses the history of user inputs and intent labels to compute a distribution over
possible dialogue states for the current turn. The dialogue response selection
takes as input the current state and outputs the system response.

When designing dialogue systems careful consideration should be given to di-
alogue control. The speaker that has the control in a conversation is said to have
the initiative. In human-to-human conversation the initiate switches back and
forth between participants. This is called mixed-initiative. Early frame-based
dialogue systems used system-initiative, where the system asked questions or
responded with statements to clarify user input. This allowed the system to ex-
tract information and fill slots step by step. In these systems users are expected
to respond only to the last utterance given by the system, so they’re limited to a
response with only a few words or phrases. Early frame-based system-initiative
dialogue systems used finite state machines hand designed by a dialogue de-
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signer. This has the advantage of the system always knowing which utterance
the user is responding to, but it is far from natural human conversational struc-
ture. These systems can take several turns to complete even simple tasks and
are often quite frustrating for users. In contrast, in user-initiative the user has
control of the dialogue and it is the system’s responsibility to respond to user
utterances. This allows the user to converse with the system more naturally,
but requires the ASR and NLU units to process a wider vocabulary and gram-
mar. In current research the focus is mixed-initiative systems, where the agent
has control but the user has the ability to provide (additional or unsolicited)
information or change the task. This requires more complicated modeling of
turn-taking.

The architecture of modern goal-oriented spoken dialog systems is shown
in Figure 1. Early work employed the use of hand written rules for many
system components. Recent advances in machine learning and the existence of
larger and more thoroughly annotated corpora have facilitated a shift towards
systems where components are corpus trained. In fact each component itself
represents active areas of research. Domain classification (Hakkani-Tur et al.
2016), intent classification (Deng et al. 2012), (Hakkani-Tur et al. 2016) and
slot filling (Hakkani-Tur et al. 2016),(X. Li et al. 2017), (D.-N. Chen et al.
2016) are all active areas for natural language understanding; state tracking
(Zhao and Eskenazi 2016), (J. Williams et al. 2013),(J. D. Williams 2012) and
dialogue policy optimization (Wen et al. 2016),(Su et al. 2016), (J. D. Williams
and Zweig 2016),(Zhao and Eskenazi 2016) are also active areas of research in
dialogue management. (H. Chen et al. 2017) give a detailed overview of deep
learning for spoken dialogue systems and cite many more examples of research
for each system component.

Successful goal-oriented dialogue systems must accurately determine the in-
tent(s) of a user, understand and identify the relevant information they have
provided, and, based on that information, select the appropriate response at
each turn in the conversation. Modern goal-oriented dialogue systems model
conversation as a partially observable Markov decision process (POMDP) (Ga-
sic and Young 2014) and research into statistically optimizing dialogue manage-
ment with Reinforcement Learning (RL) is an active area of research (Gasic and
Young 2014; Lemon and Pietquin 2007; Bordes and Weston 2016). However,
learning optimal dialogue policies with RL can be challenging since large state
and action spaces are needed, and this requires large amounts of training data
(Lemon and Pietquin 2007; Wen et al. 2016; X. Li et al. 2017). Additionally,
networks trained with RL learn in a trial-and-error process, guided by a po-
tentially delayed reward function. This trial-and-error process can lead to poor
performance in the early training stages, which in turn can lead to a negative
user experience (Su et al. 2016). For this reason many systems still rely on care-
fully hand-crafted rules or corpus trained user-simulators to initialize dialogue
policies.

Recently, supervised learning has been used for pre-training of dialogue poli-
cies (Su et al. 2016), (Henderson, Lemon, and Georgila 2007), (J. D. Williams
and Zweig 2016), however the previous approaches only considered one aspect of
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dialogue during training. In discourse multiple components of linguistic struc-
ture interact and co-constrain one other (Grosz). This gives rise to the question
whether it would be beneficial to view dialogue policy training as a multi-task
learning (MTL) problem. MTL is an active area of research and has been shown
to improve performance on a number Natural Language Processing (NLP) tasks
Reuder 2017b; Y. Zhang and Yang 2017. In this work a method to use MTL
to further bootstrap the initialization of optimal dialogue policies is proposed.
The next section describes multi-task learning in more detail.

Multi-Task Learning

The typical approach in machine learning is to focus on one task at a time. Large
problems are segmented into smaller subtasks and each subtask is learned in-
dependently. In many ways it makes sense to break up complicated problems
into smaller, more approachable tasks. This is a common methodology to begin
to tackle large and difficult problems. However, some argue (Caruana 1998)
(Waibel, Sawai, and Shikano 1989) that if this is the default in statistical learn-
ing then we’re ignoring information in related tasks that can help the system
learn a primary task. Rather than learning a single task with a single loss
function, MTL uses multiple loss functions to learn more than one task simul-
taneously.

The primary goal of MTL is to improve generalization. To achieve this multi-
ple tasks are learned simultaneously while sharing an underlying representation.
In artificial neural networks this is commonly expressed as shared hidden layers
with separate output layers for each task. This enables features to be learned
which support multiple tasks. This also allows hidden units to specialize for
specific tasks, or remain small where they are not relevant. (Reuder 2017a),
(Caruana 1998) and (Y. Zhang and Yang 2017) give examples of MTL for neu-
ral and non-neural models, including decision trees, linear models, and Baysian
algorithms. The research proposed in this thesis is focused on neural models,
therefore the remaining discussion on MTL assumes an artificial neural network
trained with backpropagation.

An inductive learner is one that uses additional information to improve per-
formance on a primary task. MTL is one way to introduce inductive bias,
Transfer Learning (TL) is another. MTL uses the training signals of related
tasks to bias the learner towards a representation that explains more than one
task. In TL the goal is to extract knowledge from one or more source tasks and
transfer it to a target task (Pan and Yang 2009). In MTL, attention is given to
all tasks, but in transfer learning the target task plays a more important role
than the source tasks. Also, MTL assumes labeled data for each task. This is
not always the case for TL.

How do we know the information from related tasks improves generalization?
(Caruana 1998) hypothesized several ways in which adding additional task-
specific output layers to a network could improve generalization performance:
(1) adding noise to backpropagation sometimes improves performance and as
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Figure 2: Hard Parameter Sharing in MTL. Image from (Reuder 2017a)

long as tasks are uncorrelated their contribution to the aggregate gradient may
serve as a source of noise, (2) adding more tasks may change the weight update
dynamics to favor networks with more tasks, and (3) since MTL shares hidden
layers between all tasks this serves as a form of capacity restriction. (Caruana
1998) perform a ”shuffle test” to prove the benefits of MTL rely on the training
signals of auxiliary tasks being related to a main task. First recall that for
each instance in the training set there is a set of input features, the main task
training signal, and a set of extra task training signals. Prior to training they
shuffle the extra task training signals among all the instances in the training
set, i.e., randomly reassign the training signals for the extra tasks among the
instances. This breaks the relationship between the main task and the extra
tasks without altering other properties of the extra tasks. The idea being if MTL
depends on the extra information in the training signals being meaningfully
related to the main task, shuffling will eliminate that relationship, and thus
should eliminate the benefits of MTL. If the benefits from MTL depend on
some other property of having multiple outputs, shuffling will not affect this
and the benefits should remain after shuffling. (Caruana 1998) performed this
test on multiple experiments and showed that the performance of MTL with
shuffled data reduces to the case where tasks are learned independently. To
rule out reduced network capacity as the source of benefit in MTL, they also
compare MTL networks to single-task learning networks of various sizes, or a
single-task learned network that is optimized.

Multi-task learning (or multi-objective learning or jointly learning) is in-
spired by human learning; when learning new tasks we often apply knowledge
learned from related tasks. For example, once a baby learns to identify faces it
can use this ability when learning to identify other objects. To better understand
the benefits of MTL we introduce the mechanisms underlying it, most of which
were introduced in (Caruana 1998) and described in (Reuder 2017a). Again,
these mechanisms assume a neural network trained with backpropagation.

Implicit data augmentation. MTL enables data amplification, an effective
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Figure 3: Soft Parameter Sharing in MTL. Image from (Reuder 2017a)

increase in a sample size due to the training signals of related tasks (Caruana
1998). The goal of any statistical learner is to learn an appropriate represen-
tation while ignoring data specific error. A network trained to learn multiple
tasks can learn a shared representation that averages over the noise profile of
each individual task.

Attribute selection or attention focusing. With high dimensional data or
data with few training examples it can be difficult for a learner to distinguish
important features. The training signals of related tasks can help the network
determine which features are relevant, and which are not.

Eavesdropping. Consider the scenario where features F are easy to learn for
task A but difficult to learn for Task B. This could be because B interacts with
F in a more complicated way, or because other features are interfering with B’s
ability to learn F. A network that learns A will learn F, but a network that
learns B may not. A network that learns both A and B allows B to eavesdrop
on the hidden layers for A to learn F.

Representation bias. MTL prefers representations that multiple tasks pre-
fer. Specifically, (Caruana 1998) showed that during backpropagation search
is biased towards a representation at the intersection of what each task would
learn individually.

In Deep Neural Networks MTL is generally done in one of two ways: hard
parameter sharing or soft parameter sharing. Figures 2 and 3 show typical
architecture for hard and soft parameter sharing. In hard parameter sharing
tasks share hidden layers and each task has an individual output layer. For soft
parameter sharing each task has it’s own network layers and regularization is
used to encourage the hidden layer representations to be similar. The `2 norm
and trace norm are commonly used for regularization. (Reuder 2017b) and
(Y. Zhang and Yang 2017) give an overview of modern architectures for MTL,
including sluice networks and Deep Relationship Networks.

The essence of MTL is sharing while learning, therefore an important con-
sideration is what to share and how to share it. (Y. Zhang and Yang 2017) dis-
tinguish between homogeneous-feature MTL and heterogeneous-feature MTL,
as well as homogeneous MTL and heterogeneous MTL. They define MTL as:
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given m learning tasks {Ti}mi=1 where all of the tasks or a subset
of them are related, multi-task learning aims to help improve the
learning of Ti using the knowledge contained in m tasks.

In supervised learning Ti is accompanied by a training set Di consisting of
ni training samples, i.e. Di = {xi

j , y
i
j}ni

j=1 where xi
j ∈ Rdi is the jth training

instance in Ti and yi is its label. When two tasks share the same feature space,
i.e. di equals dj for any i 6= j this is referred to as homogeneous-feature MTL.
The opposite is heterogeneous-feature MTL, where each task uses a different
feature representation, for example text for language or pixels for images. In
contrast, homogeneous MTL learns tasks using a single type of machine learning.
Heterogeneous MTL tasks use many types of machine learning, for example
supervised learning and reinforcement learning.

After deciding which tasks to share (Y. Zhang and Yang 2017) suggest de-
ciding which characteristics of the data should be used for sharing. They group
current research can be grouped into 3 categories: feature-based, instance-based,
and parameter-based. Feature-based MTL aims to learn common features
among different tasks as a way to share knowledge. Instance-based MTL aims
to identify data instances in one task or tasks that are useful for other tasks,
and then share this knowledge via the identified instances. Parameter-based
MTL uses the model parameters (for example, coefficients in linear models) in
one task to help learn model parameters in other tasks, for example, with reg-
ularization. (Y. Zhang and Yang 2017) note that existing MTL studies mainly
focus on feature-based and parameter-based methods and few works belong to
the instance-based method.

Another important step in MTL is to formalize concrete ways to share in-
formation. In feature-based methods networks learn feature representations
common to all tasks, but (Y. Zhang and Yang 2017) distinguish between mod-
els that use shallow models (feature learning) and models that use deep neural
networks (deep learning). They also further subdivide feature learning into fea-
ture transformation and feature selection. In feature transformation the input
layers receive training instances from all tasks and the output layers have m
outputs for each task. The transformation from the original representation to
the learned one depends on the weights connecting the input layer and the hid-
den layer as well as the activation function adopted in the hidden units. In
feature selection the model selects a subset of the original features as the new
representation for all of the tasks.

In parameter-based MTL, there are five main approaches: low-rank ap-
proach, task clustering approach, task relation learning approach, dirty ap-
proach and multi-level approach. (Y. Zhang and Yang 2017) give an excellent
summary. The low-rank approach interprets the relatedness of multiple tasks
as the low-rank of the parameter matrix of these tasks. The task clustering
approach assumes that all of the tasks form a few clusters and that tasks in the
same cluster are related to each other. In many cases task relatedness is consid-
ered a priori information, however this is not always the case. The task relation
learning approach aims to learn relations between tasks from data automatically
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where the task relation can take the form of covariance. The dirty approach
decomposes the model parameters of all the tasks into two components and
the two components capture different forms of sparsity. Here a unified objec-
tive function includes regularizers and constraints on each of the components.
Because of the characteristics of two regularizers on each of the components, a
parameter matrix can eliminate unimportant features for all tasks when the cor-
responding rows in both components are sparse. The multi-level approach, an
extension of the dirty approach, models the parameters as the sum of multiple
components and instead of treating components independently as in the dirty
approach, the multi-level approach can relate multiple components to model
complex task structure.

In many MTL models the objective function is formulated as a loss func-
tion, such as hinge loss or squared loss, plus a regularization term. This term
acts as a penalty term enforcing shared representations within the network. (Y.
Zhang and Yang 2017) cite numerous examples of research and objective func-
tion formulation. (Y. Zhang and Yang 2017) also discuss comparisons between
methods.

MTL has many applications in Natural Language Processing (NLP). (Tosh-
niwal et al. 2017) use signals available in the speech recognition pipeline as
auxiliary tasks. (Arık et al. 2017) predict phoneme duration and frequency pro-
file as an auxiliary task for Text-to-Speech synthesis. For Machine Translation,
the goal of MTL it to jointly train models to and from different languages using
encoder-decoder network architecture. (Dong et al. 2015) jointly train the de-
coders, (Zoph and Knight 2016) jointly train the encoders, while (Johnson et al.
2016) jointly train both. (Reuder 2017b) and (Y. Zhang and Yang 2017) cite
numerous additional examples of MTL for NLP, including for semantic parsing,
information retrieval, and chunking.

Modern research into chatbots aims to learn a system end-to-end (O. and Le
2015),(Shang, Lu, and H. Li 2015), (Serban, Sordoni, et al. 2015). The problem
is often treated as a sequence transduction task and many use the encoder-
decoder network to automatically map from user input to system response.
Recent work in frame-based systems aims to transfer this work to goal-oriented
dialogues. It may seem like modeling goal-oriented dialogue is simpler because
the task is constrained, but it does present some unique challenges, particularly
because domain specific tasks require a more complicated modeling of system
responses. For example, frame based systems must be able to ask clarifying
questions and query a user database (Bordes and Weston 2016), (Wen et al.
2016). Because of these complexities many goal-oriented systems are initialized
with a set of hand written rules. These rules ensure highly accurate system
responses, but lack the coverage needed for scalability.

Most recently a community goal has been to train end-to-end goal-oriented
dialogue systems. End-to-end systems map from input to output directly, with-
out modeling specific subcomponents. (Wen et al. 2016) design a dialogue man-
ager that is end-to-end trainable with supervised learning (SL), but is still mod-
ularly connected. (Su et al. 2016) learn optimal dialogue strategies from corpus
data with SL, then improve the model with reinforcement learning (RL). (Pad-
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makumar, Thomason, and Mooney 2017) train a semantic parser and policy
network in batches, giving the policy network access to the updated semantic
parser after every batch. (J. D. Williams and Zweig 2016) use a Recurrent
Neural Network (RNN) with Long-Short-Term memory (LSTM) cells to au-
tomatically map from a sequence of user turns (represented as raw text and
extracted entities) to actions, inferring a representation of state. The system
is first optimized with SL, then continued training is done with RL. (Hakkani-
Tur et al. 2016) use a bi-directional RNN with LSTMs to jointly model slot
filling, intent determination, and domain classification for different domains.
(D.-N. Chen et al. 2016) use a knowledge-guided structural attention network
(K-SAN) to model intent prediction and slot filling simultaneously. Both pub-
lished results on the ATIS corpus. Two recent papers that share goals closely
related to this research are (Zhao and Eskenazi 2016) and (X. Li et al. 2017).
(Zhao and Eskenazi 2016) jointly learn policies for state tracking and dialogue
strategies, using Deep Recurrent Q-Network (DRQN). They learn an optimal
policy that either generates a verbal response or modifies the current estimated
dialog state based on the new observations.(X. Li et al. 2017) use a single RNN
with LSTM to jointly learn user intent as well as slot filling; state tracking and
dialogue policies are learned with end-to-end RL. Their dialogue manager is ini-
tiated by supervised learning of labels generated by a rule system. End-to-End
training is continued with RL using a user simulator. Results are published
on data from movie-ticket booking domain. These papers highlight the many
new and different techniques being used to train goal-oriented spoken dialogue
systems. We take this as a good sign, and believe the goal of our research is
timely to the field.

The research in this thesis expands previous work on MTL for NLP. We
explore hard parameter sharing and feature-sharing to build artificial neural
networks that jointly learn user intent, slot-filling and optimal dialogue policies.
In typical spoken dialogue systems a user utterance is processed serially, and
the results of intent classification and slot-filling are passed to the dialogue
manager. Our belief is that the information needed for reliable slot-filling and
intent classification is also valuable for learning dialogue policies; therefore our
proposed aproach is to learn all three tasks in parallel.

Recent MTL approaches for automatic speech recognition use the training
signals available in the speech recognition pipeline as auxiliary tasks, and show
improvement over single task systems, cf. (Arık et al. 2017),(Toshniwal et al.
2017). Our proposal was informed by this research, specifically the hypothesis
that the supervised signals available in the dialogue management pipelines are
similarly beneficial for dialogue policy optimization. If each task shares what it
learns, then a learner may find it easier to learn them together rather than in
isolation. Additionally, we hypothesize that the nature of MTL as implicit data
augmentation will help bootstrap the learning of optimal dialogue policies from
a medium sized initial data set.
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Proposal

The following sections describe the motivation, available data, proposed archi-
tecture and work plan.

Motivation

The learning of optimal dialogue policies is traditionally framed as a reinforce-
ment learning task and thus requires a significant amount of data to train, par-
ticularly for systems with large state and action spaces (Lemon and Pietquin
2007), (Wen et al. 2016), (X. Li et al. 2017). Additionally, dialogue policies
are key to a systems ability to successfully respond to user requests, and any
dialogue system trained from data needs to be robust to new interactions. Net-
works trained with reinforcement learning learn in a trial-and-error process,
guided by a potentially delayed reward function. This trial-and-error process
can lead to poor performance in the early training stages, which in turn can
lead to a negative user experience (Su et al. 2016). For this reason many sys-
tems still rely on carefully hand-crafted rules or user simulators to initialize
dialogue policies. Recently, supervised learning has been used as a method for
supervised pre-training of reinforcement learning (Su et al. 2016), (Henderson,
Lemon, and Georgila 2007), (J. D. Williams and Zweig 2016) however the pre-
vious approaches only considered one aspect of dialogue during training. In
discourse multiple components of linguistic structure interact and co-constrain
one other (Grosz). This gives rise to the question whether it would be bene-
ficial to view dialogue policy training as a multi-task learning (MTL) problem.
This thesis extends previous work and uses user-intent and slot-filling as aux-
illary tasks for supervised pre-training of dialogue policies. The belief is that
MTL can be used to bootstrap dialogue policy optimization without the need
for hand-written rules but still learn a robust dialogue manager that minimizes
user frustration when fielded with users.

The goal of this work is to use MTL to learn dialogue system tasks simultane-
ously, rather than independently. Specifically, a supervised MTL architecture to
learn optimal dialogue policies in goal-oriented dialogue systems, while treating
user intent classification and slot-filling as auxiliary tasks is proposed.
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Research Questions

(Caruana 1998) and (Y. Zhang and Yang 2017) cite numerous tasks where the
shared representation learned with MTL improves generalization. The primary
aim of this thesis is to extend previous work and explore when and how MTL
can improve generalization for dialogue policy networks. Does simultaneous
learning of user-intent and slot-filling improve supervised pre-training of opti-
mal dialogue policies? Are either user-intent classification or slot-filling alone
sufficient auxillary tasks for dialogue policy optimization? Do user-intent and
slot-filling also see a benefit from MTL? If an improvement in generalization can
be shown, then these techniques will support the creation of robust goal-oriented
spoken dialogue systems from minimal initial data sets.

Available Data

In order to learn all three tasks simultaneously a corpus with annotations for
all of the tasks is required. There are a number of datasets suitable for training
goal-oriented dialogue systems (Serban, Lowe, et al. 2015), however most contain
annotations only for only one or two of the tasks we are learning. The Malluba
FRAMES (El Asri et al. 2017) corpus is publicly available and contains about
1,300 dialogues collected wizard-of-oz style from 12 participants over a period
of 20 days. This corpus was collected to study the role of memory in goal-
oriented dialogue systems and therefore contains detailed annotations for both
user and system actions. The data is provided in JSON format and each turn
is annotated with author (user or system), the text of the author’s utterance,
and a data frame where dialogue acts for that turn are captured in a name
field and arguments field. The name field captures the type of dialogue act and
the arguments field captures the slot and value pairs for that utterance. There
are twenty types of dialogue acts in total and an average of fifteen turns per
dialogue. This corpus contains the annotations required for our study and has
sufficiently long dialogues to support the research questions. In addition, since
it is in the travel and vacation booking domain it shares a domain with other
data sets that are commonly used to train specific dialogue system tasks. For
these reasons we chose this corpus as the primary corpus.

We have also evaluated our models on a version of the DARPA COMMUNI-
CATOR data with additional annotations for context and speech acts (Georgila,
Lemon, Henderson, and Moore 2009). The original COMMUNICATOR corpus
included annotations for user utterances only. Georgila et. al added annotations
for system utterances, which is required for this thesis work. The COMMUNI-
CATOR corpus has been used in a significant amount of previous research,
particularly for state-tracking. This corpus enables comparisons between our
work and previous research on spoken dialogue systems.

The first experiment, experiment zero, will recreate the work of (Hakkani-
Tur et al. 2016), who jointly learn user intent and slot-filling using a RNN with
LSTM memory cells. For this the ATIS (Price 1990) data set will be used, as
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Figure 4: The proposed architecture for this thesis is a ANN with hard param-
eter sharing for MTL.

in the original work.

Proposed Architecture

Initial experiments will incorporate the work of (Hakkani-Tur et al. 2016), (X. Li
et al. 2017), and (Su et al. 2016) and use a Deep Neural Network Architecture.
The goal is not to replace components in a spoken dialogue system, but rather
to bootstrap the training of a robust dialogue manager. (Caruana 1998) note
that MTL models do not have to, and in some instances should not, replace the
individual models incorporated into them. Rather, the goal is to learn a repre-
sentation shared across tasks that improves generalization across all tasks. The
hope is that with minimal annotated training data a robust dialogue manager
can be built to minimize user frustration when fielded with system users.

User intent is typically modeled as a classification task, where the goal is
to classify the user utterance into one of many pre-defined categories. Slot-
filling is typically modeled as a sequence labeling problem, where each word is
assigned a specific semantic label. We intend to pursue architecture similar to
(Hakkani-Tur et al. 2016), which jointly learns user intent and slot-filling using
a RNN with LSTM memory cells. The research plan also includes exploration
of other networks. As in (Hakkani-Tur et al. 2016) we will use the well known
IOB (in-out-begin) tagging format to label slot-tags and fill in slots for the se-
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mantic frame. The learning objective is to maximize the conditional probability
of the slots and the intent given the word sequence. The weights of the LSTM
model are then trained using backpropagation to maximize the conditional like-
lihood of the training set labels. The predicted tag set is a concatenated set
of IOB-format slot tags and intent tags. Recreating this work and comparing
our results to (Hakkani-Tur et al. 2016) on the ATIS data set will be our first
experiment. This will also provide an opportunity to gain experience with the
specific requirements for training in MTL. For example, MTL performs best
when each task achieves peak performance at the same time, and a few training
runs are usually required to find the appropriate learning rate for each task to
achieve this. (Caruana 1998)

Next, we will extend this initial experiment to our proposed model, which
learns user-intent classification, slot-filling, and optimal dialogue policies simul-
taneously. The dialogue response network will share hidden layers with the
other tasks and have a task specific Softmax output for predicting the system
dialogue act. This prediction will be a multi-class label over the number of
dialogue acts. The training objective for each sample is to minimize a joint
cross-entropy loss between model action labels and predictions. Figure 4 shows
the proposed architecture for this work.

We will follow the procedures used in (Caruana 1998) and compare our MTL
networks to networks trained on each task independently. Metrics such as Pre-
cision, Recall, F-Measure, and Accuracy will be used to compare performance.

Work Plan

The research will be completed in three experiments. Experiment 0 will first
replicate the work of (Hakkani-Tur et al. 2016) and learn only user-intent and
slot-filling simultaneously. Next, this architecture will be used to learn slot-
filling, user-intent classification, and system action classification simultaneously
on the Frames and COMMUNICATOR data. In experiment 1 different neural
architectures will be used to learn each of the three tasks individually (see 4)
using the FRAMES and COMMUNICATOR corpora. Both experiment 0 and 1
will serve as baselines with which to compare the performance of the multi-task
architecture. Experiment 2 will study the multi-task architecture.
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Experimentation

In this research slot-filling and user-intent classification are treated as auxiliary
tasks for the primary task of dialogue system action classification. Slot-filling
and user-intent classification were chosen as auxiliary tasks because both are
used by the dialogue manager to decide which action a system should take at
each turn in a dialogue, and therefore contain relevant information that can
be used to improve the generalization of a system response generator initially
trained by supervised-learning. The following sections describe the corpora,
data preprocessing, and experimental design and results. All of the data prepro-
cessing and experimentation was done in Python and a package of this software
will be delivered as part of this thesis.

Experiments were divided into three groups: baseline experiments 0 and 1,
and the final experiment with the thesis architecture, experiment 2. In experi-
ment 0 the experiments described in (Hakkani-Tur et al. 2016) were replicated
and then extended to new corpora using the software released by the authors.
These extended experiments serve as an additional comparison to the results
of the multi-task model from experiment 2. In experiment 1 individual models
for each of the three tasks were designed and trained on each corpus. Follow-
ing the methodology suggested in (Caruana 1998), these models were tuned for
each corpus and architecture and serve as a baseline for the multi-task results
in experiment 2. Networks were trained and evaluated on three data sets: the
Maluuba Frames (El Asri et al. 2017), DARPA COMMUNICATOR (Georgila,
Lemon, Henderson, and Moore 2009), (Georgila, Lemon, and Henderson 2005)
and ATIS (Price 1990).The Maluuba Frames and DARPA COMMUNICATOR
Corpora were used in baseline and multi-task experiments; the ATIS corpus
does not contain annotations for system action classification and was therefore
only used in experiments 0 and 1.

Table 1 lists the total number of slot types, user-intent labels and system
action labels for each corpus. Table 2 shows the training, validation and test
set brake down for each corpus. The next sections describe each of these data
sets and in more detail.
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Corpus Slot Types Speech Acts Sys. Actions Avg. UL
ATIS 79 17 NA 11.13

Frames 21 45 52 8.05
COMM ATT 34 10 56 1.86
COMM BBN 37 18 48 2.30
COMM CMU 45 32 72 2.58
COMM SRI 37 17 25 2.44

Table 1: The number of slot types, the user speech acts, and system actions
labels for each corpus, as well as the average length of user input utterances.

Data and Preprocessing

This work uses the version of the ATIS corpus used in (Hakkani-Tur et al.
2016), the Maluuba Frames corpus (El Asri et al. 2017), and the DARPA COM-
MUNICATOR corpus with additional information-state annotations (Georgila,
Lemon, Henderson, and Moore 2009), (Georgila, Lemon, and Henderson 2005).

ATIS Corpus

The Air Travel Information System (ATIS) Spoken Language Systems pilot
corpus (Price 1990) is a collection of spontaneous speech and associated anno-
tations that was designed to measure the progress of spoken language systems.
The data was collected wizard-of-oz style, with one user playing a travel plan-
ner and two human-wizards simulating the travel system. Travel planers could
request information about flights, fares, airlines, cities, airports and ground
services and were given a scenario designed to exercise a specific area of the
database, like flights or fares; some details, like cities and flight times, were left
to the travel planner to fill in during the conversation. The goal was to collect
natural, spontaneous speech to fully evaluate the progress of spoken language
systems.

This corpus was included with the software released by (Hakkani-Tur et al.
2016), therefore no preprocessing was required. The data is annotated with 79
unique slot types and 17 unique user acts. This corpus was not annotated with
system actions and is therefore only used in baselines experiments for slot-filling
and user intent classification. The ATIS section of appendix A lists the specific
labels used as well as a graph of their distribution in the data.
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Corpus Train Set Dev Set Test Set Input Vocab
ATIS 4478 500 894 900

Frames 6131 1532 1916 3249
COMMUNICATOR (ATT) 3980 442 781 545
COMMUNICATOR (BBN) 3168 351 622 490
COMMUNICATOR (CMU) 2793 310 548 580
COMMUNICATOR (SRI) 4076 452 800 569

Table 2: The number of train, development, and test examples for each corpus.

Maluuba Frames Corpus

The Maluuba Frames (El Asri et al. 2017) corpus was designed to train con-
versational agents to track multiple aspects of a dialogue across frames and is
therefore a richly annotated corpus. This corpus was also collected wizard-of-oz
style and system users and wizards communicated through a text chat interface
for the purpose of travel booking. Users were given a task, for example:

Find a vacation between September 1st and September 8th to
Havana from Stuttgart for under $700. Dates are not flexible. If not
available, then end the conversation.

The goal was to develop complex conversations where users could compare
packages and consider multiple options. To preprocess the corpus the original
JSON files were parsed to extract the text of the user utterance, the slot labels,
the intent (speech act) of the user, and the system response (system dialogue
act). The extracted information was then formatted to match the annotations
used in (Hakkani-Tur et al. 2016), to facilitate continued experimentation. In
this annotation schema the common IOB format was used to annotate slot-tags
for each token. Tokens are matched to the slot they fill and multi-token values
are labeled with B (begin) and I (inside) to indicate the extent of the tokens
that fill that slot. Tokens that are not relevant to the any slot are tagged with O
(outside). The next example illustrates an input utterance and its corresponding
annotation.

what about a trip from gotham city to neverland for the same
budget

O O O O O B-or city I-or city O B-dst city O O O O

A beginning of sentence BOS and end of sentence EOS token was added
to each input utterance. To associate a user-intent label and system action
label with each utterance, these tags were concatenated and inserted in the last
position of the corresponding sequence label. Therefore the full text of the input
utterance becomes:
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BOS what about a trip from gotham city to neverland for the
same budget EOS

The completed corresponding annotation becomes:

O O O O O O B-or city I-or city O B-dst city O O O O in-
form:sorry#no result

Individual intent labels and system action labels are separated by the pound
sign (#) and the user-intent and system action annotations are separated by a
colon.

Not all of the available data fields in the Frames corpus were used. Many
of the fields have binary values which make no reference to the corresponding
tokens in the input utterance. These binary fields were ignored.

During data preprocessing is was discovered that many of the utterances
were labeled with more than one user-intent label and system action label, and
frequently some labels were repeated more than once. For example, a user’s ut-
terance is often labeled as inform inform rather than just inform, or the action
the system took is labeled as offer offer offer if the system provides three offers
to the user. These labels are important for the task, however having repeated
labels that could appear 1 to n times could require a complicated loss function
for statistical learning. One option was to reduce the duplicate labels down to
a single label for that class, however a manual review of a subset of the cor-
pus showed a potential correlation between duplicate user-intent labels and the
information provided in the corresponding utterance. Removing the duplicate
labels risked potentially removing information useful for training. However, if
the labels were left as is a system would need to determine the appropriate
classes(s) for an utterance as well as the number of times those classes should
be used. Since this scenario goes beyond the standard multi-class, multi-label
classification problem a choice was made to concatenate the labels into a new
class transforming the problem into a multi-class single label problem. This is
particularly beneficial because multi-class single label problems are more robust
to train. The risks in this type of data transformation is a potential explosion
of classes creating a majority of sparse classes. For this corpus the number of
user-intent classes with at least 5 examples went from 13 to 45 and system ac-
tion classes grew from 17 to 52, both of which are reasonable sets of classes for
a neural network to learn.

Figure 5 shows the distribution of slot labels in this corpus. Figures A.3a
and A.3b in appendix A show the distribution of unique classes created by
concatenating user-intent and system action labels. Just as in the ATIS corpus,
for all tasks a few classes dominate the data.
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Figure 5: Instances of slot labels in the Frames corpus.

DARPA COMMUNICATOR Corpus

The version of the DARPA COMMUNICATOR corpus used in this work in-
cludes the annotations from the original corpus plus additional information state
annotations which were automatically added by a system designed by (Georgila,
Lemon, Henderson, and Moore 2009). The corpus includes annotations for each
system evaluated as part of the COMMUNICATOR program. As in (Hender-
son, Lemon, and Georgila 2007) only the results from ATT, BBN, CMU and
SRI were used. These subsets were chosen to make experimentation on this
corpus feasible within the time line of this masters thesis while also facilitat-
ing experimentation on corpora with different characteristics than the primary
corpus.

Unlike the ATIS and Frames data sets the COMMUNICATOR corpus is
a collection of human-computer interactions. Speech was collected from users
calling into the COMMUNICATOR travel planning system and the system side
of the dialog was annotated. (Georgila, Lemon, Henderson, and Moore 2009)
extended these annotations to include the user-intent annotations as well as
dialog-level and task-level annotations.

This corpus was preprocessed following the procedure used on the Frames
corpus - the text of the user utterance, slots labels, user-intent labels, and
system action labels were extracted and the text was paired with the corre-
sponding annotation, which includes slot labels formatted into IOB format. As
in the Frames corpus this data was annotated with duplicate class labels. In the
majority of examples this seemed to be an artifact of the automatic annotation
process, for example when an utterance of a single token, ”yes” is annotated
with the user-intent label yes answer yes answer yes answer. In other instances
there was evidence of a correlation between the number of duplicate labels and
the information provided in the utterance. For example, duplicates of the pro-
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vide info user-intent label correlated with amount of information provided by a
user in that utterance.

BOS i want to travel from atlanta to london england i want to
leave on september twenty fourth and return on october first EOS

provide info provide info provide info provide info

Just as in the Frames data there was a risk of removing information that
could potentially help a learner, particularly for the multi-task models. However,
utterances with a single token of either yes or no labeled with duplicate user-
intent label of yes answer or no answer accounted for about 70 % of the errors
on the test data in preliminary experiments. The risk to information loss was
deemed minimal for these examples, so they were additionally preprocessed to
reduce duplicate labels to a single label. The remaining duplicate user-intent
and system action labels were concatenated into new class labels.

Figure 6 shows the distribution of slot-labels for each subset of the COM-
MUNICATOR corpus. Many of the slot-labels are shared by all subsets of the
corpus, but there are some classes unique to a specific sub-corpus. Appendix A
includes the complete list of specific tags used for each task and Figures [ADD
INTENT DIST GRAPH] and [ADD ACTION DIST GRAPH] illustrate the
distribution of these tags in each subset of this corpus.

Figure 6: Instances of slot labels in the COMMUNICATOR corpus for the four
subsets used in this thesis.
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Model best F Avg F
ATIS blstm 95.48% 94.70%

Frames 74.26% 73.05%
COMMUNICATOR ATT 48.17% 45.98%
COMMUNICATOR BBN 50.34% 48.77%
COMMUNICATOR CMU 53.96% 52.59%
COMMUNICATOR SRI 59.74% 58.55%

Table 3: The best f-score and average f-score on slot-filling alone for each corpus
using the architecture released by (Hakkani-Tur et al. 2016).

Thesis Experiments

Experiment 0

In (Hakkani-Tur et al. 2016) the authors describe a system for jointly learning
slot-filling, domain classification, and user intent classification which treats the
problem as a sequence labeling task. They use the IOB style annotations for slots
and associate the sentence final utterance token with a single label generated by
concatenating the associated domain and user-intent labels. The model weights
are learned by maximizing the conditional likelihood of the training set labels.

Following the procedures used by the authors, networks were trained with
hidden layers of sizes of 50, 100 and 150 and drop-out ratios of 0, 0.25, and 0.50.
The learning rate was initialized to .001, batch size was 10, tanh activation was
used as the activation function, and weight initialization was done with glorot
uniform. All models were trained on a single NVIDIA GeForce GTX 1070.

Table 3 shows the best and average f-score for slot-filling alone on each
corpus. The average f-score is calculated over 10 different weight initializa-
tions. (Hakkani-Tur et al. 2016) experimented with RNN, LSTM, LSTM-A and
BLSTM models, but noted that comparable results were achieved on each and
therefore only report results on the BLSTM. Similarly, only the BLSTM is used
in the experiments for this thesis. Table 3 includes results on the ATIS corpus
as reported in (Hakkani-Tur et al. 2016) and from experiments completed for
this thesis on the Maluuba Frames and DARPA COMMUNICATOR corpora.
The authors did not specify the method used to calculate Precision, Recall and
F-score (e.g., macro or micro averaged), but a weighted macro-averaged score
would be the best option, to account for the fact that not all classes are equally
likely. The metric scores on the ATIS corpus were reproduced with a weighted
macro-averaged precision, recall and f-score, suggesting that was the method
used by the authors. All metrics calculated for this research uses weighted
macro-averaged Precision, Recall and F1 measure.

The performance of this architecture drops when trained on the Frames and
COMMUNICATOR corpora. The COMMUNICATOR corpus has fewer slot-
labels compared to the ATIS corpus (51 versus 79), and the utterances in the
corpus are, on average, significantly shorter and generally comprise only a brief
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Model Slot F Avg F Accuracy
Frames 73.39% 71.84% 57.62%

COMMUNICATOR ATT 48.95% 47.43% 95.65%
COMMUNICATOR BBN 52.25% 50% 94.53%
COMMUNICATOR CMU 65.90% 54.03% 81.70%
COMMUNICATOR SRI 61.31% 59.35% 86.5%

Table 4: Joint slot-filling and user intent classification on the Frames and COM-
MUNICATOR corpora using the architecture released by (Hakkani-Tur et al.
2016)

answer to a specific question asked by the system. The number of slot-labels
in the Frames corpus is about one-third of the number of labels used in the
ATIS corpus, and the utterance vocabulary in the Frames corpus is significantly
larger- 3249 words versus 900 in the ATIS corpus. These differences in corpus
characteristics may contribute to the observed difference in performance.

Additional experiments were done for joint slot-filling and user intent clas-
sification, and joint slot-filing, user intent and system action classification.
(Hakkani-Tur et al. 2016) use additional Cortana data for their joint model-
ing and did not release this data. This means their published results are not
directly comparable to the results reported here. The best and average slot
f-score and the best user intent accuracy on the test data are recorded in Table
4. On the Frames data the performance of the slot-filling task is reduced with
joint-modeling, however performance on all subsets of the COMMUNICATOR
corpus is improved.

Model SLot F1 Intent Acc Action Acc
Frames 71.40% 49.62% 38.99%

COMMUNICATOR ATT 46.05% 94.75% 55.95%
COMMUNICATOR BBN 50% 92.60% 44.37%
COMMUNICATOR CMU 53.07% 79.20% 42.52%
COMMUNICATOR SRI 59.13% 85.13% 62.25%

Table 5: Joint slot-filling, user intent classification and system action classifi-
cation on the Frames and COMMUNICATOR corpora using the architecture
released by (Hakkani-Tur et al. 2016).

Table 5 shows the results for jointly learning all three tasks. The system
is able to perform all three tasks, but there is a drop in performance for both
auxiliary tasks. This phenomenon was also observed by the authors in the
original publication. This model also only predicts a subset of the system action
tags annotated in the training data. The precision, recall and f-score metrics
for the predicted system action classes are in Figure 7.
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Figure 7: Performance on system action labels in the Frames corpus using the
architecture released by (Hakkani-Tur et al. 2016).

Experiment 1

In this experiment single-task models were created to perform slot-filling, user-
intent classification, and system action classification individually. These models
serve as baselines for the multi-task learning results in experiment 2. All of
the baseline models were optimized for each corpus and task, following the
suggestions in (Caruana 1998).

Models

There are many architectures available for modeling natural language problems
with Artificial Neural Networks. Long Short-Term Memory Units (LSTMs),
B-directional LSTMs, Sequence-to-Sequence models, and Convolutional Neural
Networks have all been used extensively to model NLP problems and have been
thoroughly tested and shown to be useful for a number of NLP tasks. Therefore
these are the architectures of focus in this thesis. All models for experiment 1
and 2 were built using the Keras functional API and will be delivered as part
of this thesis.

LSTM and BLSTM baseline models are composed of an input layer, an
embedding layer, two hidden layers and a softmax output layer. In the BLSTM
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(a) BLSTM model diagram

(b) CNN model diagram

Figure 8: Model diagrams for single-task baseline models.

model the second hidden layer processes the input data backwards, starting
from the last word in a sentence. Figure 8 shows the architecture diagram for
the BLSTM model. The LSTM model is similar to the BLSTM model and is
therefore not shown separately. The SEQ2SEQ model uses a single encoder
and a single decoder. The CNN model was based on an example included in the
Keras Documentation (this Keras example) designed for a sentence classification
task. That CNN model was modified and consists of an input layer, word-
embedding layer, a 1D convolutional layer followed by a MaxPooling layer, a
second 1D convolutional layer followed by a Global Max Pooling layer, a fully
connected layer, then a final softmax layer. The diagram for the CNN model
can be found in Figure 8.
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Results

Optimal configurations were found by hyper-parameter search. Glove (Glove)
word embeddings were used as pre-trained word embeddings. The Adam op-
timizer was used with a learning rate of 0.001 and a decay of 0. Initialization
was done with glorot uniform and tanh was used as the activation function for
the LSTMs. Early stopping was used to prevent over-fitting. All networks were
trained on batch sizes of 15, 25, and 50 and drop-out ratios of 0, 0.25, and 0.5 on
the fully-connected layers. This resulted in twenty seven experiments for each
corpus for the LSTM and BLSTM models. For the CNN models, experiments
were run with filters of size 100, 200 and 300, kernel size of 3, max pooling of
3, and 100, 200 or 300 units in the fully connected layer. This resulted in 80
experiments per corpus. All models were trained on a single NVIDIA GeForce
GTX 1070.

Tables 6, 7, and 8 show the performance of the models on each corpus. The
metrics reflect the highest score on the test set for each corpus and task using
the architecture of the experiment. The results on these models are similar to
the results from experiment 0 - the highest performance is achieved on the ATIS
corpus. As in experiment 0 the model performance is lower on the COMMUNI-
CATOR corpus for slot-filling than on the Frames corpus, but the performance
on user-intent classification is higher in the COMMUNICATOR corpus.

Slot-Filling
The highest f-score achieved for each model on the slot-filling task can be found
in Table 6. For the SRI subset the slot f-scores are 7 points higher than the score
reported in (Henderson, Lemon, and Georgila 2007), even though these exper-
iments use all of the slots annotated in the corpus while (Henderson, Lemon,
and Georgila 2007) uses only four slots: origin city, destination city, departure
date, and departure time.

Results for the LSTM and BLSTM networks are comparable, therefore the
focus of analysis is only on the BLSTM network. Analysis of the Frames corpus
shows the BLSTM network performs well on filling the or city, dest city, str date
and end date slots and slightly lower on the budget slot. For the name slot
(used to label a hotel name or airline name, etc.) and the ref anaphora slots
performance is worse. Comparing the model outputs to the annotated ground
truth shows that in some instances the model just completely missed the tokens
relevant to the name slot. In the examples below the first string is the input
utterance, the second line is the ground-truth annotation, and the third line is
the model output.

BOS ok get us that market palace then EOS
O O O O O B-name I-name O O
O O O O O O O O O

BOS i will go with the stardust hotel in valencia EOS BOS can
you confirm the booking EOS

O O O O O O B-name I-name O B-dst city O O O O O O O O
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Model ATIS Frames ATT BBN CMU SRI
LSTM 93.29% 72.31% 47.14% 46.91% 54.99% 60.98%

BLSTM 93.73% 72.56% 47.88% 48.82% 55.41% 60.93%
SEQ2SEQ 73.52% 36.08% 46.91% 38.33% 42.28% 47.24%

Table 6: F1 performance of the single task models for slot-filling.

O O O O O O O O O B-dst city O O O O O O O O

In other cases it labels some but not all of the associated tokens:

BOS my preference would be the golden excalibur hotel for $
57772 usd EOS

O O O O O O B-name I-name I-name O O O O O
O O O O O O O I-name I-name O O O O O

Figure 9: Precision, Recall and F-score per slot-tag in the FRAMES corpus
using a BLSTM model.

The model misses the first token associated with the name slot, but is more
consistent in identifying the sequential tokens in a multi-token hotel name.
There are less than 500 examples of this slot type in the whole corpus (Ta-
ble 5) but the models performance on this slot is worse than for the category
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slot, which has a similar number of examples in the corpus. Hotel names can
vary widely and the model misses words when hotel names are three words or
more. This is also evidence that the model has not learned the relationship
between B and I tags.

The tokens associated with the n adults and n children slots vary widely
in this corpus, and the system performs better on the n children tag, possi-
bly because the word children often comes right after the number of traveling
children.

In a number of cases the model completely misses the tokens associated with
this slot:

BOS so myself and my child EOS
O O B-n adults O B-n children I-n children O
O O O O O O O
BOS i go by myself EOS
O O O O B-n adults O
O O O O O

In other cases the model incorrectly associates a number between one and
five with the category tag even though the word adults comes right after it:

BOS i have already told you 5 adults and 14 kids EOS
O O O O O O B-n adults O O B-n children O O
O O O O O O B-category O O B-n children O O

In other examples the system found relevant information that wasn’t explic-
itly included in the ground truth annotations:

BOS we are 8 in total EOS BOS 6 adults and 2 children EOS
BOS we can go whenever lets see what you have to offer EOS

O O O O O O O O B-n adults O O B-n children O O O O O O
O O O O O O O O O

O O O B-n adults O O O O B-n adults O O B-n children O O
O O O O O O O O O O O O O

BOS one ticket from atlanta to tofino please EOS
O B-n adults O O B-or city O B-dst city O O
O O O O B-or city O B-dst city O O

In this corpus there are a diverse set of phrases used to indicate the number
of adults and children traveling. Perhaps additional linguistic information in the
form of features would improve the model. Reformatting numbers to replace
every digit with a NUM token could also improve results. This would signifi-
cantly reduce the vocabulary for numbers while still providing information on
the structure of numbers and how they are used.

Figure 10 shows the results of the slot-filling task on a BLSTM trained on the
SRI subset of the DARPA COMMUNICATOR corpus. Figure 10 only shows
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Figure 10: Precision, Recall and F-score for a subset of slot-tags in the COMM
SRI corpus using a BLSTM model.

results for the subset of the slots that were also analyzed in Henderson, Lemon,
and Georgila 2007.

Reviewing the model outputs for the depart time slot shows that the model
correctly identifies tokens associated with dates, but does not consistently label
the tokens with the correct tag. Perhaps features to reinforce that I (inside)
tags should be the same as their B (begin) counterparts would improve results.

BOS august twelve EOS
O B-depart date I-depart date O
O B-return depart date I-depart date O

BOS october eighth EOS
O B-depart date I-depart date O
O B-continue depart date I-continue depart date O

BOS one p. m. EOS
O B-depart time I-depart time I-depart time O
O B-depart time I-return depart time I-depart time O

Reviewing results for the accept flight offer tag, which is one of the tags the
model performs the lowest on (see Figure C.1), shows that often the model uses
the wrong tag.
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Figure 11: Slot-tag precision, recall, and f-score on ATT COMMUNICATOR
data.

BOS the second EOS
O O B-accept flight offer O
O O B-number O

BOS the first one EOS O O B-accept flight offer I-accept flight offer
O O O B-number I-accept flight offer O

Again we see the model confusing numbers with other tags.
H. Chen et al. 2017 cite recent work where neural generative models based

on the encoder-decoder architecture perform well on dialogue system tasks.
However, in the experiments for this thesis the performance of the sequence-
to-sequence models on each corpus was much lower than on the LSTM and
BLSTM models. Manual review of the errors showed that often the model did
not predict the correct sequence length and therefore did not predict the correct
slot labels. It’s likely further experimentation could optimize a seq2seq model
for these tasks, however since significant results were achieved on basic LSTM
and BLSTM models it was decided not to pursue encoder-decoder model for
any other experiments.
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Model ATIS Frames ATT BBN CMU SRI
LSTM 96.86% 59.60% 95% 93.09% 80.66% 86.63%

BLSTM 96.75% 59.60% 94.88% 92.93% 79.20% 86.38%
CNN 96.75% 59.34% 60.70% 93.35% 79.38% 86.25%

Table 7: Accuracy of the single task models for user intent classification.

Table 7 shows the results of the architectures for the user-intent classification
task, where the scores are the best accuracy on the test set. The performance
of the CNN model is comparable to the LSTM and BLSTM model for most
data sets and they train much faster. For example, the BLSTM model with a
batch-size of 15, 50 units in each hidden layer, and an embedding dimension of
200 trains in 9 minutes and 30 seconds while the CNN model with a batch-size
of 15, 100 filters and a fully-connected layer of 100 nodes trains in 2 minutes
and 76 seconds on the same data set. These scores are comparable to the scores
achieved on the joint slot-filling and user-intent classification task using the
architecture released by (Hakkani-Tur et al. 2016).

Analysis of the FRAMES data on the BLSTM model shows that for some
samples the system simply selects the wrong class. As before, in the examples
below the first line is the input text, the second line the target intent labels and
the third line the model output.

BOS definitely economy im a poor intern EOS
switch frame
inform

BOS is the six day package at a better hotel EOS
request compare
switch frame

Other times the model seems to select a related but still incorrect class:

BOS okay then well go with that please EOS
inform
switch frame#inform

BOS is it available for the same dates EOS BOS also how much
would that one be EOS

switch frame#inform#request
switch frame#request

BOS hello i represent a group of people who want to get out of
munich EOS BOS our group comprises 4 adults and 6 children EOS

inform
inform#inform
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BOS yeah lets do that with business seats EOS
affirm#inform
switch frame#inform

In other examples the system used a label that may have been missed in the
original annotation:

BOS perfect EOS BOS book EOS BOS thanks EOS
inform
inform#thankyou

An interesting observation is the performance of the CNN model on the
ATT subset of the COMMUNICATOR corpus. The performance of the CNN
model is comparable to the performance of the LSTM and BLSTM models for
all data sets, except for the ATT subset. A review of the mislabeled utterances
shows that the network was converging, however it was converging to a bad
local minimum which caused the system to predict the most common token,
provide info, the majority of the time. This is a common failure mode in neural
networks, and it’s particularly interesting that this was observed for the ATT
subset of the COMMUNICATOR corpus, but not for the other subsets which
share characteristics in terms of vocabulary size and average utterance length.

The CNN model is a small and constrained CNN with single convolutional
layers followed by pooling layers. Perhaps a more highly engineered CNN model,
for example a version of Google’s Inception model (see here for more details),
would perform better on the COMMUNICATOR ATT corpus subset. Since
this drop in performance was only observed for one subset of the COMMUNI-
CATOR corpus it was decided not to pursue additional individual optimization
of the CNN model for that corpus subset.

Review of the results of the BLSTM model on the SRI test data shows that
sometimes the model predicts the incorrect label:

BOS paris france EOS
provide info
NONE

On other examples it correctly predicts a related but incorrect label. Perhaps
jointly training slot-filling and user-intent classification will help improve results
for cases like this.

BOS i would like an intermediate five car EOS
provide info#provide info
provide info

Table 8 lists the accuracy scores for baseline models on system action clas-
sification. Review of the results of the FRAMES and COMMUNICATOR SRI
models on the test data shows that most errors were due to the system predict-
ing the incorrect label. Pre-training a dialogue policy from corpora is a difficult
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Model Frames ATT BBN CMU SRI
LSTM 43.48% 54.93% 44.21% 40.15% 62.38%

BLSTM 43.11% 55.31% 44.86% 40.15% 61.75%
CNN 42.59% 48.27% 44.85% 39.42% 62%

Table 8: Accuracy of the single task models for system action classification.

task, particularly because an optimal policy may not exist in a corpus. Current
research frequently uses supervised pre-training to initialize policy networks,
but the majority of publications only include metrics on the performance of
the model after additional online training with reinforcement learning. (Bing
and Lane 2017) cite the per-response accuracy comparing a number of mod-
els, including Memory Networks and Sequence-to-Sequence models, for learning
system responses from corpora. Those models were trained using an annotated
version of the DSTC corpus created by (Bing and Lane 2017) so the baseline
results aren’t directly comparable; however, the results for this task fall into the
range of the results from the models in that publication.

Figure 12: Performance of system action classification on the Frames data.
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Figure 13: Model diagram for multi-task model BLSTM1.

Experiment 2

In this experiment several multitask neural architectures were designed to treat
slot-filling and user-intent classification as auxiliary tasks to supervised pre-
training of dialogue policies. Results are compared to the single-task baseline
models described in the previous sections. The next section describes each of
the models in more detail. The results section includes metrics and analysis on
test data.

Models

All models were designed with BLSTMs, CNNs, or a combination of the two.
These networks are the focus in this thesis because these models are well known,
well tested, and have detailed support in most machine learning frameworks.
In the majority of baseline experiments LSTM and BLSTM performance was
equivalent or favored the BLSTM model, therefore continued experimentation
focused on BLSTM networks.
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Figure 14: CNN1 model architecture. This diagram is borrowed from (Yoon
2014).

BLTM Models
Three BLSTM models were tested. The diagram for model BLSTM1 is shown
in Figure 13. In this model the input is passed to a trainable embedding layer,
which is then connected to the first BLSTM layer. This layer is given an auxil-
iary output which is used to train slot-filling. The output of the first BLSTM is
connected to a second BLSTM layer which is given two separate output layers,
one for the second auxiliary task, user-intent classification, and another for the
primary task of system action classification. In this model the training loss for
the slot filling task is backpropagated to update the first BLSTM layer. Loss
for the second auxiliary task and primary task update all layers. To explore the
role of each auxiliary task ablation testing was performed. The BLSTM1 model
was trained on all three tasks simultaneously (BLSTM1a), on slot-filling and
the primary task alone (BLSTM1b), and on user-intent classification and the
primary task alone (BLSTM1c). The second model, BLSTM2, included a skip
connection from the embedding layer to the second BLSTM layer. The third
model, BLSTM3, replaced the first BLSTM layer with a slot-filling BLSTM
trained on the same data. During multi-task training on BLSTM3 model only
user-intent classification and system action classification were trained (the slot-
filling output layer was ignored). The goal was to explore the possible benefit of
transfer learning from a previously trained model. The Keras model diagrams
for BLSTM2 and BLSTM3 models can be found in appendix B.

CNN Models
The first CNN model, CNN1, uses a design inspired by (Yoon 2014). A trainable
embedding layer is connected to a convolutional layer that produces multiple
feature maps from multiple filters with width 2,3,5, and 7. Max-pooling over
time is performed, and this is connected to a fully connected layer. See Figure 14.
Filter widths, the number of feature maps, and the number of nodes in the fully
connected layer were chosen based on the suggestions of (Ye Zhang and Wallace
2015). Early experiments on the BLSTM models showed a potential benefit to
using user-intent classification alone as the auxiliary task. Since this model is
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Figure 15: Model architecture for CNN INCEP2 model.

inspired by a model designed for sentence classification, these experiments used
only user-intent classification as the auxiliary task (ignoring slot-filling).

Additional experiments were done with models inspired by Google’s Incep-
tion architecture (Szegedy et al. 2014). The primary goal of the Inception ar-
chitecture is to find out how an optimal local sparse structure in a convolutional
vision network can be approximated and covered by readily available dense com-
ponents (Szegedy et al. 2014). As neural networks become deeper and wider,
their ability to learn from data improves. Unfortunately the training resources
required grow as a network becomes larger, increasing training time. Sparse net-
works seem like an obvious direction to battle the increase in training resources,
but sparse networks also present challenges during training. The inception ar-
chitecture was an attempt to discover a dense architecture that approximates
this sparse structure, without the training difficulties. The medium of focus
was vision models, but many vision models have translated well to natural lan-
guage process (for example, CNNs), so the decision was made to experiment
with them here. See Figure 15 for the architecture diagram for CNN INCEP1
model, which is composed of a single ”inception tower”: a convolutional layer
with multiple filters of different filter widths connected to a spatial drop-out
layer, connected to a single convolutional layer, connected to a fully-connected
layer. The INCEP2 model is composed of three ”inception towers”.

The final multi-task model is a hybrid CNN + BLSTM model. In this model
the embedding layer is connected to a convolutional layer layer with three filters
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Model Frames ATT BBN CMU SRI
BLSTM1a P
BLSTM1b
BLSTM1c P+R X P
BLSTM2 P+R X P
BLSTM3 P X

BLSTM3b NA
CNN1 R X P

CNN INCEP1 R X P
CNN INCEP2 R X P X
CNN+BLSTM P X R X P X

Table 9: The flag indicates whether a particular models f-score improvement
over the baseline was statistically significant.

of different widths. The output of this layer is concatenated to the embeddings
and connected to the BLSTM1 model. The goal was to explore the possibility
of extracting features with a CNN layer, that could then be used to improve
performance on the BLSTM models. This model combined components of CNN
and BLSTM models described in the previous sections. The complete model
diagram can be found in Appendix B.

Results

Optimal configurations were found by hyper-parameter search. All networks
were trained with batch sizes of 15, 25, 50 and 100 and drop-out ratios of 0,
0.25, and 0.5 on the fully-connected layers. Glove (Glove) word embeddings
were used as pre-trained word embeddings. The Adam optimizer was used with
learning rate, decay, and other parameters set to the defaults in Keras. All
weights were initialized with glorot uniform. The LSTM layers used tanh as
the activation function. During training the validation loss was monitored and
early stopping was used to prevent over-fitting. All models were trained on a
single NVIDIA GeForce GTX 1070.

For each corpus many of the multi-task models achieved a higher metric
score than the baseline on the test data, however significance testing showed
not all of these improvements were statistically significant. Table 9 provides
a summary of the results on the multi-task models. For each model-corpus
combination capital P or R indicates a statistically significant improvement in
precision or recall over the corresponding baseline model on the held-out test
data; a check mark indicates a statistically significant improvement in either
f-score or accuracy. There is no single model that improves performance for
every corpus, but the CNN+BLSTM model does improve for three our of the
five corpora. The sparsity of results as reflected in 9 suggests that more data
would be required to make stronger conclusions.

Tables 10, 11, 12, 13, and 14 give the accuracy, precision, recall and f-score
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Data Experiment Acc Precision Recall F-score

Frames

Exp 0 38.99% 33.42% 39.24 34.77%
Baseline BLSTM 43.11% 31.84% 44.10% 36.26%

BLSTM1a MT 44.21% 31.03% 45.22% 36.08%
BLSTM1b MT 43.58% 31.53% 44.58% 35.88%
BLSTM1c MT 44.94%* 34.39%* 45.97%* 37.93%*
BLSTM2 Skip 44.78%* 38.63%* 45.81%* 36.29%
BLSTM3 PRE 43.79% 34.56%* 44.79% 37.49%*
Baseline CNN 42.59% 30.70% 43.57% 35.37%

CNN1 39.46% 31.62% 40.36% 34.59%
CNN INCEP1 36.48% 30.28% 37.32% 32.78%
CNN INCEP2 36.43% 30.43% 37.26% 32.80%
CNN+BLSTM 42.75% 33.04%* 43.73% 36.82%*

Table 10: FRAMES performance on multitask ANN models.

metrics for the held-out test data on each multi-task model, for each corpus.
The numbers in bold indicate where a multi-task model achieved a higher metric
than the baseline model; numbers with an asterisk next to them indicate results
that are statistically significant. Significance testing was done with randomized
approximation (Yeh 2000). The following sections describe the analysis of each
experiment in more detail.

MALUUBA FRAMES Corpus
The Frames data set is the largest of the corpora tested and has utterances,
on average, that are much longer than those in the COMMUNICATOR cor-
pus (average utterance length about 8 tokens versus 2). Both BLSTM and
CNN multi-task models achieved statistically significant results over the corre-
sponding baseline models on the test data (Table 10). The multi-task model
BLSTM1c has about four times the number of trainable parameters than the
baseline - 451,601 trainable parameters v.s. 105,854 - but is the smallest of
the models that achieves statistically significant improvement over the base-
line (456,839 trainable parameters for BLSTM2 and 501,901 for BLSTM3).
The CNN+BLSTM model achieves significant improvements in f-score over the
CNN baseline, but it’s performance is still lower than all of the other multi-
task BLSTM models, and is the largest of all the well performing models with
964,128 trainable parameters.

To explore model performance the precision, recall and f-score metrics per-
tag were calculated. Precision and recall results on a set of the most relevant
tags can be found in figures 16a and 16b. For actions offer, no result#sorry,
request, and suggest the multi-task model achieved an improvement in both
precision and recall. For the affirm token the precision dropped by more than
half, but the recall increased by half a percent. The multi-task model also did
better on the no result#sorry tag, improving over the baseline which did not
predict that tag.
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(a) Per-tag precision. (b) Per-tag recall.

Figure 16: Per-tag metrics for a selection of tags for BLSTM1c model on Frames
data.

Looking more closely at the affirm action the multi-task model correctly
labels an instance the baseline mislabels:

and this leaves on fri aug 26 yes
ground truth: affirm
baseline: no result
multi-task: affirm

However, the multi-task model produced many more false positives, misla-
beling offer and inform actions. For example:

is that leaving on exactly on tuesday september 6
ground truth: inform
baseline: inform
multi-task: affirm

is that all youve got
ground truth: offer
baseline: inform
multi-task: affirm

Looking at the greeting action, the multi-task model correctly labeled a few
instances of this label the baseline missed. The baseline model also mislabeled
the request tag with greeting, for example:

hi im looking to book my honeymoon
ground truth: request
baseline: greeting
multi-task: request
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Data Experiment Acc Precision Recall F-score

ATT

Exp 0 55.95% 50.97% 59.46% 52.55%
Baseline BLSTM 55.31% 51.06% 58.76% 52.56%

BLSTM1a MT 54.80% 52.47%* 58.23% 52.52%
BLSTM1b MT 54.80% 54.40% 58.23% 52.31%
BLSTM1c MT 55.95% 52.41%* 59.46% 53.12%
BLSTM2 Skip 55.95% 47.46% 59.46% 51.74%

BLSTM3a PRE 54.55% 51.40% 57.96% 52.13%
BLSTM3b PRE 55.06% 55.11% 58.50% 52.29%
Baseline CNN 48.27% 54.73% 51.29% 46.93%

CNN1 55.31%* 50.80% 58.75%* 51.90%*
CNN INCEP1 54.80%* 51.58% 58.23%* 52.62%*
CNN INCEP2 55.19%* 53.75% 58.64%* 53.28%*
CNN+BLSTM 55.31%* 47.33% 58.78%* 51.38%*

Table 11: COMM ATT performance on multitask ANN models.

DARPA COMMUNICATOR Corpus
The system action label names in the COMMUNICATOR corpus are much
longer than the names in the Frames corpus, and therefore can’t fit compactly
into a figure. Therefore all of the labels are referenced by number in this section.
The accompanying text includes the name of the tag referenced by that number.

Table 11 shows the metrics for each multi-task model on the ATT subset
of the communicator corpus. The BLSTM1a and BLSTM1c models achieve a
statistically significant improvement in precision over the baseline, but this does
not lead to significant improvement in f-score. Models BLSTM1b and BLSTM3b
increase the precision over the baseline by a large number, but significance
testing showed these results were not significant. Further analysis revealed that
the improvement in precision was most likely due to a large improvement in
one tag, which is also one of the most frequent tags: unmatched. BLSTM1b
and BLSTM3b models correctly label half of the instances of the unmatched
tags, while model BLSTM1c mislabels all instances (Figure C.2). Since this
is the 6th most frequent token in the data set, and the metrics are calculated
based on the weighted average, this likely caused a large increase in precision.
When calculating the performance across classes the BLSTM1c model is the
only model that improves significantly over the baseline.

All of the multi-task CNN models achieve statistically significant improve-
ment over the CNN baseline, but most achieve an f-score similar to or no better
than the baseline BLSTM model. The INCEP2 model achieves the highest
f-score on this data, but it is also the largest model with 4,101,073 trainable
parameters. The baseline BLSTM has 106,258 trainable parameters, BLSTM1c
has 107,470, and the CNN+BLSTM model has 762,243. Figure 17 compares
the per-tag precision and recall for a subset of tags on the baseline BLSTM
model and INCEP2 model. The largest improvements are achieved on tags
1 (implicit confirm#request info) and 3 (implicit confirm#unmatched. Tag 15
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(a) Per-tag precision. (b) Per-tag recall.

Figure 17: Per-tag metrics for a selection of tags for INCEP2 model on ATT
data. FIX DATA LABELS.

(status report#offer#present info#offer) is correctly used by the baseline model
but missed by the multi-task model.
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Data Exp Acc Precision Recall F-score

BBN

Exp 0 44.37% 48.77% 47.66% 40.59%
Baseline BLSTM 43.16% 49.29% 48.35% 43.52%

BLSTM1a MT 44.86% 48.98% 48.35% 43.71%
BLSTM1b MT 44.05% 46.98% 47.47% 42.52%
BLSTM1c MT 44.53% 48.14% 48.01% 42.96%

BLSTM2 Skip EMB 44.85% 46.96% 48.35% 43.56%
BLSTM3a SLOT PRE 44.21% 46.12% 47.66% 42.27%
BLSTM3b SLOT PRE 44.21% 49.24% 47.66% 43.19%

Baseline CNN 44.85% 48.68% 48.35% 43.93%
CNN1 45.82% 47.07% 49.39% 43.93%

CNN INCEP1 44.21% 47.85% 47.66% 43.29%
CNN INCEP2 44.53% 49.14% 48% 43.74%
CNN+BLSTM 45.34% 48.11% 48.87% 43.73%

Table 12: COMM BBN performance on multitask ANN models.

On the BBN subset of the COMMUNICATOR corpus none of the models
achieved a statistically significant improvement over the baseline models on any
metric. The model that achieves the highest f-score on the data is the base-
line CNN model, which has 520,850 trainable parameters. The best performing
multi-task BLSTM and CNN models, BLSTM1a and CNN1, do not improve
over the baseline models and have at least twice as many trainable parame-
ters (1,000,627 and 1,832,246, respectively). Figure 18a compares the per-tag
f-score for a subset of the system action labels on the BLSTM baseline and
multi-task model BLSTM1a (which uses both auxiliary tasks). The per-tag f-
scores are very close for the majority of the tags, however there are a few tags the
baseline model uses correctly and the multi-task model misses, and vice versa.
The baseline model uses tags 17 (apology#instruction#request info), 24 (sta-
tus report#request info), and 28 (implicit confirm#apology#explicit confirm) which
the multi-task model does not, and the multi-task model uses 15
(apology#instruction#present info#offer) and 16
(implicit confirm#implicit confirm#request info) which the baseline model does
not. Similar results are observed in figure 18b. This suggests that there isn’t
enough data and therefore the models are learning different things. The BBN
subset is the second smallest data set with less than half the amount of training
examples as the Frames corpus.
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(a) BLSTM1a model f-score comparison. (b) CNN1 model f-score comparison.

Figure 18: Per-tag metrics for a selection of tags for BLSTM1a and CNN1
models on BBN data. REARANGE GRAPH.



Data Exp Acc Prec Recall F-score

CMU

Exp 0 42.52% 34.68% 49.89% 36.11%
Baseline BLSTM 37.02% 39.14% 47.93% 37.06%

BLSTM1a MT 40.15% 39.70% 47.93% 37.49%
BLSTM1b MT 40.33% 39.70% 48.15% 38.06%
BLSTM1c MT 38.69% 37.56% 46.19% 36.58%

BLSTM2 Skip EMB 39.05% 41.51%* 46.62% 37.55%
BLSTM3a SLOT PRE 39.05% 39.56% 46.62% 37.34%
BLSTM3b SLOT PRE 40.33% 39.09% 48.15% 38.01%

Baseline CNN 39.42% 36.43% 47.06% 36.44%
CNN1 38.87% 37.95% 46.41% 36.73%

CNN INCEP1 39.05% 41.39%* 46.62% 37.59%
CNN INCEP2 39.96% 41.01%* 47.71% 38.47%*
CNN+BLSTM 40.88% 40.80%* 48.80% 38.53%*

Table 13: COMM CMU performance on multitask ANN models.

Table 13 shows the results for the multi-task models on the CMU subset
of the COMMUNICATOR corpus. None of the BLSTM multi-task models
achieve a statistically significant improvement in accuracy or f-score over the
baseline model, however the BLSTM2 model does achieve a significant im-
provement in precision. Figure 19 shows the comparison of precision between
the baseline BLSTM model and the BLSTM2 model for a subset of the action
labels. Performance is close for most of the labels, however for tag 11 (im-
plicit confirm#status report#implicit confirm#present info#offer) the baseline
model uses the tag correctly, while the multi-task model misses it completely. On
tags 6 (apology#request info) and 29 (instruction#instruction#opening closing#instruction#instruction#request info)
the multi-task model achieves higher precision, and it correctly labels tags 13
(apology#instruction) and 34 (offer) where the baseline has zero precision. The
CMU subset is the smallest of the data sets tested with less than half the num-
ber of training examples as the Frames corpus. There may be a data starvation
issue here, as with the BBN subset.

The INCEP2 and CNN+BLSTM models both achieve a statistically signifi-
cant improvement in f-score over the CNN baseline. Figure 20 shows the preci-
sion and recall graphs for a subset of the system action tags on the CNN+BLSTM
model. The baseline model performs better on tags 1 (implicit confirm#request info)
and 10 (status report#present info#offer), and the multi-task model correctly
uses labels 13 (apology#instruction), 34 (offer) and 36 (explicit confirm#instruction)
which the baseline completely misses. Tag 34 is a particularly important im-
provement, since this is one of the most critical tasks of a goal-oriented dialogue
system. The CNN+BLSTM model is also at least twice as big as the base-
line models with 981,204 trainable parameters versus 255,674 in the BLSTM
baseline model and 488,174 in the CNN baseline model.
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(a) Per-tag precision. (b) Per-tag recall.

Figure 19: Per-tag metrics for a selection of tags for BLSTM2 model on CMU
data.

(a) Per-tag precision. (b) Per-tag recall.

Figure 20: Per-tag metrics for a selection of tags for CNN+BLSTM model on
CMU data.



Data Exp Acc Precision Recall F-score

SRI

Exp 0 62.25% 57.41% 63.04% 57.72%
Baseline BLSTM 61.75% 57.66% 62.53% 57.36%

BLSTM1a MT 62.25% 58.68% 63.04% 58.12%
BLSTM1b MT 61.88% 56.34% 62.66% 57.32%
BLSTM1c MT 61.75% 58.19%N 62.53% 57.21%

BLSTM2 Skip EMB 63.25% 57.93% 64.05% 58.61%
BLSTM3a SLOT PRE 62.38% 59.27% 63.16% 58%
BLSTM3b SLOT PRE 62.13% 59.16% 62.91% 58.30%

Baseline CNN 62% 56.27% 62.78% 57.39%
CNN1 62.75% 58.66%* 63.54% 59.09%

CNN INCEP1 60.38% 58.47% 61.14% 56.09%
CNN INCEP2 61% 56.88% 61.77% 56%
CNN+BLSTM 62.5% 56.81% 63.29% 58.49%

Table 14: COMM SRI performance on multitask ANN models.

All of the subsets of the COMMUNICATOR corpus are smaller than the
Frames corpus, but the SRI subset is the largest of them with about 55 % of
the number of training examples in the Frames corpus. Table 14 shows the
results of the SRI data on the multi-task models. None of the models achieve
a statistically significant improvement in accuracy or f-score over the baseline
models. The CNN1 model achieves the highest f-score of all the models and
does achieve a significant improvement in Precision over the baseline.

Figure 21 shows the precision and recall scores for a selection of tags on the
baseline CNN model compared to multi-task model CNN1. The baseline model
achieves perfect precision on tag 17 (unmatched#implicit confirm), but both
the baseline and CNN1 models miss the same number of utterances that should
have been labeled with this tag. For tag 1 (apology#instruction) the multi-task
model achieves a much higher recall than the baseline model, but the baseline
model achieves a higher precision. Also, for tags 7 (status report), 21 (apol-
ogy#acknowledgement#request info) and 22 (apology#request info#instruction#request info)
the multi-task label correctly uses these tags, where the baseline model misses
them completely.
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(a) Per-tag precision. (b) Per-tag recall.

Figure 21: Per-tag metrics for a selection of tags for the CNN1 model on SRI
data.

Table 15 shows the primary task and auxiliary task scores for the multi-task
model that achieved the highest f-score on the primary task for each corpus.
In multi-task learning the goal is to optimize for a primary task while using
the information from related tasks. The auxiliary outputs are ignored during
inference, so minimal analysis was done on those tasks. Some loss in the perfor-
mance on the auxiliary tasks is expected, as noted in (Caruana 1998). However,
on the ATT corpus user-intent classification accuracy improved by 32%. On
the Frames, BBN and SRI corpora user-intent accuracy dropped by at least 3%
from the single-task baseline; performance on user-intent classification on the
CMU corpus was about the same for baseline and multi-task models. There
was a larger loss on the slot-filling task. Performance dropped 8% on the ATT
corpus and 11% on the CMU corpus.

Data Model Slot F1 User Acc Action F1 Params
Frames BLSTM1c NA 58.09% 37.93% 451,601
ATT INCEP2 43.86% 92.70% 53.28 % 4,101,073
BBN CNN1 NA 90.68% 43.93% 1,832,246
CMU CNN+BLSTM 49.05% 79.38% 38.53% 981,204
SRI CNN1 NA 82.88% 59.09% 501,478

Table 15: Task comparison best performing multi-task models

In (Hakkani-Tur et al. 2016) the goal was to jointly-learn multiple tasks by
formulating the problem as a sequence prediction problem. For the Frames,
BBN, and SRI corpora both the baseline single-task BLSTM and CNN mod-
els and the multi-task models improved over the accuracy achieved using the
architecture released by the authors. The accuracy increased by 30% with the
BLSTM multi-task model and 24% with the CNN multi-task model on the
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Frames corpus. On the ATT corpus the multi-task BLSTM1c and BLSTM2
models achieve the same accuracy as the Exp 0 architecture, and the Exp 0
architecture achieved the highest accuracy on the CMU corpus. When com-
paring models by primary task f-score the majority of baseline and multi-task
models improve over the Exp 0 architecture. F-score is the harmonic mean of
precision and recall and takes into account how precise a model is when it labels
an utterance with a specific tag, as well as the instances where it should have
used a tag but didn’t. On the Frames corpus the multi-task models achieve a
higher recall for the inform tag. Both BLSTM baseline and multi-task models
achieve a higher f-score on the affirm tag, which the Exp 0 architecture scores
zero on.

One question worth asking is: Would the performance on these tasks improve
with larger models. Larger and deeper neural networks can be used to learn
more complicated functions, however with small data sets large models can often
memorize the data, and thus fail to learn a representation then generalizes well.
Figure 22 contains graphs of the number of trainable model parameters versus
f-score for all models in each corpus. If a positive correlation between larger
model sizes and high f-scores exists, that would suggest larger models could
improve performance. For the BLSTM models there seems to be no correlation
between larger f-score and increased model size for any data set. Subfigure (e)
suggests a correlation between smaller CNN models and high f-score; slightly
less for the SRI corpus.
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(a) ATT corpus. (b) BBN corpus.

(c) CMU corpus. (d) SRI corpus.

(e) Frames corpus.

Figure 22: Number of trainable parameters v.s. primary task f-score for each
corpora.
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Conclusion

In this thesis multi-task neural models were designed that used slot-filling and
user-intent classification as auxiliary tasks for supervised pre-training of dialog
policies. The goal was to bootstrap dialogue policy optimization without the
need for hand-written rules and to mitigate the need for a large corpus, which
is a requirement for effective reinforcement learning. A dialogue manager that
is only trained from data is not flexible enough for new user interactions, so
continued learning with reinforcement learning is necessary. However, with a
robust pre-trained model the system can avoid common failures that can often
occur in the early stages of reinforcement learning, thus reducing user frustration
during online training.

No single multi-task model improved performance over the baselines for all
data sets tested, but many of the models achieved statistically significant im-
provement over the single-task baselines and also showed improvement over the
the architecture released by (Hakkani-Tur et al. 2016). Deploying the multi-task
models as part of a complete dialogue system that interacts with users would
be the next step in determining if these results translate to an improved user
experience. Continued research should also include repeating the experiments
of this thesis on a larger corpus to, hopefully, gather more detailed evidence as
to when and how multi-task learning is beneficial for supervised pre-training of
dialogue policies.

The CNN models showed statistically significant improvement on three data
sets and were faster to train than BLSTM models, even when larger. BLSTM
models consistently provided significant improvement on the Frames corpus,
but improvement was less consistent on the COMMUNICATOR corpus. In the
Frames corpus the discourse is more natural since it was collected with human-
human interactions. In the COMMUNICATOR corpus after the initial request
most user utterances are limited to one or two word responses to questions pre-
sented by the system. This results in a dialogue that is more system initiative
and in this scenario the relevant context is now in the preceding system turn,
not the user’s turn. The CNN+BLSTM model scored significant improvement
on the Frames corpus as well as the ATT and CMU subsets of the COMMUNI-
CATOR corpus. This suggests a hybrid BLSTM and CNN model could provide
lift when initializing dialogue policies. A network with this architecture could
be very large, but training a large network is likely to be cheaper than the other
methods for initializing policy networks - whether cost is calculated in the time
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of an expert to hand-craft rules, or the time needed for online training with
reinforcement learning.

Memory networks (Bordes and Weston 2016) and hierarchical BLSTM net-
works (Bing and Lane 2017) have been used to create policy networks with pos-
itive results. Perhaps a hierarchical multi-task network could take advantage of
the hierarchical nature of dialogue data and be leveraged to improve dialogue
policy optimization, particularly on corpora similar to the COMMUNICATOR
corpus where the needed relevant context is in the dialogue history.

Another research area that may be worth trying is transfer learning - in
addition to or as a replacement for multi-task learning. We made the following
interesting experience while experimenting with the BLSTM multi-task models:
By accident we used the slot-filling model trained on the Frames corpus as
the pretrained slot-model for BLSTM3 experiments on the COMMUNICATOR
corpus. On the CMU and SRI subsets using the Frames pre-trained slot-filling
model, rather than the model trained on the corpus of the experiment, scored
higher than the baseline models. These results suggest that if data sets are
annotated with similar classes, these could be used to pretrain models that
could then be optimized on the data set of interest. This could also help with
the creation of robust dialogue policies from minimal initial datasets.

Continued feature engineering or curriculum learning may also provide im-
provements. In curriculum learning a model is presented with progressively
harder examples and given the opportunity to learn the easier examples before
moving on to the harder examples. There are a number of ways to formalize
“easy” and“hard” examples, and experiments in shape recognition and language
modeling suggest that this“start small” approach could help guide training to-
wards better regions in parameter space (Bengio et al. 2009).
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Appendix A

Corpus Characteristics

ATIS

This corpus includes labels for slot-filling and user speech acts. Figures A.1 and A.2 show
the distribution of labels in the corpus. For presentation clarity only the most common slot-
labels are shown.

The slot labels used in this corpus:

• aircraft code

• airline code

• airline name

• airport code

• airport name

• arrive date.date relative

• arrive date.day name

• arrive date.day number

• arrive date.month name

• arrive date.today relative

• arrive time.end time

• arrive time.period mod

• arrive time.period of day

• arrive time.start time

• arrive time.time

• arrive time.time relative

• city name

• class type connect

• cost relative

• day name

• day number

• days code

• depart date.date relative

• depart date.day name

• depart date.day number

• depart date.month name

• depart date.today relative

• depart date.year

• depart time.end time

• depart time.period mod

• depart time.period of day

• depart time.start time

• depart time.time

• depart time.time relative

• economy

• fare amount

• fare basis code

• flight days

• flight mod

• flight number

• flight stop

• flight time

• fromloc.airport code

• fromloc.airport name

• fromloc.city name

• fromloc.state code

• fromloc.state name

• meal

• meal code

• meal description mod

• month name
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• period of day

• restriction code

• return date.date relative

• return date.day name

• return date.day number

• return date.month name

• return date.today relative

• return time.period mod

• return time.period of day

• round trip state code

• state name

• stoploc.airport name

• stoploc.city name

• stoploc.state code

• time time relative

• today relative

• toloc.airport code

• toloc.airport name

• toloc.city name

• toloc.country name

• toloc.state code

• toloc.state name

• transport type

The user intent labels used in this corpus:

• atis abbreviation

• atis aircraft

• atis airfare

• atis airline

• atis airport

• atis capacity

• atis cheapest

• atis city

• atis distance

• atis flight

• atis flight no

• atis flight time

• atis ground fare

• atis ground service

• atis meal

• atis quantity

• atis restriction

Figure A.1: Instances of the most common slot labels in the ATIS corpus.
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Figure A.2: Instances of user-intent labels in the ATIS corpus.

Maluuba Frames

This corpus includes data annotated with slot values, user-intent labels and sys-
tem action labels.

The slot labels used in this corpus are:

• action

• arr time or

• budget

• category

• count

• count dst city

• count name

• count seat

• dep time dst

• dep time or

• dget

• dst city

• duration

• end date

• gst rating

• intent

• max duration

• min duration

• n adults

• n children

• name or city

• price

• ref anaphora

• seat

• str date

The user-intent labels used in this corpus are listed below. The # is used to separate concate-
nated tokens.

• inform

• inform#inform

• switch frame#request

• switch frame

• request

• switch frame#inform

• affirm

• request compare

• switch frame#moreinfo

• request alts

• negate#inform

• greeting#inform#inform

• inform#request

• thankyou

• greeting
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• greeting#inform

• request#switch frame

• QUESTION

• confirm

• negate

• inform#inform#greeting

• request#inform

• moreinfo

• switch frame#confirm

• affirm#inform

• inform#switch frame

• switch frame#inform#request

• goodbye

• negate#request alts

• affirm#switch frame

• switch frame#affirm

• inform#inform#request

• inform#request alts

• request alts#inform

• switch frame#inform#inform

• inform#negate

• switch frame#inform#thankyou

• inform#confirm

• inform#request compare

• negate#switch frame#request

• inform#thankyou

• switch frame#request alts

• switch frame#request#inform

• moreinfo#switch frame

• switch frame#request compare

The system action labels used in this corpus are listed below. The # is used to separate
concatenated tokens.

• inform

• offer

• request

• suggest,

• no result

• no result#sorry

• offer#inform

• suggest#inform,

• sorry#no result#suggest

• greeting

• confirm

• no result#suggest

• offer#suggest

• affirm

• request#inform

• you are welcome

• sorry#inform

• offer#hearmore

• goodbye#inform

• goodbye

• request#greeting

• confirm#request

• request#suggest

• affirm#inform

• offer#request

• sorry

• offer#sorry

• thankyou

• no result#inform

• offer#no result#sorry

• canthelp

• thankyou#inform

• offer#no result

• confirm#suggest

• sorry#suggest

• sorry#canthelp

• offer#suggest#inform

• goodbye#sorry

• no result#sorry#inform

• hearmore,

• suggest#hearmore,

• sorry#suggest#inform

• no result#request

• no result#sorry#request

• confirm#inform

• suggest#affirm

• reject#sorry

• canthelp#inform

• negate

• offer#affirm

• hearmore#inform
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(a) Distribution of user-intent labels. (b) Distribution of system action labels.

Figure A.3: Distribution of tag labels in the Frames corpus.

DARPA COMMUNICATOR

This corpus includes data annotated with slot values, user-intent labels and sys-
tem action labels.

The following list is the union of the slot types used in the ATT, BBN, CMU and SRI subsets of
this corpus. Some of the tags don’t appear in all 4 subsets. When this is the case the list following
the tag indicates which subset(s) that tag is used in.

• depart date

• orig city

• dest city

• return depart date

• depart time

• return depart time

• start over

• accept flight offer

• number

• continue depart date

• reject flight offer

• return trip

• continue dest city

• continue depart time

• hotel location

• reject ground offer [ATT]

• rental company [ATT,CMU,SRI]

• hotel name

• continue trip

• car rental

• no return trip

• accept ground offer [ATT,CMU]

• accept hotel offer

• reject car offer

• accept car offer

• reject hotel offer

• bye [ATT,BBN,CMU]

• continue orig city

• what

• airline

• hotel city

• before after [ATT,CMU]

• reject flight summary [BBN,CMU]

• accept flight summary [BBN,CMU]

• car interest [BBN,CMU,SRI]
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• hotel date [BBN]

• no continue trip [BBN,SRI]

• request stop [BBN,CMU]

• arrive time [BBN,CMU,SRI]

• id number [CMU]

• send itinerary [CMU]

• request help [CMU,SRI]

• request repetition [CMU,SRI]

• continue [CMU]

• car city [CMU,SRI]

• itinerary [CMU]

• car date [SRI]

The following list is the union of the user-intent labels used in the ATT, BBN, CMU and SRI subsets of this
corpus. Some of the tags don’t appear in all 4 subsets. When this is the case the list following the tag indicates
which subset(s) that tag is used in.

• provide info

• NONE

• yes answer

• no answer

• command

• provide info#provide info

• reprovide info [ATT,BBN,CMU]

• no answer#provide info

• question

• yes answer#provide info

• provide info#provide info#provide info [BBN,CMU,SRI]

• no answer#command [BBN,CMU]

• yes answer#provide info#provide info [BBN,CMU]

• no answer#yes answer [BBN,CMU]

• no answer#provide info#provide info [BBN,CMU]

• provide info#yes answer [BBN,SRI]

• command#provide info [BBN,CMU]

• provide info#provide info#provide info#provide info
[BBN,CMU,SRI]

• NONE#provide info [CMU]

• NONE#yes answer [CMU]

• NONE#NONE [CMU]

• yes answer#yes answer [CMU]

• NONE#command [CMU]

• command#yes answer [CMU]

• provide info#NONE [CMU]

• NONE#no answer [CMU]

• yes answer#command [CMU]

• no answer#provide info#provide info#provide info
[CMU]

• no answer#NONE [CMU]

• yes answer#NONE [CMU]

• NONE#yes answer#provide info [CMU]

• yes answer#yes answer#provide info [CMU]

• provide info#command [CMU]

• yes answer#yes answer#yes answer#yes answer#yes answer
[SRI]

• yes answer#yes answer#yes answer [SRI]

• no answer#no answer#no answer#no answer#no answer
[SRI]

• no answer#no answer#no answer [SRI]

• provide info#provide info#provide info#provide info#provide info
[SRI]

The following list is the union of the system action labels used in the ATT, BBN, CMU and SRI subsets
of this corpus. Some of the tags don’t appear in all 4 subsets. When this is the case the list following the tag
indicates which subset(s) that tag is used in.

• present info#present info#offer [ATT,BBN]
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• implicit confirm#request info [ATT,BBN,CMU]

• request info

• implicit confirm#unmatched [ATT]

• explicit confirm [ATT,CMU,SRI]

• acknowledgement#request info

• unmatched [ATT,CMU,SRI]

• unmatched#opening closing#instruction#request info [ATT]

• status report#status report#offer [ATT,CMU,SRI]

• acknowledgement#implicit confirm#request info [ATT]

• present info#present info#offer#present info#present info#offer [ATT]

• request info#request info [ATT,CMU]

• apology#explicit confirm [ATT]

• status report#status report#present info#present info#offer [ATT]

• offer#present info#offer [ATT,BBN]

• status report#offer#present info#offer [ATT]

• apology#request info

• implicit confirm#request info#implicit confirm#request info [ATT,CMU]

• acknowledgement#implicit confirm#unmatched [ATT]

• status report#status report#status report#present info#present info#offer [ATT]

• unmatched#implicit confirm#explicit confirm [ATT]

• unmatched#instruction [ATT]

• present info#present info#present info#offer [ATT]

• unmatched#opening closing#instruction#request info#request info [ATT]

• status report#opening closing#instruction#request info [ATT]

• request info#instruction [ATT,CMU]

• acknowledgement#request info#request info [ATT]

• explicit confirm#instruction [ATT,CMU]

• apology#present info#present info#offer [ATT]

• implicit confirm#request info#implicit confirm#unmatched [ATT]

• implicit confirm#request info#acknowledgement#request info [ATT]

• apology#status report#request info [ATT]

• acknowledgement#opening closing#instruction#request info [ATT]

• status report#present info#instruction#instruction#offer [ATT]

• status report#status report#status report#status report#present info#present info#offer [ATT]

• acknowledgement#present info#present info#offer [ATT]
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• implicit confirm#request info#opening closing#instruction#request info [ATT]

• implicit confirm#unmatched#request info [ATT]

• offer

• implicit confirm#unmatched#unmatched#implicit confirm#explicit confirm [ATT]

• apology#unmatched [ATT]

• acknowledgement#unmatched [ATT]

• opening closing#instruction#request info [ATT,CMU]

• present info#present info#offer#present info#present info#offer#present info#present info#offer [ATT]

• instruction#request info [ATT,BBN,CMU]

• implicit confirm#unmatched#explicit confirm [ATT]

• status report#offer [ATT,SRI]

• apology#unmatched#instruction [ATT]

• status report#status report#status report#status report#status report#present info#present info#offer [ATT]

• present info#request info [ATT]

• present info#present info#offer#opening closing#instruction#request info [ATT]

• implicit confirm#request info#acknowledgement#implicit confirm#request info [ATT]

• apology#opening closing#opening closing#instruction#request info [ATT]

• request info#request info#request info [ATT]

• opening closing#opening closing#instruction#request info [ATT]

• status report#status report#offer#request info [ATT]

• present info#offer [BBN,CMU,SRI]

• implicit confirm#present info#offer [BBN,CMU]

• apology#present info#offer [BBN,CMU,SRI]

• implicit confirm#status report#status report#present info#present info#offer [BBN]

• implicit confirm#status report#status report#unmatched#present info#offer [BBN]

• acknowledgement#acknowledgement#request info [BBN]

• instruction#present info#offer [BBN]

• implicit confirm#status report#status report#present info#offer [BBN]

• apology#instruction#present info#offer [BBN]

• implicit confirm#implicit confirm#request info [BBN]

• apology#instruction#request info [BBN,CMU]

• implicit confirm#unmatched#present info#offer [BBN]

• acknowledgement#present info#offer [BBN,CMU]

• implicit confirm#present info#present info#offer [BBN]

• unmatched#present info#offer [BBN]
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• implicit confirm#request info#unmatched [BBN]

• acknowledgement#acknowledgement#offer [BBN]

• status report#request info [BBN]

• implicit confirm#unmatched#implicit confirm#implicit confirm#implicit confirm#implicit confirm#acknowledgement#request info
[BBN]

• implicit confirm#offer [BBN]

• implicit confirm#apology#explicit confirm [BBN]

• implicit confirm#unmatched#implicit confirm#implicit confirm#acknowledgement#request info [BBN]

• implicit confirm#unmatched#implicit confirm#implicit confirm#implicit confirm#implicit confirm#implicit confirm#request info
[BBN]

• implicit confirm#implicit confirm#implicit confirm#implicit confirm#implicit confirm#request info [BBN]

• implicit confirm#implicit confirm#status report#status report#present info#present info#offer [BBN]

• implicit confirm#status report#status report#present info#present info#unmatched#present info#offer [BBN]

• implicit confirm#implicit confirm#status report#status report#unmatched#present info#offer [BBN]

• apology#offer [BBN,CMU]

• implicit confirm#implicit confirm#implicit confirm#request info [BBN]

• implicit confirm#unmatched#implicit confirm#implicit confirm#implicit confirm#implicit confirm#request info
[BBN]

• apology#explicit confirm#tbc [BBN]

• acknowledgement#acknowledgement#acknowledgement#acknowledgement#offer [BBN]

• unmatched#request info [BBN]

• implicit confirm#status report#status report#status report#present info#present info#offer [BBN]

• present info#offer#present info#offer [BBN]

• implicit confirm#implicit confirm#status report#status report#present info#offer [BBN]

• acknowledgement#unmatched#implicit confirm#unmatched#implicit confirm#unmatched#implicit confirm#request info
[BBN]

• implicit confirm#status report#status report#present info#present info#present info#present info#offer
[BBN]

• implicit confirm#implicit confirm#unmatched#present info#offer [BBN]

• implicit confirm#status report#status report#status report#status report#status report#status report#present info#present info#offer
[BBN]

• opening closing [CMU,SRI]

• implicit confirm#status report#present info#offer [CMU]

• implicit confirm#status report#request info [CMU]

• apology [CMU]

• status report#present info#offer [CMU,SRI]
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• implicit confirm#status report#implicit confirm#present info#offer [CMU]

• apology#instruction [CMU,SRI]

• status report [CMU,SRI]

• implicit confirm [CMU]

• acknowledgement#present info#present info#instruction#instruction [CMU]

• implicit confirm#status report [CMU]

• instruction#instruction [CMU]

• apology#opening closing [CMU]

• present info#offer#request info [CMU]

• acknowledgement#acknowledgement#acknowledgement#instruction#instruction [CMU]

• status report#present info#request info [CMU]

• instruction#instruction#opening closing#instruction#instruction#request info [CMU]

• request info#apology#instruction [CMU]

• acknowledgement [CMU]

• unmatched#opening closing [CMU]

• acknowledgement#present info#acknowledgement#instruction#instruction [CMU]

• unmatched#opening closing#opening closing [CMU]

• opening closing#opening closing [CMU]

• instruction [CMU]

• present info#unmatched#status report [CMU]

• present info#offer#status report [CMU]

• acknowledgement#status report#present info#offer [CMU]

• apology#instruction#instruction [CMU]

• present info#offer#apology#present info#offer [CMU]

• status report#unmatched#offer [CMU,SRI]

• implicit confirm#implicit confirm#status report#present info#offer [CMU]

• status report#implicit confirm#present info#offer [CMU]

• request info#apology#request info [CMU]

• request info#unmatched#offer [CMU]

• acknowledgement#acknowledgement#instruction#instruction [CMU]

• implicit confirm#status report#implicit confirm#unmatched#status report#request info [CMU]

• apology#implicit confirm#status report#request info [CMU]

• implicit confirm#status report#implicit confirm#unmatched#status report#present info#offer [CMU]

• request info#implicit confirm#request info [CMU]

• request info#implicit confirm [CMU]
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• implicit confirm#instruction#instruction [CMU]

• explicit confirm#explicit confirm [CMU]

• acknowledgement#status report [CMU]

• present info#offer#apology [CMU]

• present info#offer#acknowledgement [CMU]

• status report#request info#implicit confirm [CMU]

• present info#offer#implicit confirm#present info#offer [CMU]

• explicit confirm#offer#instruction [CMU]

• status report#present info#unmatched [CMU]

• present info#request info#status report [CMU]

• unmatched#implicit confirm#unmatched#implicit confirm [CMU]

• acknowledgement#apology#request info [CMU]

• apology#offer#instruction [SRI]

• apology#request info#instruction [SRI]

• apology#request info#instruction#request info [SRI]

• status report#present info#present info#offer [SRI]

• apology#request info#instruction#instruction [SRI]

• acknowledgement#explicit confirm [SRI]

• status report#apology#present info#offer [SRI]

• unmatched#implicit confirm [SRI]

• apology#acknowledgement#request info [SRI]

• status report#apology#instruction [SRI]

ADD user-intent distribution graphs
ADD system action distribtuion graphs
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Appendix B

Multitask Model Diagrams
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Figure B.1: Model diagrams for BLSTM2 multi-task model.
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Figure B.2: Model diagram for BLSTM3 multi-task model
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Figure B.3: Model diagram for CNN1 multi-task model.
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Figure B.4: Model diagram for the hybrid CNN and BLSTM multi-task model..
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Appendix C

Additional Experimentation
Graphs

Figure C.1: Per-tag metrics for the single-task BLSTM model on SRI data.

70



[] []

[]

Figure C.2: Precision results for three multi-task models on the ATT data.
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