

Copyright 2013 The Netherlands eScience Center

Author: Jason Maassen (J.Maassen@esciencecenter.nl)

Version: Userguide v1.0, Xenon v1.0

Last modified: 24 September 2013

What is it?

Xenon is a middleware abstraction library. It provides a simple Java programming interface
to various pieces of software that can be used to access distributed compute and storage
resources. The Xenon project web site can be found at:

http://nlesc.github.io/Xenon

Why Xenon?

Xenon is developed by the Netherlands eScience Center as a support library for our
projects. Several projects develop end-user applications that require access to distributed
compute and storage resources. Xenon provides a simple API to access those resources,
allowing those applications to be developed more rapidly. The experience gained during
the development of these end-user applications is used to improve the Xenon API and
implementation. For more information on the Netherlands eScience Center see:

http://www.esciencecenter.nl

Installation

The installation procedure and dependencies of the Xenon library can be found in the file
"INSTALL.md" in the Xenon distribution. In addition, the "EXAMPLES.md" file explains how
to compile and run the Xenon examples.

http://nlesc.github.io/Xenon
http://www.esciencecenter.nl/

Copyrights & Disclaimers

Xenon is copyrighted by the Netherlands eScience Center and releases under the Apache
License, Version 2.0.

See the "LICENSE" and "NOTICE" files in the Xenon distribution for more information.

Third party libraries

This product includes the SLF4J library, which is Copyright (c) 2004-2013 QOS.ch See
"notices/LICENSE.slf4j.txt" for the licence information of the SLF4J library.

This product includes the JSch library, which is Copyright (c) 2002-2012 Atsuhiko
Yamanaka, JCraft,Inc. See "notices/LICENSE.jsch.txt" for the licence information of the JSch
library.

This product includes the Logback library, which is Copyright (c) 1999-2012, QOS.ch. See
"notices/LICENSE.logback.txt" for the licence information of the Logback library.

This product includes the JaCoCo library, which is Copyright (c) 2009, 2013 Mountainminds
GmbH & Co. KG and Contributors. See "notices/LICENSE.jacoco.txt" for the licence
information of the JaCoCo library.

This project includes the JUnit library. See "notices/LICENSE.junit.txt" for the licence
information of the JUnit library.

This project includes the Mockito library, which is Copyright (c) 2007 Mockito contributors.
See "notices/LICENSE.mockito.txt" for the licence information of the Mockito library.

Design

Xenon is designed with extensibility in mind. It uses a modular and layered design as
shown in the figure below. Xenon consists of three layers, an interface layer, an engine
layer and an adaptor layer.

The interface layer is used by the application using Xenon. It contains several specialized
interfaces:

∙Xenon: this is the main entry point used to retrieve the other interfaces.
∙Files: contains functionality related to files, e.g., creation, deletion, copying, reading,
writing, obtaining directory listings, etc.
∙Jobs: contains functionality related to job submission, e.g., submitting, polling status,
cancelling, etc.
∙Credentials: contains functionality related to credentials. Credentials (such as a
username password combination) are often needed to gain access to files or to submit
jobs.

The modular design of Xenon allows us to add additional interfaces in later versions, e.g.,
a Clouds interface to manage virtual machines, or a Networks interface to manage
bandwidth-on-demand networks.

The adaptor layer contains the adaptors for the each of the middlewares that Xenon
supports. An adaptor offers a middleware specific implementation for the functionality
offered by one of the interfaces in Xenon.

For example, an adaptor may provide an sftp specific implementation of the functions in
the Xenon file interface (such as copy or delete) by translating each of these functions to
sftp specific code and commands.

For each interface in Xenon there may be multiple adaptors translating its functionality to
different middlewares. To distinguises between these adaptors Xenon uses the scheme
they support, such as "sftp", "http" or "ssh". There can be only one adaptor for each
scheme.

The engine layer of Xenon contains the "glue" that connects each interface to the adaptors
that implement its functionality. When a function of the interface layer is invoked, the call
will be forwarded to the engine layer. It is then the responsibility of the engine layer to
forward this call to the right adaptor.

To perform this selection, the engine layer matches the scheme of the object on which the
operation needs to be performed, to the schemes supported by each of the adaptors.
When the schemes match, the adaptor is selected.

Interfaces and datatypes

This section will briefly explain each of the interfaces and related datatypes. Detailed
information about Xenon can be found in the online Javadoc at:

http://nlesc.github.io/ X enon/javadoc/

Package Structure

The Xenon API uses the following package structure:

∙nl.esciencecenter.xenon Entry point into Xenon.
∙nl.esciencecenter.xenon.credentials Credential interface.
∙nl.esciencecenter.xenon.files Files interface.
∙nl.esciencecenter.xenon.jobs Jobs interface.
∙nl.esciencecenter.xenon.util Various utilty classes.

We will now briefly describe the most important classes and interfaces of these packages.

Getting started

The nl.esciencecenter.xenon package contains the entry point into the Xenon library:
XenonFactory.

public class XenonFactory {
 public static Xenon newXenon(Map<String,String> properties)
 public static void endXenon(Xenon xenon)
 public static void endAll()
}

The newXenon method can be used to create a new Xenon instance, while the
endXenon method can be used to release the Xenon instance once it is no longer needed.
It is important to end the Xenon instance when it is no longer needed, as this allows it to
release any resources it has obtained.

When creating an Xenon instance using newXenon, the properties parameter can be used
to configure it. If no configuration is necessary, null can be used. Properties consist of a
set of key-value pairs. In Xenon all keys must start with "xenon.". To configure the
adaptors, properties of the form "xenon.adaptors.(name).(property)" can be used, where
"(name)" is the name of the adaptor (for example "local" or "ssh") and "(property)" is the
name of the property to be configured. Note that this name can be futher qualified, for
example "xenon.adaptors.local.a.b.c". The available properties can be found in the
documentation of the individual adaptors (see Appendix A).

A call to newXenon will return an Xenon:

public interface Xenon {
 Files files()
 Jobs jobs()
 Credentials credentials()
 Map<String,String> getProperties()
 AdaptorStatus getAdaptorStatus(String adaptorName)
 AdaptorStatus[] getAdaptorStatuses()
}

The files, jobs and credentials methods in this interface can be used to retrieve various
interfaces that the Xenon library offers. They will be described in more detail below.

The getProperties method can be used to retrieve the properties used when the Xenon
was created. Most objects created by Xenon contain such a getProperties method. For
brevity, we will not explain these further.

The getAdaptorStatus method can be used to retrieve information about the adaptors.
This information is returned in an AdaptorStatus:

public interface AdaptorStatus {
 String getName()
 String getDescription()
 String[] getSupportedSchemes()
 XenonPropertyDescription[] getSupportedProperties()
 Map<String, String> getAdaptorSpecificInformation()
}

An AdaptorStatus contains getName to retrieve the name of an adaptor,
getDescription to get a human readable description of what functionality it has to offer
and getSupportedSchemes to retrieve a list of the schemes it supports.

The getSupportedProperties method can be used to retrieve a list of configuration
options the adaptor supports. Each returned XenonPropertyDescription gives a full
description of a single property, including its name (of the form "xenon.adaptors.(name).
(property)"), the expected type of its value, a human readable description of its purpose,
etc. More information on the supported properties can be found in Appendix A.

Finally, getAdaptorSpecificInformation can be used to retrieve status information from
the adaptor. Each key contains a property of the form described above.

Credentials interface

The nl.esciencecenter.xenon.credentials package contains the Credentials interface
of Xenon:

public interface Credentials {
 Credential newCertificateCredential(String scheme, String keyfile,
 String certfile, String username, char [] password,
 Map<String,String> properties)

 Credential newPasswordCredential(String scheme, String username,
 char [] password, Map<String,String> properties)

 Credential getDefaultCredential(String scheme)
 void close(Credential credential)
}

The Credentials interface contains various methods for creating credentials, based on
certificates or passwords. For each method, the desired scheme needs to be provided as a
parameter (for example, "ssh" or "sftp"). This allows Xenon to forward the call to the
correct adaptor. Note that some types of credentials may not be supported by all
adaptors. An exception will be thrown when an unsupported new**Credential methods is
invoked.

Additional configuration can also be provides using the properties parameter, which use
the same form as described in the Xenon factory and interface section above. If no
additional configuration is needed, null can be used. The getDefaultCredential method
returns the default credential for the given scheme. All adaptors are guarenteed to support
this method.

All new**Credential methods return a Credential that contains the following methods:

public interface Credential {
 String getAdaptorName()
 Map<String,String> getProperties()
}

The getAdaptorName method can be used to retrieve the name of the adaptor that
created the credential. Many adaptor specific objects returned by Xenon contain this
method. For brevity we will not explain this further.

When a Credential is no longer used, it must be closed using close. This releases any
resources held by the Credential. The isOpen method can be used to check if a
Credential is open or closed.

Files interface

The nl.esciencecenter.xenon.files package contains the Files interface of Xenon. For
readability we will split the explanation of Files into several parts:

public interface Files {
 FileSystem newFileSystem(String scheme, String location,
 Credential credential, Map<String,String> properties)

 void close(FileSystem filesystem)
 boolean isOpen(FileSystem filesystem)
 // ... more follows
}

The Files interface contains several method for creating and closing a FileSystem. A
FileSystem provides an abstraction for a (possibly remote) file system.

To create a FileSystem the newFileSystem method can be used. As before, the desired
scheme must be provided as a parameter. In addition, the location parameter provides
information on the location of the file system using an adaptor specific string. For local file
systems, the location must contain the root of the file system to access, such as "/" on
Linux or "C:" on Windows. For remote file systems, the location typically contains the host
name of the machine to connect to. The exact format of accepted location strings can be
found in the adaptor documentation.

The following are all valid combinations of file system schemes and locations:

"file" "/" connect to the local file system on Linux
"file" "C:" connect to the local C: drive on Windows
"sftp" "example.com" connect to example.com using sftp
"sftp" "test@example.com:44" connect to example.com using sftp on port 44
 with "test" as user name.

The newFileSystem method also has a credential parameter to provide the credential
needed to access the file system. If this parameter is set to null the default credentials
will be used for the scheme. The properties parameter can be used to provide additional
configuration properties. Again, null can be used if no additional configuration is required.
The returned FileSystem contains the following methods:

public interface FileSystem {
 // ...
 String getScheme()
 String getLocation()
 Path getEntryPath()
}

The getScheme and getLocation methods returns the scheme and location strings used
to create the FileSystem. The getEntryPath method returns the path at which the file
system was entered. For example, when accessing a file system using "sftp" it is
customary (but not manditory) to enter the file system at the users' home directory.
Therefore, the entry path of the FileSystem will be similar to "/home/(username)". For
local file systems the entry path is typically set to the root of the file system (such as "/" or
"C:").

When a FileSystem is no longer used, it must be closed using close. This releases any
resources held by the FileSystem. The isOpen method can be used to check if a
FileSystem is open or closed. Once a FileSystem is created, it can be used to access
files:

public interface Files {
 Path newPath(FileSystem filesystem, RelativePath location)
 void createFile(Path path)
 void createDirectories(Path dir)
 void createDirectory(Path dir)
 boolean exists(Path path)
 void delete(Path path)
 FileAttributes getAttributes(Path path)
 // ... more follows
}

The newPath method can be used to create a new Path. A Path represents a path on a
specific FileSystem. This path does not necessarily exists. To create an Path, both the
target FileSystem and a RelativePath are needed. A RelativePath contains a sequence
of strings separated using a special separator character, and is used to identify a location
on a file system (for example "/tmp/dir"). RelativePath contains many utility methods for
manipulating these string sequences. The details can be found in the Javadoc of
RelativePath.

Files contains several methods to create and delete files and directories. When creating
files and directories Xenon checks if the target already exists. If so, an exception will be
thrown. Similary, an exception is thrown when attempting to delete non-existing file or a
directory that is not empty. The exists method can be used to check if a path exists.

Using the getAttributes method the attributes of a file can be retrieved. The returned
FileAttributes contains information on the type of file (regular file, directory, link, etc), it
size, creation time, access rights, etc.

To list directories, the following methods are available:

public interface Files {
 DirectoryStream<Path> newDirectoryStream(Path dir)
 DirectoryStream<PathAttributesPair>

newAttributesDirectoryStream(Path dir)

 // ... more follows
}

Both newDirectoryStream and newAttributesDirectoryStream return a
DirectoryStream which can be used to iterate over the contents of a directory. For the
latter, the FileAttributes for each of the files are also included. alternatively, these
methods are also available with an extra filter parameter, which can be used to filter the
stream in advance.

To read or write files, the following methods are available:

public interface Files {
 InputStream newInputStream(Path path)
 OutputStream newOutputStream(Path path, OpenOption... options)
}

Using these methods, an InputStream can be created to read a file, and an
OutputStream can be created to write a file. The newOutputStream method requires a
options parameter to specify how the file should be opened for writing (for example,
should the data be append or should the file be truncated first). These options are describe
in more detail in the Javadoc.

To copy files, the following methods are available:

public interface Files {
 Copy copy(Path source, Path target, CopyOption... options)
 CopyStatus getCopyStatus(Copy copy)
 CopyStatus cancelCopy(Copy copy)
}

The copy method supports various copy operations such as a regular copy, a resume or
an append. The options parameter can be used to specify the desired operation. Normally,
copy performs its operation synchronously, that is, the call blocks until the copy is
completed. However, asynchronous operations are also supported by providing the option
CopyOption.ASYNCHRONOUS. In that case a Copy object is returned that can be used
to retrieve the status of the copy (using getCopyStatus) or cancel it (using cancelCopy).
The details of the available copy operations can be found in the Javadoc of CopyOption.

Jobs interface

The nl.esciencecenter.xenon.job package contains the Jobs interface of Xenon. For
readability we will split the explanation of Jobs into several parts:

public interface Jobs {

 Scheduler newScheduler(String scheme, String location,
 Credential credential, Map<String,String> properties)

 void close(Scheduler scheduler)
 boolean isOpen(Scheduler scheduler)
 // ... more follows
}

The Jobs interface contains the newScheduler method that can be used to create a
Scheduler. A Scheduler provides an abstraction for a (possibly remote) scheduler that
can be used to run jobs. The newScheduler method has scheme and location
parameters that specify how to access the scheduler. As with newFileSystem the
location is adaptor specific. To access the local scheduler, passing null or an empty
string is sufficient. To access remote schedulers, the location typically contains the host
name of the machine to connect to. The exact format of accepted location strings can be
found in the adaptor documentation.

The following are valid examples of scheduler schemes and locations:

"local" "" the local scheduler
"ssh" "example.com" connect to a remote scheduler at example.com using SSH
"slurm" "" connect to a local slurm scheduler
"slurm" "test@example.com:44" connect to a remote slurm scheduler at example.com by
 using SSH on port 44 with "test" as user name.

When a Scheduler is no longer used, is must be closed using the close method. The
isOpen method can be use to check if a Scheduler is open or closed. A Scheduler
contains the following:

public interface Scheduler {
 String[] getQueueNames()
 boolean isOnline()
 boolean supportsInteractive()
 boolean supportsBatch()
 // ...
}

Each Scheduler contains one or more queues to which jobs can be submitted. Each queue
has a name that is unique to the Scheduler. The getQueueNames method can be used
to retrieve all queue names.

The isOnline method can be used to determine if the Scheduler is an online scheduler or
an offline scheduler. Online schedulers need to remain active for their jobs to run. Closing
an online scheduler will kill all jobs that were submitted to it. Offline schedulers do not
need to remains active for their jobs to run. A submitted job will typically be handed over
to some external server that will manage the job for the rest of its lifetime.

The supportsInteractive and supportsBatch method can be use to check if the
Scheduler supports interactive and/or batch jobs. Interactive jobs are jobs where the user
gets direct control over the standard streams of the job (the stdin, stdout and stderr
streams). The user must retrieve these streams using the getStreams method in Jobs
and then provide input and output, or close the streams. Failing to do so may cause the
job to block indefinately. Batch jobs are jobs where the standard streams are redirected
from and to files. The location of these files must be set before the job is started, as will be
explained below.

Once a Scheduler is created, Jobs contains several methods to retrieve information about
the Scheduler:

public interface Jobs {
 String getDefaultQueueName(Scheduler scheduler)
 QueueStatus getQueueStatus(Scheduler scheduler, String queueName)
 QueueStatus[] getQueueStatuses(Scheduler scheduler, String...queueNames)
 Job[] getJobs(Scheduler scheduler, String... queueNames)
 // ... more follows
}

The getQueueStatuses method can be used to retrieve information about a queue. If no
queue names are provided as a parameter, information on all queues in the scheduler will
be returned. Using the getDefaultQueueName the default queue can be retrieved for
the Scheduler. The getJobs method can be used to retrieve information on all jobs in a
queue. Note that this may also include jobs from other users.

To submit and manage jobs, the Jobs interface contains the following methods:

public interface Jobs {
 Job submitJob(Scheduler scheduler, JobDescription description)
 Streams getStreams(Job job)
 JobStatus getJobStatus(Job job)
 JobStatus[] getJobStatuses(Job... jobs)
 JobStatus waitUntilRunning(Job job, long timeout)
 JobStatus waitUntilDone(Job job, long timeout)
 JobStatus cancelJob(Job job)
}

The submitJob method can be used to submit a job to a Scheduler. A JobDescription
must be provided as parameter. A JobDescription contains all necessary information on
how to start the job, for example, the location of the executable, any command line
arguments that are required, the working directory, if the job is an interactive of batch job,
the location of the files for stream redirection (in case of a batch job), etc. See the Javadoc
for details of the JobDescription.

Once a job is submitted, a Job object is returned that can be used with getJobStatus to
retrieve the status of the job, and with cancelJob to cancel it. This Job contains the
following:

public interface Job {
 JobDescription getJobDescription()
 Scheduler getScheduler()
 String getIdentifier()
 boolean isInteractive()
 boolean isOnline()
}

Besides methods for retrieveing the JobDescription and Scheduler that created it, each
Job also contains the isInteractive method to determine if the Job is interactive, and the
isOnline method to determine if the job is running on an online scheduler (explained
above).

After submitting a job, waitUntilRunning can be used to wait until a job is no longer
waiting in the queue and waitUntilDone can be used to wait until the job has finished.

For all methods returning a JobStatus, the following rule applies: after a job has finished,
the status is only guarenteed to be returned once. Any subsequent calls to a method that
returns a JobStatus may throw an exception stating that the job does not exist. Some
adaptors may return a result however.

Utilities classes

The nl.esciencecenter.xenon.util package contains various utility classes. The main
entry points are Utils, Sandbox and JavaJobDescription.

In Utils various utility methods can be found that make it easier to use Xenon. Many
methods provide simple shortcuts to often used code constructs. Some examples are
shown below:

public class Utils {
 // Create a new local Scheduler.
 public static Scheduler getLocalScheduler(Jobs jobs)

 // Create a new Scheduler without Credentials or properties.
 public static Scheduler newScheduler(Jobs jobs, String scheme)

 // Create a Path that represents the home directory of the current user.
 public static Path getLocalHome(Files files)

 // Create a Path that represents the current working directory.
 public static Path getLocalCWD(Files files)

 // Convert a String containing a local path into a Path.
 public static Path fromLocalPath(Files files, String path)

 // Retrieve all local file systems.
 public static FileSystem [] getLocalFileSystems(Files files)

 // Are we running on a Linux machine ?
 public static boolean isLinux()

 // Are we running on a Windows machine ?
 public static boolean isWindows()

 // Are we running on a OSX machine ?
 public static boolean isOSX()
}

In addition many methods are provided for reading data from files or streams to various
output targets, writing data to files or streams from various input sources, recursive
copying, recursive deletion, etc. See the Javadoc of Utils for details.

A Sandbox is a utility class that makes is it easier to create a (possibly remote) temporary
directory and transfer files to and from this directory. A Sandbox is often used in when
submitting jobs that require input files and / or produce output files. Sandbox contains the
following methods:

public class Sandbox {
 Sandbox(Files files, Path root, String sandboxName)
 void addUploadFile(Path src, String dest)
 void addDownloadFile(String src, Path dest)
 void upload(CopyOption... options)
 void download(CopyOption... options)
 void delete()
}

Creating a Sandbox requires an Xenon Files interface and a root directory. The Sandbox
will then create a temporary directory sandboxName in root. If sandboxName is null,
a random name will be generated. Using addUploadFile files can be added to the upload
queue. These files will be transferred to the Sandbox directory when upload is invoked.
Similarly, using addDownloadFile, files can be added to the download queue. They will
be downloaded from the Sandbox directory when download is invoked. Finally, delete
can be used to delete the Sandbox directory.

A JavaJobDescription is a utility class that makes is it easier to create a JobDescription
for running a Java application. In addition to the command line arguments used by the
application, Java applications typically require a number of special command line
argument for the Java Virtual Machine (JVM), such as a class path, system properties, and
JVM options.

The JavaJobDescription class extends the regular JobDescription with support for these
additional arguments. When a Job a submitted to an Xenon Scheduler that uses a
JavaJobDescription, the various types of command line arguments will be merged
automatically into a single arguments list. See the Javadoc of JavaJobDescription for
details.

Examples

Examples of how to use Xenon can be found in the examples directory in the binary
distribution of Xenon. The "EXAMPLES.md" file in the distribution explains how to compile
and run these examples. We will list them here in order of increasing complexity:

Initializing Xenon:

Creating an Xenon: CreatingXenon.java

Creating an Xenon with configuration properties: CreatingXenonWithProperties.java

Creating Credentials:

Creating a password and default Credential: CreatingCredential.java

File Access:

Creating a local FileSystem: CreateLocalFileSystem.java

Checking if a local file exists: LocalFileExists.java

Creating a FileSystem based on a URI. CreateFileSystem.java

Checking if a (possibly remote) file exists: FileExists.java

Listing a directory: DirectoryListing.java

Listing the attributes of a file: ShowFileAttributes.java

Copying a file: CopyFile.java

Job Submission:

Creating a Scheduler and retrieving the status of its queues: ListQueueStatus.java

Creating a Scheduler and retrieving the jobs: ListJobs.java

Listing the status of a Job: ListJobStatus.java

Submitting a batch job without output: SubmitSimpleBatchJob.java

Submitting a batch job with output: SubmitBatchJobWithOutput.java

Submitting an interactive job with output: SubmitInteractiveJobWithOutput.java

Appendix A: Adaptor Documentation

This section contains the adaptor documentation which is generated from the information
provided by the adaptors themselves.

Xenon currently supports 4 adaptors: local, ssh, gridengine, slurm.

Adaptor: local

The local adaptor implements all functionality with standard java classes such as
java.lang.Process and java.nio.file.Files.

Supported schemes:

local, file

Supported locations:

(null), (empty string), “/”

Supported properties:

xenon.adaptors.local.queue.pollingDelay

The polling delay for monitoring running jobs (in milliseconds).

∙Expected type: INTEGER

∙Default value: 1000

∙Valid for: [XENON]

xenon.adaptors.local.queue.multi.maxConcurrentJobs

The maximum number of concurrent jobs in the multiq..

∙Expected type: INTEGER

∙Default value: 4

∙Valid for: [XENON]

Adaptor: ssh

The SSH adaptor implements all functionality with remove ssh servers.

Supported schemes:

ssh, sftp

Supported locations:

“[user@]host[:port]”

Supported properties:

xenon.adaptors.ssh.autoAddHostKey

Automatically add unknown host keys to known_hosts.

∙Expected type: BOOLEAN

∙Default value: true

∙Valid for: [SCHEDULER, FILESYSTEM]

xenon.adaptors.ssh.strictHostKeyChecking

Enable strict host key checking.

∙Expected type: BOOLEAN

∙Default value: true

∙Valid for: [SCHEDULER, FILESYSTEM]

xenon.adaptors.ssh.loadKnownHosts

Load the standard known_hosts file.

∙Expected type: BOOLEAN

∙Default value: true

∙Valid for: [XENON]

xenon.adaptors.ssh.queue.pollingDelay

The polling delay for monitoring running jobs (in milliseconds).

∙Expected type: LONG

∙Default value: 1000

∙Valid for: [SCHEDULER]

xenon.adaptors.ssh.queue.multi.maxConcurrentJobs

The maximum number of concurrent jobs in the multiq..

∙Expected type: INTEGER

∙Default value: 4

∙Valid for: [SCHEDULER]

xenon.adaptors.ssh.gateway

The gateway machine used to create an SSH tunnel to the target.

∙Expected type: STRING

∙Default value: null

∙Valid for: [SCHEDULER, FILESYSTEM]

Adaptor: gridengine

The SGE Adaptor submits jobs to a (Sun/Ocacle/Univa) Grid Engine scheduler. This adaptor
uses either the local or the ssh adaptor to gain access to the scheduler machine.

Supported schemes:

ge, sge

Supported locations:

(all locations supported by local), (all locations supported by ssh)

Supported properties:

xenon.adaptors.gridengine.ignore.version

Skip version check is skipped when connecting to remote machines. WARNING: it is not
recommended to use this setting in production environments!

∙Expected type: BOOLEAN

∙Default value: false

∙Valid for: [SCHEDULER]

xenon.adaptors.gridengine.accounting.grace.time

Number of milliseconds a job is allowed to take going from the queue to the qacct output.

∙Expected type: LONG

∙Default value: 60000

∙Valid for: [SCHEDULER]

xenon.adaptors.gridengine.poll.delay

Number of milliseconds between polling the status of a job.

∙Expected type: LONG

∙Default value: 1000

∙Valid for: [SCHEDULER]

Adaptor: slurm

The Slurm Adaptor submits jobs to a Slurm scheduler. This adaptor uses either the local or
the ssh adaptor to gain access to the scheduler machine.

Supported schemes:

slurm

Supported locations:

(all locations supported by local), (all locations supported by ssh)

Supported properties:

xenon.adaptors.slurm.ignore.version

Skip version check is skipped when connecting to remote machines. WARNING: it is not
recommended to use this setting in production environments!

∙Expected type: BOOLEAN

∙Default value: false

∙Valid for: [SCHEDULER]

xenon.adaptors.slurm.disable.accounting.usage

Do not used accounting info of slurm, even when available. Mostly for testing purposes

∙Expected type: BOOLEAN

∙Default value: false

∙Valid for: [SCHEDULER]

xenon.adaptors.slurm.poll.delay

Number of milliseconds between polling the status of a job.

∙Expected type: LONG

∙Default value: 1000

∙Valid for: [SCHEDULER]

