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Introduction

• Widely use of power electronic converters on electrical grids.

• Interactions between the converters and electrical networks.

• Oscillations and instabilities might appear.

Objectives

• Stability assessment for grid connected VSCs.

• Small-signal state-space and impedance-based modelling.
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Testing network
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Modelling
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Parameter Symbol Value Units

Power P 1 GW
Voltage V 400 kVrms
Grid X/R ratio 10
Resistance Rf 0.2372 Ω
Inductance Lf 0.0750 H
Capacitance Cf 1 µF
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Control Structure

• Grid-connected VSC

• Averaged two-level model
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Control Structure

• Grid-connected VSC

• Averaged two-level model

• Vector control strategy PLL

abc

qd

θ vabc

ig
abc if

abc

vg
abc vabc vf

abc

Rg Lg Rf Lf

Cf

Control System

if
abc

Luis Orellana WESC 2019, Cork June 17, 2019 7



Control Structure

• Grid-connected VSC

• Averaged two-level model

• Vector control strategy

• Two-level cascaded controller

• Active power and AC voltage
control
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Modelling
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Simulink Impedance-based State-space

Inner loop 3 3 3

Feed-forward voltage filter 3 3 3

PLL 3 3 3

Outer loop 3 3 3

Delay 3 3 3
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Modelling: State-space

System of linear equations in the time-domain

Δẋ = A Δx + B Δu

Δy = C Δx + D Δu
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State-space matrix

• 4 inputs and 6 outputs

• 16 states
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Modelling: Impedance-based

Impedance characterization of the system
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∆V = Zvsc∆If

∆V = Zc(∆Ig − ∆If )

∆Vg = ∆V + Zg∆Ig

Transfer function in the s-domain

• 2 inputs and 2 outputs
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• A matrix of four 16th order
transfer functions.

YT =

[
Yqq Yqd

Ydq Ydd

]
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Validation: Non-linear vs state-space

• Non-linear Simulink and linearized
state-space model have been compared.

• Time-domain simulation for a SCR = 3

• 0.01 pu step variation of active power
up to 0.03 pu
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Validation: Non-linear vs state-space

• Non-linear Simulink and linearized
state-space model have been compared.

• Time-domain simulation for a SCR = 3

• 0.01 pu step variation of active power
up to 0.03 pu

• 0.01 pu step variation of AC voltage up
to 0.03 pu

Luis Orellana WESC 2019, Cork June 17, 2019 13



Validation: Impedance-based vs state-space

• The impedance-based transfer
function is given by the admittance

seen from the grid side :
ig
vg

• State-space model inputs and outputs
have been selected for comparison
purposes.
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Validation: Impedance-based vs state-space

• The impedance-based transfer
function is given by the admittance

seen from the grid side :
ig
vg

• State-space model inputs and outputs
have been selected for comparison
purposes.

• The the singular values of the system
frequency response and eigenvalues
match.
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Sensibility analysis of the strength of the grid

• Eigenvalues and singular
values for different SCRs.
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Stability assessment: Eigenvalues

• Eigenvalues and singular
values for different SCRs.

• The system becomes unstable
for:

I SCR =2
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Stability assessment: Singular values

• Oscillations in the sub-synchronous
and harmonic range.

Mode Real Imaginary Damping Frequency [Hz]

9 3,49 156,65 -0,022 24,93

10 3,49 -156,65 -0,022 24,93

3 -410,67 4691,06 0,087 746,61

4 -410,67 -4691,06 0,087 746,61

5 -392,36 4256,68 0,092 677,47

6 -392,36 -4256,68 0,092 677,47

13 -28,99 62,18 0,423 9,90

14 -28,99 -62,18 0,423 9,90

7 -264,28 345,50 0,608 54,99

8 -264,28 -345,50 0,608 54,99

11 -69,14 21,97 0,953 3,50

12 -69,14 -21,97 0,953 3,50

1 -9949,47 265,92 1,000 42,32

2 -9949,47 -265,92 1,000 42,32

15 -3,16 0,00 1,000 0,00

16 -3,16 0,00 1,000 0,00
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Stability assessment

• 0.01 pu step in active power at 1.5
sec. for:

I SCR =3

• AC voltage oscillations
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Stability assessment: Sub-synchronous and harmonic oscillations

• 0.01 pu step in active power at 1.5
sec. for:

I SCR =3

• AC voltage oscillations
I Sub-synchronous
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Stability assessment: Sub-synchronous and harmonic oscillations

• 0.01 pu step in active power at 1.5
sec. for:

I SCR =3

• AC voltage oscillations
I Sub-synchronous
I Harmonic
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Stability assessment: Sub-synchronous and harmonic oscillations

• 0.01 pu step in active power
at 1.5 sec. for:

I SCR =3

• AC voltage oscillations
I Sub-synchronous: 26 Hz
I Harmonic: 722-809 Hz
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Conclusion

• Both methodologies can determine the oscillatory phenomena of a system.

• The linearized state-space model closely reproduces the dynamics of a non-linear
Simulink model.

• The oscillation frequency of unstable poles matches for the complete state-space
and impedance-based models.

• The oscillation frequency of stable poles has proved to be challenging. There is a
slight variation in the oscillation frequency between the complete state-space and
the impedance-based models.
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Thanks for your attention!

Luis Orellana

luis.orellana@upc.edu
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