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Figure 3. Synthetic top view (top row) and side view (bottom row) of Fe x (184.5 Å) and Fe xiv (274.2 Å) images from the small cooler snapshot, at the intrinsic
resolution of the simulation.
(A color version of this figure is available in the online journal.)

the density- and temperature-dependent contribution functions
G(T , ne) from CHIANTI (Dere et al. 1997, 2009), assuming
coronal abundances (Feldman 1992), and the ionization frac-
tions of chianti.ioneq. For AIA we compute synthetic inten-
sities in the coronal passbands (94 Å, 131 Å, 171 Å, 193 Å,
211 Å, 335 Å) by calculating the spectra (line by line, taking
into account the temperature and density dependence of the
contribution function for each line, and adding the continuum
emission) and folding them through the effective area of each
channel (Boerner et al. 2012). In the case of EIS we selected
a set of lines that provide good coverage of the temperature
range log T ∼ 5.6–6.7, but using a relatively limited number of
lines, representative of a typical EIS observation: We selected
14 lines, which are listed in Table 1.

Images are then derived for each snapshot, and for two
different LOS, by integrating the emission through the simulated
box along the LOS: along the horizontal direction y for the
“side view,” and along the vertical direction z in the case of
the “top view,” analogously to the case presented in Martı́nez-
Sykora et al. (2011). Figures 3 and 4 show examples of such
images, at the intrinsic resolution of the simulations. In addition,
we degrade the spatial resolution to the instrumental spatial
resolution: 0.6 arcsec pixel−1 for the AIA synthetic data and
1 arcsec pixel−1 for EIS.

In order to compute the uncertainties of the simulated inten-
sities we assume an S/N typical of well-exposed active region
observations (e.g., Reale et al. 2011). For the bright channels of
AIA (171 Å, 193 Å, 211 Å), we use the DN pixel−1 assuming
typical exposure times in a single image (texp ∼ 2 s). For the
other channels (94 Å, 131 Å, 335 Å) which typically have signif-
icantly fainter emission we use the S/N calculated assuming the

Table 1
EIS Lines Synthesized from 3D Models and Used for Reconstructing

the Emission Measure Distribution

λ(Å)a Ion log(Tmax[K]) Notesb

268.991 Mg vi 5.65 sb
185.213 Fe viii 5.70
278.404 Mg vii 5.80
275.361 Si vii 5.80
188.497 Fe ix 5.90
184.537 Fe x 6.05
188.216 Fe xi 6.15
195.119 Fe xii 6.20 sb
274.204 Fe xiv 6.30
284.163 Fe xv 6.35
262.976 Fe xvi 6.45
208.604 Ca xvi 6.70
192.853 Ca xvii 6.75 bl
254.347 Fe xvii 6.75

Notes.
a The wavelengths are from CHIANTI (in case of self-blend we list the
wavelength of the strongest line).
b The label “sb” indicates that the spectral feature is a self-blend of lines from
the same ion, all included in synthesizing the data. The label “bl” for the Ca xvii
line indicates that at the EIS spectral resolution this line is blended with the
Fe xi and O v lines (Ko et al. 2009). For this paper however we only synthesize
the Ca xvii intensity, i.e., we do not calculate the blending lines.

exposure of 10 summed images (corresponding to texp ∼ 30 s).
In the case of EIS, we calculate the S/N by scaling the images
so that the Fe xii 195 Å line, which is usually one of the bright-
est emission lines in EIS observations, has 500 counts, as in
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from the apex of the loop, and subsequently falls down the leg
of the loop, eventually splashing into the chromosphere. This
blob resembles observations of coronal rain (e.g., De Groof
et al. 2004, 2005). Antolin & Rouppe van der Voort (2012) and
Antolin et al. (2015) noted that observed coronal rain actually
consists of showers composed of many smaller blobs with a
large variation in temperature, from transition-region to
chromospheric values. It is likely that our spatial resolution
may not be sufficient to resolve these smaller features. The blob
falls at approximately 42 km s−1 toward the footpoint. Similar
plasma condensations can be seen in multiple locations
throughout the entire simulation. Such condensations have
also been seen in other simulations (Müller et al. 2004, 2005;
Mendoza-Briceño et al. 2005; Antolin et al. 2010; Xia
et al. 2011; Luna et al. 2012; Fang et al. 2013).

4. THERMAL STRUCTURE PRODUCING THE EMISSION

Loops are conspicuous features in active-region emission.
We have previously investigated the relationship between the
formation of loops and the evolution of the coronal temperature
and density (Mok et al. 2008). Here we investigate in detail the
relationship between the emission and the thermal structure.
Figure 13 shows the highly inhomogeneous temperature
profiles in two vertical planes at t= 12.85 hr. Panel (a), in
the y–z plane, is a slice roughly aligned with the neutral line
(designated by line A in Figure 1). The local field lines are thus
predominantly perpendicular to this plane. Panel (b), in the x–z
plane, is roughly perpendicular to the neutral line (designated
by line B in Figure 1). The local field lines are mostly parallel

to this plane. A temperature depression can be seen as a blue
dot in (a), and as a loop-like structure in (b). This feature is
aligned along a coronal loop that can be seen in the 171Å
emission. Figure 14 shows a time sequence of the temperature
in the region denoted by a black box in Figure 13 in the y–z
plane. A movie of the evolution of the temperature in this same
region covering approximately 21 hr is available (see animation
associated with figure 14). After an initial transient, two local
temperature depressions begin to appear at t= 12.85 hr. These
two cool spots are tracked by arrows as features “A” and “B” in
Figure 14. Spot A, which does not have circular shape, reaches
a minimum temperature of 0.24MK. Spot B reaches a
minimum temperature of 1.9MK.
A coronal loop that is roughly parallel to the x axis (i.e.,

perpendicular to the y–z plane) appears in the 171 and 195Å
emission at spot A during the time interval covered by
Figure 14. When visualized in 3D, the temperature depression
in the y–z plane is in fact the cross-sectional area of a loop-like
structure. The “loop” itself is a thin, relatively low-temperature
tunnel embedded in a high-temperature region with its axis
following a magnetic field line. Figure 15 shows the 1.8 MK
temperature isosurfaces at t= 25.95 hr, indicating that the
temperature tunnel follows a magnetic field line. The
temperature is less than 1.8 MK inside the surface and more
than 1.8 MK outside the surface. The magnetic field line that
passes through spot A is seen to thread the inside of the
temperature tunnel. This cool temperature tunnel, together with
an enhanced density, is a condensation in the corona, and emits
the EUV radiation that is seen as a coronal loop in emission.

Figure 7. A comparison of the observed and simulated 171 Å emission in the coronal part of loops at t = 25.95 hr. The red boxes show regions with fan loops of
comparable intensity; the yellow boxes show regions with high loops of comparable intensity. The areas selected for comparison are not identical because the topology
of the simulated loops is different from the observed loops due to imperfections in the magnetic model.
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Frozen field

Mok et al. (2016)

Figure 6. EUV synthesized images to observed data comparison for AR 11072 on 2010 May 23. First column: SDO/AIA images averaged for a 6 hr interval centered
on the time of the NLFFF magnetic field model. Second column: synthesized EUV images using the EBTEL impulsive heating DEM solution. Third column:
synthesized EUV images using the EBTEL steady-state heating DEM solution. Both impulsive and steady-state heating models were obtained using the same
volumetric heating rate, Equation (5), with = - - -Q 10 erg cm s0

3 3 1. The images are convolved with circular Gaussian beam with s s= = 1. 2x y . Fourth column:
impulsive heating model to data relative residuals clipped to the ±100% range. Fifth column: steady-state heating model to data relative residuals clipped to the
±100% range.
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Figure 4. Results for cases with a power law distribution of nanoflares with slope m = −2.5 (top panels) and m = −1.5 (lower panels). In both cases, waiting times
between the nanoflares are included so that TN on the horizontal axis is now an average over the nanoflare train. Stars (diamonds) in the lower right panel correspond
to nanoflare trains with Q ∝ TN (TN

2 ). The other panels have Q ∝ TN .

between T(EMmax) and a sequence of 12 lower temperatures,
increasing from 106 to 106.25 K, and then averaged. If EM
at any relevant temperature drops below 10−3 EMmax, the
associated value of a is excluded from the averaging. Although
this eliminates fluctuations in a, a calculation of a using the
lowest physically meaningful value of EM above 1 MK is often
also adequate.

The slope of EM(T) changes as one moves away from LF
nanoflares, with a of order 2 (2.7) for the EBTEL08 (RL12)
losses when TN > 2000 s. For TN less than 2000 s, the values
of a are undefined (and so not shown) since there is no plasma
for a significant range of temperatures above 106.25 K. The
sharp transition in a at TN < 2000 s is due to the loop being
reheated before it can cool below 106.25 K. There is a very small
intermediate range of TN where a lies above 2 and below 5 but
is not evident with a 250 s resolution of TN . Thus, very precise
tuning of TN is required to account for the observed range of a.
This seems unlikely.

While the behavior of the plasma above T(EMmax) is not
central to this paper, it merits comment. There is significant
material at these temperatures for LF heating, and EM ∼ T−5 in
the vicinity of 10 MK. This is in reasonable agreement with the
predicted scaling of T−11/2 (Cargill & Klimchuk 2004) which

arises for similar reasons to that in the radiative phase: EM(T) ∼
n2τ c ∼ n3/T5/2 where τ c ∼ nL2/T5/2 is the conductive cooling
time (e.g., Cargill et al. 1995). At constant pressure, as assumed
in Cargill & Klimchuk (2004), a p3/T11/2 scaling follows. For
our examples, the pressure is not exactly constant during the
conductive cooling phase, leading to a weaker scaling. The very
extreme temperatures (107.5 K) for the LF runs arise because
a heat flux limiter is used in EBTEL (Klimchuk et al. 2008).
When only the Spitzer conduction formalism is used, these very
high temperatures disappear. In fact, the physics of conductive
cooling is complicated at such high temperatures (e.g., West
et al. 2008), and a proper theoretical study of high temperature
AR plasmas is badly needed.

The upper panels of Figure 3 show results for a random
distribution of nanoflare energies with a factor 10 difference
between minimum and maximum values of Hn and constant TN
in each nanoflare train. Again, 20 nanoflare trains are shown
with TN increasing from 250 to 5000 s. For this flat distribution,
most of the energy is injected in large events. The results do
not change greatly from Figure 2 for large and small values of
TN but there is a broadening of EM(T) for intermediate values,
giving a between 3 and 10 for both loss functions around TN =
2000 s. However, there is still quite a sharp change from a ∼ 2
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The formats are the same as Figure 2.

Hn = 8.3 × 10−3 erg cm−3 s−1 (similar parameters to those
of Warren et al. 2011). Within each train, the nanoflares have
the same energy, and the time between each is identical. Each
curve shows a different value of TN , which increases from 250
to 5000 s in increments of 250 s. These values of TN give
H0 = 0.03–0.44 erg cm−3 s−1 as one moves from HF to LF
regimes. The sharply peaked curves have small values of TN
(HF nanoflares), and the broad distributions have large TN (LF
nanoflares). For clarity, as TN increases, each curve is shifted
upward by 0.2 on a log scale with respect to the previous curve.
The line styles break TN into groups of four: TN = 250, 500,
750, 1000 s, etc.

The peak of the EM (EMmax) occurs at roughly 106.6 K for
all cases, in agreement with the AR core studies. For TN !
3000 s, EM(T) extends to below 1 MK. For smaller TN , there
is an increasing range of temperatures below which there is no
emission, and for TN = 250 s, EM(T) is very sharply peaked. The
following should be noted: (1) the curves are truncated below
the point where EM(T) falls to the background corona value and
(2) the steep downturn of these truncated curves off the “main
sequence” of EM is a consequence of the assumption that T,

and hence EM(T), is distributed over a narrow range about its
average.

The upper right panel of Figure 2 shows EMmax as a function
of TN . As TN decreases, EMmax increases by roughly a factor
of five. This reflects the fact that the emission becomes more
localized in temperature. The upper curve (+ sign) shows the
quantity

∫ ∞
0 DEM(T )dT , where DEM(T) is the EM differential

in temperature, as calculated by EBTEL. There is a variation
of 15% over all TN . (This quantity has no strict meaning in
the language of EM analysis, unless EM(T) is strongly peaked
around some value (∆ log10 T ± 0.3), but its near-constancy
reflects the fact that roughly the same quantity of plasma is
radiating in all cases.) While not shown, T(EMmax) shows little
dependence on TN .

The lower right panel shows the dependence of aon TN, where
EM ∼Ta below T(EMmax). The three horizontal lines correspond
to a = 2, a = 3, and a = 5. These are, respectively, one expected
value for LF nanoflares, the maximum possible value for LF
nanoflares, and the maximum deduced by the various data-
based investigations. The stars and circles are the EBTEL08 and
RL12 radiative losses, respectively. The quantity a is calculated
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between T(EMmax) and a sequence of 12 lower temperatures,
increasing from 106 to 106.25 K, and then averaged. If EM
at any relevant temperature drops below 10−3 EMmax, the
associated value of a is excluded from the averaging. Although
this eliminates fluctuations in a, a calculation of a using the
lowest physically meaningful value of EM above 1 MK is often
also adequate.

The slope of EM(T) changes as one moves away from LF
nanoflares, with a of order 2 (2.7) for the EBTEL08 (RL12)
losses when TN > 2000 s. For TN less than 2000 s, the values
of a are undefined (and so not shown) since there is no plasma
for a significant range of temperatures above 106.25 K. The
sharp transition in a at TN < 2000 s is due to the loop being
reheated before it can cool below 106.25 K. There is a very small
intermediate range of TN where a lies above 2 and below 5 but
is not evident with a 250 s resolution of TN . Thus, very precise
tuning of TN is required to account for the observed range of a.
This seems unlikely.

While the behavior of the plasma above T(EMmax) is not
central to this paper, it merits comment. There is significant
material at these temperatures for LF heating, and EM ∼ T−5 in
the vicinity of 10 MK. This is in reasonable agreement with the
predicted scaling of T−11/2 (Cargill & Klimchuk 2004) which
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n2τ c ∼ n3/T5/2 where τ c ∼ nL2/T5/2 is the conductive cooling
time (e.g., Cargill et al. 1995). At constant pressure, as assumed
in Cargill & Klimchuk (2004), a p3/T11/2 scaling follows. For
our examples, the pressure is not exactly constant during the
conductive cooling phase, leading to a weaker scaling. The very
extreme temperatures (107.5 K) for the LF runs arise because
a heat flux limiter is used in EBTEL (Klimchuk et al. 2008).
When only the Spitzer conduction formalism is used, these very
high temperatures disappear. In fact, the physics of conductive
cooling is complicated at such high temperatures (e.g., West
et al. 2008), and a proper theoretical study of high temperature
AR plasmas is badly needed.

The upper panels of Figure 3 show results for a random
distribution of nanoflare energies with a factor 10 difference
between minimum and maximum values of Hn and constant TN
in each nanoflare train. Again, 20 nanoflare trains are shown
with TN increasing from 250 to 5000 s. For this flat distribution,
most of the energy is injected in large events. The results do
not change greatly from Figure 2 for large and small values of
TN but there is a broadening of EM(T) for intermediate values,
giving a between 3 and 10 for both loss functions around TN =
2000 s. However, there is still quite a sharp change from a ∼ 2

5

log T [K]
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Table 3.2 Summary of observational and modeling studies that have used the emission
measure slope, a, as a diagnostic for the underlying energy deposition. The approximate
range of observed slopes is 2 . a . 5. Adapted from Table 3 of Bradshaw et al. (2012).

Reference Type Slope (a) Temperature
range [K]

Warren et al. (2011) observation 3.26 106–106.6

model 2.17
Winebarger et al. (2011) observation 3.2 106–106.5

Tripathi et al. (2011) observation 2.08–2.47 105.5–106.55

2.05–2.7a

Mulu-Moore et al. (2011a) modelb 1.6–2 106–Tpeak
c

2–2.3
Warren et al. (2012) observation 1.7–4.5 106–106.6

Schmelz & Pathak (2012) observation 1.91–5.17 106–Tpeak
d

Bradshaw et al. (2012) model 0.81–2.56 106–Tpeak
e

Reep et al. (2013) model 0.88–4.56 106–Tpeak
f

Cargill (2014) model 2–8 T0–106.6g

Del Zanna et al. (2015b) observationh 4.4 ± 0.4 106–3 ⇥ 106

4.6 ± 0.4
a DEM(Te) computed from background-subtracted observations.
b Intensities were modeled using photospheric (first row) and coronal (second row) abundances.
c Tpeak varied from 106.6 K to 106.8 K.
d Tpeak varied from 106.3 K to 106.8 K.
e Tpeak varied from 105.85 K to 107.35 K.
f Tpeak varied from 106.35 K to 106.65 K.
g a is computed for 12 different values of T0 between 106and106.25 and averaged.
h The slope was computed in every pixel of active region NOAA 11193 once when it first appeared

(first row) and then again after one rotation (second row).

where g(t) is some measured value, K(t, s) is the kernel, and f (s) is the unknown

function to be determined (Press et al., 1992). Comparing with Equation 3.41, s and t

correspond to the temperature and wavelength or channel, respectively. In principle,

solving Equation 3.47 to find f requires inverting the kernel matrix provided K is

invertible. However, this is complicated by the fact that information about f (or

in the case of Equation 3.41, DEM(Te)) is lost when f is “smoothed” by the kernel

K such that solutions to f derived by inverting K will be extremely sensitive to

Barnes PhD Thesis (2019)



2. Diagnostics—EM Slope
3.5 The Differential Emission Measure Distribution 99

Table 3.2 Summary of observational and modeling studies that have used the emission
measure slope, a, as a diagnostic for the underlying energy deposition. The approximate
range of observed slopes is 2 . a . 5. Adapted from Table 3 of Bradshaw et al. (2012).

Reference Type Slope (a) Temperature
range [K]
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Bradshaw et al. (2012) model 0.81–2.56 106–Tpeak
e

Reep et al. (2013) model 0.88–4.56 106–Tpeak
f

Cargill (2014) model 2–8 T0–106.6g

Del Zanna et al. (2015b) observationh 4.4 ± 0.4 106–3 ⇥ 106

4.6 ± 0.4
a DEM(Te) computed from background-subtracted observations.
b Intensities were modeled using photospheric (first row) and coronal (second row) abundances.
c Tpeak varied from 106.6 K to 106.8 K.
d Tpeak varied from 106.3 K to 106.8 K.
e Tpeak varied from 105.85 K to 107.35 K.
f Tpeak varied from 106.35 K to 106.65 K.
g a is computed for 12 different values of T0 between 106and106.25 and averaged.
h The slope was computed in every pixel of active region NOAA 11193 once when it first appeared

(first row) and then again after one rotation (second row).

where g(t) is some measured value, K(t, s) is the kernel, and f (s) is the unknown

function to be determined (Press et al., 1992). Comparing with Equation 3.41, s and t

correspond to the temperature and wavelength or channel, respectively. In principle,

solving Equation 3.47 to find f requires inverting the kernel matrix provided K is

invertible. However, this is complicated by the fact that information about f (or

in the case of Equation 3.41, DEM(Te)) is lost when f is “smoothed” by the kernel

K such that solutions to f derived by inverting K will be extremely sensitive to

1.7 ≲ a ≲ 5
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Fig. 4. The slopes of the EM distribution in the 1–
3 MK temperature range, as estimated from the AIA
DEM, the approximate Pottasch method applied to
the AIA data, the EIS DEM, and the Pottasch method
applied to the EIS observations. The AIA slopes are
obtained from full-resolution (1′′) images averaged
over 13:30–13:31 UT. The top row shows the images
of the slopes, the middle the profiles along the verti-
cal line shown in the images, and the bottom row the
histograms of the distribution of the slopes.
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Fig. 5. Same as Fig. 4, for the second rotation.

was run on a finer grid, log T [K] = 0.05, which produces good
agreement with the spline method at the peak.

The middle panels of Fig. 6 display the results of the
Monte Carlo XRT_DEM and MCMC_DEM inversions. The
XRT_DEM simulations are obtained by randomly varying

(400 times) the input intensities within the estimated uncertain-
ties, which have been taken as 20%, the overall uncertainty in
the EIS calibration (Del Zanna 2013a), added to the uncertainty
from the fitting. The ‘error bars’ on the MCMC_DEM plots are
obtained using the default values originating from the iterative
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was run on a finer grid, log T [K] = 0.05, which produces good
agreement with the spline method at the peak.

The middle panels of Fig. 6 display the results of the
Monte Carlo XRT_DEM and MCMC_DEM inversions. The
XRT_DEM simulations are obtained by randomly varying

(400 times) the input intensities within the estimated uncertain-
ties, which have been taken as 20%, the overall uncertainty in
the EIS calibration (Del Zanna 2013a), added to the uncertainty
from the fitting. The ‘error bars’ on the MCMC_DEM plots are
obtained using the default values originating from the iterative
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Table 3.2 Summary of observational and modeling studies that have used the emission
measure slope, a, as a diagnostic for the underlying energy deposition. The approximate
range of observed slopes is 2 . a . 5. Adapted from Table 3 of Bradshaw et al. (2012).

Reference Type Slope (a) Temperature
range [K]

Warren et al. (2011) observation 3.26 106–106.6

model 2.17
Winebarger et al. (2011) observation 3.2 106–106.5

Tripathi et al. (2011) observation 2.08–2.47 105.5–106.55

2.05–2.7a

Mulu-Moore et al. (2011a) modelb 1.6–2 106–Tpeak
c

2–2.3
Warren et al. (2012) observation 1.7–4.5 106–106.6

Schmelz & Pathak (2012) observation 1.91–5.17 106–Tpeak
d

Bradshaw et al. (2012) model 0.81–2.56 106–Tpeak
e

Reep et al. (2013) model 0.88–4.56 106–Tpeak
f

Cargill (2014) model 2–8 T0–106.6g

Del Zanna et al. (2015b) observationh 4.4 ± 0.4 106–3 ⇥ 106

4.6 ± 0.4
a DEM(Te) computed from background-subtracted observations.
b Intensities were modeled using photospheric (first row) and coronal (second row) abundances.
c Tpeak varied from 106.6 K to 106.8 K.
d Tpeak varied from 106.3 K to 106.8 K.
e Tpeak varied from 105.85 K to 107.35 K.
f Tpeak varied from 106.35 K to 106.65 K.
g a is computed for 12 different values of T0 between 106and106.25 and averaged.
h The slope was computed in every pixel of active region NOAA 11193 once when it first appeared

(first row) and then again after one rotation (second row).

where g(t) is some measured value, K(t, s) is the kernel, and f (s) is the unknown

function to be determined (Press et al., 1992). Comparing with Equation 3.41, s and t

correspond to the temperature and wavelength or channel, respectively. In principle,

solving Equation 3.47 to find f requires inverting the kernel matrix provided K is

invertible. However, this is complicated by the fact that information about f (or

in the case of Equation 3.41, DEM(Te)) is lost when f is “smoothed” by the kernel

K such that solutions to f derived by inverting K will be extremely sensitive to

1.7 ≲ a ≲ 5

Barnes PhD Thesis (2019)
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Figure 5. (a) Peak cross-correlation time-lag maps for 0–12 UT, 2010 June 19 for the field of view shown in Figure 2. The color bar on the bottom indicates the
time-lag range in seconds. The channel pair is indicated on the top of each panel. (b) Same as panel (a). Note that the 211–193 and 171–131 pairs have different color
bars.

3. RESULTS

We perform the analysis described above to every pixel in the
image set, regardless of which type of AR structure is present
(e.g., fan loop, AR core, diffuse emission, long loops, short
loops, hot loops, warm loops, or loop foot points). We compute
the time lags between all possible pairs of the six EUV channels
for all of the 12 hr and 2 hr data sets. We display the results in
the form of time-lag maps where each pixel value is the time lag
associated with that particular pair of channels over that time
window. For all of the maps we show a color bar, which indicates
the time-lag values and range. Blues, greens, and blacks indicate

negative time offsets where the second channel precedes the
first channel; reds, oranges, and yellows indicate positive time
offsets, where the second channel follows the first channel; the
olive green color indicates that to within the data resolution
there is zero temporal offset between the two channels.

3.1. The 12 hr Time Series

We begin by presenting the results from analyzing the first
12 hr data set. We display maps for every channel pair in
Figures 5(a) and (b). At the top of each panel we indicate
the channel pair used. All panels are on the same color bar,
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Figure 5. (a) Peak cross-correlation time-lag maps for 0–12 UT, 2010 June 19 for the field of view shown in Figure 2. The color bar on the bottom indicates the
time-lag range in seconds. The channel pair is indicated on the top of each panel. (b) Same as panel (a). Note that the 211–193 and 171–131 pairs have different color
bars.

3. RESULTS

We perform the analysis described above to every pixel in the
image set, regardless of which type of AR structure is present
(e.g., fan loop, AR core, diffuse emission, long loops, short
loops, hot loops, warm loops, or loop foot points). We compute
the time lags between all possible pairs of the six EUV channels
for all of the 12 hr and 2 hr data sets. We display the results in
the form of time-lag maps where each pixel value is the time lag
associated with that particular pair of channels over that time
window. For all of the maps we show a color bar, which indicates
the time-lag values and range. Blues, greens, and blacks indicate

negative time offsets where the second channel precedes the
first channel; reds, oranges, and yellows indicate positive time
offsets, where the second channel follows the first channel; the
olive green color indicates that to within the data resolution
there is zero temporal offset between the two channels.

3.1. The 12 hr Time Series

We begin by presenting the results from analyzing the first
12 hr data set. We display maps for every channel pair in
Figures 5(a) and (b). At the top of each panel we indicate
the channel pair used. All panels are on the same color bar,
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results showing zero time lags observed occasionally in the
corona too, and also see the discussion of Figure 4 and the
171–131 Å pair where the majority of the corona also exhibits
zero time lags). There is very little presence of negative time lags
in any of the ARs. We conclude that there is variable emission
consistent with post-nanoflare cooling in the vast majority of

pixels for all ARs. This result holds for all of the ARs, regardless
of their EM slopes.
The results in the 94–335 Å pair are also consistent with

post-nanoflare cooling. In all 15 ARs there is evidence that the
hot, Fe XVIII, 7 MK plasma dominates the 94 Å emission in at
least part of the AR. This is generally in the core, where the

Figure 2. Time lag maps computed between different SDO/AIA channel pairs (listed to the left) for five representative channel pairs for all 15 AR. Color bar is
identical in all time lag maps. (a) shows the first four ARs, (b) shows the second four ARs, (c) shows the third four ARs, and (d) shows the final three ARs.
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Figure 1. SDO/AIA light curves predicted with EBTEL nanoflare simulations
of diffuse AR core emission. 94 Å shown in red, 335 Å in green, 211 Å in
blue, 193 Å in orange, 171 Å in cyan, and 131 Å in black; each is normalized
to its maximum and offset by −0.1. Light curves are remarkably steady even
though all flux tubes are heated impulsively.

as follows. First, we built a library of 1000 impulsively heated
EBTEL simulations. For each simulation we construct light
curves in each of the six AIA channels. We chose strand lengths
corresponding to a range of field line lengths expected for an
LOS through the core of AR 11082 (3–10.6 × 109 cm half-
lengths). The magnitude of the nanoflare (total energy per unit
volume) is inversely dependent on the flux tube length squared
(Mandrini et al. 2000). For a given loop length, we simulate 10
possible nanoflare magnitudes, equal to 1–5 times the smallest
magnitude, and five possible nanoflare durations between 50
and 250 s.

We assume that the nanoflares are stochastic, which we
implement in the model by choosing a number of simulations
from the library to begin every 1 s, the time step of the EBTEL
runs. Both the number and choice of simulation are chosen
randomly. At every time step we add together the light curves
from all of the individual nanoflares to produce a composite
light curve in each of the six SDO/AIA channels, plotted in
Figure 1. We adjust the average rate of nanoflare occurrence so
that the average heating rate along the LOS is consistent with
the typical observed radiative loss rate of ARs. In the instance
shown in Figure 1 the average rate of LOS nanoflare occurrence
was 20 nanoflares per second. Since the process is random,
sometimes many more nanoflares than this occur, sometimes
far fewer.

We plot the predicted light curves for the 94 Å (red), 335 Å
(green), 211 Å (blue), 193 Å (orange), 171 Å (cyan) and 131 Å
(black) channels in Figure 1, each normalized to their own
maximum and offset by −0.1 to avoid overlap. We use the
updated (keyword/chiantifix) response functions to compute
the light curves in this figure; the conclusion that we draw in
this paper are not dependent on the choice of response functions.
In this case the light curves are 6 hr in length, but it is trivial
to make them shorter or longer. With the parameters we have
chosen here, approximately 70,000 flux tubes are contributing
a non-zero emission to the pixel at any given time. Since there
are so many flux tubes contributing emission to the pixel, the
relative intensity change due to a single flux tube or nanoflare
is small.
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Figure 2. Cross correlation as a function of temporal offset for pairs of the
modeled diffuse emission light curves shown in Figure 1. Time lags occur
where the cross correlation peaks, indicated with dots. Green represents the
211–193 Å pair, blue the 335–211 Å pair, orange the 335–193 Å pair, cyan the
335–171 Å pair, and red the 335–94 Å pair.

The final time series has far smaller intensity variations than
a background-subtracted loop light curve does. The difference
between the maximum and minimum intensities, ∆I, is generally
very small in each channel. It is the greatest in the 94 Å light
curve, reaching 9% of the maximum. It is the smallest in the
335 Å light curve, where ∆I is a mere 5% of the maximum (the
335 Å light curve has the least variation of the six channels
primarily due to the broader nature of that channel’s response
function). This level of predicted intensity fluctuation is even
smaller than the level often observed in hot AR cores. For
example, Warren et al. (2010) found that the intensity fluctuation
was ∼15% in single pixels imaging an AR core, which they
provide as evidence of steady heating. In an actual observation
this situation may be seemingly indistinguishable from steady
emission from steady heating wherein the fluctuations are due
to photon counting noise. However, the time-lag test used in
VK2012 can disambiguate.

In Figure 2, we show the results of this time-lag test per-
formed on our model light curves. We plot the cross corre-
lation value as a function of temporal offset for five channel
pairs: 211–193 Å (green), 335–211 Å (blue), 335–193 Å
(orange), 335–171 Å (cyan) and 94–335 Å (red). Despite the
relatively small variations that each strand contributes to the
total light curves, the cross correlations exhibit the cooling pat-
terns observed by VK2012. Namely, 211–193 Å, 335–211 Å,
335–193 Å, and 335–171 Å all reach a peak cross correlation
value at a positive temporal offset. 211–193 Å has the shortest
time lag, while 335–171 Å exhibits the longest time lag, consis-
tent with plasma cooling fully from high to low temperatures.
The hotter component dominates the 94 Å light curve in this
particular case, so the positive 94–335 Å time-lag peak is large
and evidence of a secondary negative peak due to the cooler
component of 94 Å is not present. This is consistent with the
positive 94–335 Å time lag measured in the core of VK2012.
As shown in VK2011, whether the hot component dominates
the 94 Å light curves is dependent on the nanoflare strength.
Based on this we conclude that the modeled positive 94–335 Å
time lag is a result of the strong nanoflares in our composite
models.
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Table 1
Time Lags and Cross Correlation Values

Channel Pair Time Lag Cross Correlation Value
(seconds)

211–193 Å 146 0.96
335–211 Å 488 0.83
335–193 Å 676 0.72
94–335 Å 740 0.76
335–171 Å 900 0.64

Notes. Summary of time lags (in seconds) and cross correlation
values calculated between the pairs of modeled light curves. Corre-
sponds to cross correlations shown in Figure 2.

The time lags and associated cross correlation values that
we compute are summarized in Table 1. The channel pair
with the shortest time lag and the strongest cross correlation
is 211–193 Å while the 335–171 Å channel pair exhibits both
the longest time lag and the lowest cross correlation. It is sig-
nificant that the numerical values of both the peak cross cor-
relations and associated time lags are generally similar in the
model and diffuse pixel observations. For example, VK2012
found that most pixels exhibited a time lag between 211–193 Å
of less than ∼600 s and cross correlation values of around 0.90.
Detailed differences contain useful physical information. Al-
though each nanoflare produces only a small change in inten-
sity, each one follows the same hot-to-cool progression, so the
composite intensity time series are still highly correlated at their
respective cooling-time offsets. In fact, in the absence of noise,
the amplitude of the intensity variations does not affect the cross
correlation value, provided that the variations all follow the same
hot-to-cool progression.

This model, though simple, demonstrates two important con-
clusions. First, light curves that are observed to be approxi-
mately steady are not necessarily produced by steady plasma.
Though steadily heated flux tubes undergoing no appreciable
evolution (on these sorts of time scales) is certainly a plausible
explanation for an observation of a steady light curve, impul-
sive nanoflare heating is also a plausible explanation, provided
there are many out-of-phase flux tubes along the LOS. Second,
flux tubes with nanoflares that are completely stochastic and
incoherent (i.e., never acting in a nanoflare storm to create a
“loop”) and are still detectable with the time-lag analysis of
VK2012.

4. STEADY HEATING AND NOISE

Some researchers have suggested that the diffuse emission
in the cores of ARs is nearly constant as a result of effectively
steady heating (Warren et al. 2010, 2011, 2012; Winebarger et al.
2011; though see Tripathi et al. 2011; Schmelz & Pathak 2012;
Bradshaw et al. 2012). Next we consider the case where 100% of
the flux tubes along a LOS are steadily heated, producing steady
emission. In this example we chose a representative pixel in the
core of AR 11082 and use its observed count rates as the level
of steady emission: 49 counts s−1 in 131 Å, 950 counts s−1

in 171 Å, 2481 counts s−1 in 193 Å, 1000 counts s−1 in 211 Å,
136 counts s−1 in 335 Å, and 12 counts s−1 in 94 Å. The resulting
light curves are shown in gray in Figure 3 and are, by definition,
perfectly steady. We show the expected light curves when photon
noise is added, assuming Poisson counting statistics, using the
same colors as in Figure 1.

Figure 4 shows the cross correlation value computed between
the same selected pairs of light curves in the same colors
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Figure 3. Light curves for steady emission in the different AIA channels shown
as gray horizontal lines and with the addition of photon noise (same colors as
in Figure 1): the light curves expected resulting from steady heating.
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pairs of steady heating light curves shown in Figure 3. The curves are mostly
hidden behind the green (211–193 Å) curve. Time lags (indicated with dots) are
random and occur at an extremely low cross correlation value.

as shown in Figure 2. These cross correlation curves are
fundamentally different from those of the observations (Figure 4
in VK2012) and those from the impulsive model (Figure 2).
The cross correlation value randomly fluctuates, and is almost
zero everywhere. None of the light curves are correlated at any
temporal offset. This result is expected since the variability is
due entirely to noise. For this particular example, the peak cross
correlation value identified as the “time lag” happens to be
−3049 s for 211–193 Å, with a cross correlation value of 0.029,
however a new generation of noise would equally likely result
in any of the other tested time lags, also at a very low cross
correlation value. In fact, this result is independent of both the
absolute noise level and the relative signal-to-noise level.

The other time-lag calculations show equally unphysical
results at very low cross correlation values: we compute a
time lag of 774 s for 335–211 Å with a cross correlation value
of 0.026; 200 s and a cross correlation value of 0.024 for
335–193 Å; −4688 s and a cross correlation value of 0.024
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Figure 1. SDO/AIA light curves predicted with EBTEL nanoflare simulations
of diffuse AR core emission. 94 Å shown in red, 335 Å in green, 211 Å in
blue, 193 Å in orange, 171 Å in cyan, and 131 Å in black; each is normalized
to its maximum and offset by −0.1. Light curves are remarkably steady even
though all flux tubes are heated impulsively.

as follows. First, we built a library of 1000 impulsively heated
EBTEL simulations. For each simulation we construct light
curves in each of the six AIA channels. We chose strand lengths
corresponding to a range of field line lengths expected for an
LOS through the core of AR 11082 (3–10.6 × 109 cm half-
lengths). The magnitude of the nanoflare (total energy per unit
volume) is inversely dependent on the flux tube length squared
(Mandrini et al. 2000). For a given loop length, we simulate 10
possible nanoflare magnitudes, equal to 1–5 times the smallest
magnitude, and five possible nanoflare durations between 50
and 250 s.

We assume that the nanoflares are stochastic, which we
implement in the model by choosing a number of simulations
from the library to begin every 1 s, the time step of the EBTEL
runs. Both the number and choice of simulation are chosen
randomly. At every time step we add together the light curves
from all of the individual nanoflares to produce a composite
light curve in each of the six SDO/AIA channels, plotted in
Figure 1. We adjust the average rate of nanoflare occurrence so
that the average heating rate along the LOS is consistent with
the typical observed radiative loss rate of ARs. In the instance
shown in Figure 1 the average rate of LOS nanoflare occurrence
was 20 nanoflares per second. Since the process is random,
sometimes many more nanoflares than this occur, sometimes
far fewer.

We plot the predicted light curves for the 94 Å (red), 335 Å
(green), 211 Å (blue), 193 Å (orange), 171 Å (cyan) and 131 Å
(black) channels in Figure 1, each normalized to their own
maximum and offset by −0.1 to avoid overlap. We use the
updated (keyword/chiantifix) response functions to compute
the light curves in this figure; the conclusion that we draw in
this paper are not dependent on the choice of response functions.
In this case the light curves are 6 hr in length, but it is trivial
to make them shorter or longer. With the parameters we have
chosen here, approximately 70,000 flux tubes are contributing
a non-zero emission to the pixel at any given time. Since there
are so many flux tubes contributing emission to the pixel, the
relative intensity change due to a single flux tube or nanoflare
is small.
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Figure 2. Cross correlation as a function of temporal offset for pairs of the
modeled diffuse emission light curves shown in Figure 1. Time lags occur
where the cross correlation peaks, indicated with dots. Green represents the
211–193 Å pair, blue the 335–211 Å pair, orange the 335–193 Å pair, cyan the
335–171 Å pair, and red the 335–94 Å pair.

The final time series has far smaller intensity variations than
a background-subtracted loop light curve does. The difference
between the maximum and minimum intensities, ∆I, is generally
very small in each channel. It is the greatest in the 94 Å light
curve, reaching 9% of the maximum. It is the smallest in the
335 Å light curve, where ∆I is a mere 5% of the maximum (the
335 Å light curve has the least variation of the six channels
primarily due to the broader nature of that channel’s response
function). This level of predicted intensity fluctuation is even
smaller than the level often observed in hot AR cores. For
example, Warren et al. (2010) found that the intensity fluctuation
was ∼15% in single pixels imaging an AR core, which they
provide as evidence of steady heating. In an actual observation
this situation may be seemingly indistinguishable from steady
emission from steady heating wherein the fluctuations are due
to photon counting noise. However, the time-lag test used in
VK2012 can disambiguate.

In Figure 2, we show the results of this time-lag test per-
formed on our model light curves. We plot the cross corre-
lation value as a function of temporal offset for five channel
pairs: 211–193 Å (green), 335–211 Å (blue), 335–193 Å
(orange), 335–171 Å (cyan) and 94–335 Å (red). Despite the
relatively small variations that each strand contributes to the
total light curves, the cross correlations exhibit the cooling pat-
terns observed by VK2012. Namely, 211–193 Å, 335–211 Å,
335–193 Å, and 335–171 Å all reach a peak cross correlation
value at a positive temporal offset. 211–193 Å has the shortest
time lag, while 335–171 Å exhibits the longest time lag, consis-
tent with plasma cooling fully from high to low temperatures.
The hotter component dominates the 94 Å light curve in this
particular case, so the positive 94–335 Å time-lag peak is large
and evidence of a secondary negative peak due to the cooler
component of 94 Å is not present. This is consistent with the
positive 94–335 Å time lag measured in the core of VK2012.
As shown in VK2011, whether the hot component dominates
the 94 Å light curves is dependent on the nanoflare strength.
Based on this we conclude that the modeled positive 94–335 Å
time lag is a result of the strong nanoflares in our composite
models.
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Table 1
Time Lags and Cross Correlation Values

Channel Pair Time Lag Cross Correlation Value
(seconds)

211–193 Å 146 0.96
335–211 Å 488 0.83
335–193 Å 676 0.72
94–335 Å 740 0.76
335–171 Å 900 0.64

Notes. Summary of time lags (in seconds) and cross correlation
values calculated between the pairs of modeled light curves. Corre-
sponds to cross correlations shown in Figure 2.

The time lags and associated cross correlation values that
we compute are summarized in Table 1. The channel pair
with the shortest time lag and the strongest cross correlation
is 211–193 Å while the 335–171 Å channel pair exhibits both
the longest time lag and the lowest cross correlation. It is sig-
nificant that the numerical values of both the peak cross cor-
relations and associated time lags are generally similar in the
model and diffuse pixel observations. For example, VK2012
found that most pixels exhibited a time lag between 211–193 Å
of less than ∼600 s and cross correlation values of around 0.90.
Detailed differences contain useful physical information. Al-
though each nanoflare produces only a small change in inten-
sity, each one follows the same hot-to-cool progression, so the
composite intensity time series are still highly correlated at their
respective cooling-time offsets. In fact, in the absence of noise,
the amplitude of the intensity variations does not affect the cross
correlation value, provided that the variations all follow the same
hot-to-cool progression.

This model, though simple, demonstrates two important con-
clusions. First, light curves that are observed to be approxi-
mately steady are not necessarily produced by steady plasma.
Though steadily heated flux tubes undergoing no appreciable
evolution (on these sorts of time scales) is certainly a plausible
explanation for an observation of a steady light curve, impul-
sive nanoflare heating is also a plausible explanation, provided
there are many out-of-phase flux tubes along the LOS. Second,
flux tubes with nanoflares that are completely stochastic and
incoherent (i.e., never acting in a nanoflare storm to create a
“loop”) and are still detectable with the time-lag analysis of
VK2012.

4. STEADY HEATING AND NOISE

Some researchers have suggested that the diffuse emission
in the cores of ARs is nearly constant as a result of effectively
steady heating (Warren et al. 2010, 2011, 2012; Winebarger et al.
2011; though see Tripathi et al. 2011; Schmelz & Pathak 2012;
Bradshaw et al. 2012). Next we consider the case where 100% of
the flux tubes along a LOS are steadily heated, producing steady
emission. In this example we chose a representative pixel in the
core of AR 11082 and use its observed count rates as the level
of steady emission: 49 counts s−1 in 131 Å, 950 counts s−1

in 171 Å, 2481 counts s−1 in 193 Å, 1000 counts s−1 in 211 Å,
136 counts s−1 in 335 Å, and 12 counts s−1 in 94 Å. The resulting
light curves are shown in gray in Figure 3 and are, by definition,
perfectly steady. We show the expected light curves when photon
noise is added, assuming Poisson counting statistics, using the
same colors as in Figure 1.

Figure 4 shows the cross correlation value computed between
the same selected pairs of light curves in the same colors
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Figure 3. Light curves for steady emission in the different AIA channels shown
as gray horizontal lines and with the addition of photon noise (same colors as
in Figure 1): the light curves expected resulting from steady heating.
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pairs of steady heating light curves shown in Figure 3. The curves are mostly
hidden behind the green (211–193 Å) curve. Time lags (indicated with dots) are
random and occur at an extremely low cross correlation value.

as shown in Figure 2. These cross correlation curves are
fundamentally different from those of the observations (Figure 4
in VK2012) and those from the impulsive model (Figure 2).
The cross correlation value randomly fluctuates, and is almost
zero everywhere. None of the light curves are correlated at any
temporal offset. This result is expected since the variability is
due entirely to noise. For this particular example, the peak cross
correlation value identified as the “time lag” happens to be
−3049 s for 211–193 Å, with a cross correlation value of 0.029,
however a new generation of noise would equally likely result
in any of the other tested time lags, also at a very low cross
correlation value. In fact, this result is independent of both the
absolute noise level and the relative signal-to-noise level.

The other time-lag calculations show equally unphysical
results at very low cross correlation values: we compute a
time lag of 774 s for 335–211 Å with a cross correlation value
of 0.026; 200 s and a cross correlation value of 0.024 for
335–193 Å; −4688 s and a cross correlation value of 0.024
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events, all of the time lag maps are dominated exclusively by
post-nanoflare cooling (see also the left-hand panel of Figures 6
and 7, which also exhibit exclusively post-nanoflare cooling).
This is as expected, since the radiative signature from cooling
magnetic strands dominates the light curves (Bradshaw &
Klimchuk 2011) with little contribution from heating strands
because this phase is: (a) short-lived and (b) the density is low.
The cooling phase is well underway as the strands fill and
brighten. Cooling remains the dominant feature for the time lag
maps corresponding to the intermediate-frequency and high-
frequency nanoflare experiments too, though more structure
begins to emerge due to the re-energization of the plasma on
the magnetic strands, the effects of which we will discuss
throughout the remainder of this section.

Overall, the distribution of cooling times throughout the
model active region is consistent with the majority of the
observed time lags presented by Viall & Klimchuk (2012)
(from NOAA AR 11082, observed on 2010 June 19) for all
channel pairs, especially those computed from the two-hour

light curves (maximum timescales ∼1 hr). For example, the
time lags between the 335 and 211Åchannel pairs are shorter
than between the 335 and 171Åpairs, as expected since
171Åis sensitive to cooler plasma than 211Å. This can also
be seen in the corresponding histograms (Figure 8) where the
distribution of time lags broadens with increasing channel
temperature separation (335–211, 335–193, and 335–171Å).
Particular patterns seen in the observational data are also

reproduced by the model. For example, the shorter flux tubes in
the core of the model active region generally cool more quickly
than the longer loops at the periphery. This is most easily seen
in the 335–171Åpair, though it is evident in all of the time lag
maps. This can be compared with Figure7 of Viall &
Klimchuk (2012), where it is clear that the short loops in the
active region core have time lags corresponding to cooling
times of �1800 s between channel pairs, whereas the long
loops toward the edges have time lags approaching one hour.
Note that the color/timescales are the same as the two-hour
maps of Viall & Klimchuk (2012) and so the model active

Figure 5. Time lag maps for the 335–211 and the 335–171 Åpairs.
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Figure 1. SDO/AIA light curves predicted with EBTEL nanoflare simulations
of diffuse AR core emission. 94 Å shown in red, 335 Å in green, 211 Å in
blue, 193 Å in orange, 171 Å in cyan, and 131 Å in black; each is normalized
to its maximum and offset by −0.1. Light curves are remarkably steady even
though all flux tubes are heated impulsively.

as follows. First, we built a library of 1000 impulsively heated
EBTEL simulations. For each simulation we construct light
curves in each of the six AIA channels. We chose strand lengths
corresponding to a range of field line lengths expected for an
LOS through the core of AR 11082 (3–10.6 × 109 cm half-
lengths). The magnitude of the nanoflare (total energy per unit
volume) is inversely dependent on the flux tube length squared
(Mandrini et al. 2000). For a given loop length, we simulate 10
possible nanoflare magnitudes, equal to 1–5 times the smallest
magnitude, and five possible nanoflare durations between 50
and 250 s.

We assume that the nanoflares are stochastic, which we
implement in the model by choosing a number of simulations
from the library to begin every 1 s, the time step of the EBTEL
runs. Both the number and choice of simulation are chosen
randomly. At every time step we add together the light curves
from all of the individual nanoflares to produce a composite
light curve in each of the six SDO/AIA channels, plotted in
Figure 1. We adjust the average rate of nanoflare occurrence so
that the average heating rate along the LOS is consistent with
the typical observed radiative loss rate of ARs. In the instance
shown in Figure 1 the average rate of LOS nanoflare occurrence
was 20 nanoflares per second. Since the process is random,
sometimes many more nanoflares than this occur, sometimes
far fewer.

We plot the predicted light curves for the 94 Å (red), 335 Å
(green), 211 Å (blue), 193 Å (orange), 171 Å (cyan) and 131 Å
(black) channels in Figure 1, each normalized to their own
maximum and offset by −0.1 to avoid overlap. We use the
updated (keyword/chiantifix) response functions to compute
the light curves in this figure; the conclusion that we draw in
this paper are not dependent on the choice of response functions.
In this case the light curves are 6 hr in length, but it is trivial
to make them shorter or longer. With the parameters we have
chosen here, approximately 70,000 flux tubes are contributing
a non-zero emission to the pixel at any given time. Since there
are so many flux tubes contributing emission to the pixel, the
relative intensity change due to a single flux tube or nanoflare
is small.
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Figure 2. Cross correlation as a function of temporal offset for pairs of the
modeled diffuse emission light curves shown in Figure 1. Time lags occur
where the cross correlation peaks, indicated with dots. Green represents the
211–193 Å pair, blue the 335–211 Å pair, orange the 335–193 Å pair, cyan the
335–171 Å pair, and red the 335–94 Å pair.

The final time series has far smaller intensity variations than
a background-subtracted loop light curve does. The difference
between the maximum and minimum intensities, ∆I, is generally
very small in each channel. It is the greatest in the 94 Å light
curve, reaching 9% of the maximum. It is the smallest in the
335 Å light curve, where ∆I is a mere 5% of the maximum (the
335 Å light curve has the least variation of the six channels
primarily due to the broader nature of that channel’s response
function). This level of predicted intensity fluctuation is even
smaller than the level often observed in hot AR cores. For
example, Warren et al. (2010) found that the intensity fluctuation
was ∼15% in single pixels imaging an AR core, which they
provide as evidence of steady heating. In an actual observation
this situation may be seemingly indistinguishable from steady
emission from steady heating wherein the fluctuations are due
to photon counting noise. However, the time-lag test used in
VK2012 can disambiguate.

In Figure 2, we show the results of this time-lag test per-
formed on our model light curves. We plot the cross corre-
lation value as a function of temporal offset for five channel
pairs: 211–193 Å (green), 335–211 Å (blue), 335–193 Å
(orange), 335–171 Å (cyan) and 94–335 Å (red). Despite the
relatively small variations that each strand contributes to the
total light curves, the cross correlations exhibit the cooling pat-
terns observed by VK2012. Namely, 211–193 Å, 335–211 Å,
335–193 Å, and 335–171 Å all reach a peak cross correlation
value at a positive temporal offset. 211–193 Å has the shortest
time lag, while 335–171 Å exhibits the longest time lag, consis-
tent with plasma cooling fully from high to low temperatures.
The hotter component dominates the 94 Å light curve in this
particular case, so the positive 94–335 Å time-lag peak is large
and evidence of a secondary negative peak due to the cooler
component of 94 Å is not present. This is consistent with the
positive 94–335 Å time lag measured in the core of VK2012.
As shown in VK2011, whether the hot component dominates
the 94 Å light curves is dependent on the nanoflare strength.
Based on this we conclude that the modeled positive 94–335 Å
time lag is a result of the strong nanoflares in our composite
models.
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Table 1
Time Lags and Cross Correlation Values

Channel Pair Time Lag Cross Correlation Value
(seconds)

211–193 Å 146 0.96
335–211 Å 488 0.83
335–193 Å 676 0.72
94–335 Å 740 0.76
335–171 Å 900 0.64

Notes. Summary of time lags (in seconds) and cross correlation
values calculated between the pairs of modeled light curves. Corre-
sponds to cross correlations shown in Figure 2.

The time lags and associated cross correlation values that
we compute are summarized in Table 1. The channel pair
with the shortest time lag and the strongest cross correlation
is 211–193 Å while the 335–171 Å channel pair exhibits both
the longest time lag and the lowest cross correlation. It is sig-
nificant that the numerical values of both the peak cross cor-
relations and associated time lags are generally similar in the
model and diffuse pixel observations. For example, VK2012
found that most pixels exhibited a time lag between 211–193 Å
of less than ∼600 s and cross correlation values of around 0.90.
Detailed differences contain useful physical information. Al-
though each nanoflare produces only a small change in inten-
sity, each one follows the same hot-to-cool progression, so the
composite intensity time series are still highly correlated at their
respective cooling-time offsets. In fact, in the absence of noise,
the amplitude of the intensity variations does not affect the cross
correlation value, provided that the variations all follow the same
hot-to-cool progression.

This model, though simple, demonstrates two important con-
clusions. First, light curves that are observed to be approxi-
mately steady are not necessarily produced by steady plasma.
Though steadily heated flux tubes undergoing no appreciable
evolution (on these sorts of time scales) is certainly a plausible
explanation for an observation of a steady light curve, impul-
sive nanoflare heating is also a plausible explanation, provided
there are many out-of-phase flux tubes along the LOS. Second,
flux tubes with nanoflares that are completely stochastic and
incoherent (i.e., never acting in a nanoflare storm to create a
“loop”) and are still detectable with the time-lag analysis of
VK2012.

4. STEADY HEATING AND NOISE

Some researchers have suggested that the diffuse emission
in the cores of ARs is nearly constant as a result of effectively
steady heating (Warren et al. 2010, 2011, 2012; Winebarger et al.
2011; though see Tripathi et al. 2011; Schmelz & Pathak 2012;
Bradshaw et al. 2012). Next we consider the case where 100% of
the flux tubes along a LOS are steadily heated, producing steady
emission. In this example we chose a representative pixel in the
core of AR 11082 and use its observed count rates as the level
of steady emission: 49 counts s−1 in 131 Å, 950 counts s−1

in 171 Å, 2481 counts s−1 in 193 Å, 1000 counts s−1 in 211 Å,
136 counts s−1 in 335 Å, and 12 counts s−1 in 94 Å. The resulting
light curves are shown in gray in Figure 3 and are, by definition,
perfectly steady. We show the expected light curves when photon
noise is added, assuming Poisson counting statistics, using the
same colors as in Figure 1.

Figure 4 shows the cross correlation value computed between
the same selected pairs of light curves in the same colors
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Figure 3. Light curves for steady emission in the different AIA channels shown
as gray horizontal lines and with the addition of photon noise (same colors as
in Figure 1): the light curves expected resulting from steady heating.
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Figure 4. Cross correlation as a function of temporal offset computed between
pairs of steady heating light curves shown in Figure 3. The curves are mostly
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as shown in Figure 2. These cross correlation curves are
fundamentally different from those of the observations (Figure 4
in VK2012) and those from the impulsive model (Figure 2).
The cross correlation value randomly fluctuates, and is almost
zero everywhere. None of the light curves are correlated at any
temporal offset. This result is expected since the variability is
due entirely to noise. For this particular example, the peak cross
correlation value identified as the “time lag” happens to be
−3049 s for 211–193 Å, with a cross correlation value of 0.029,
however a new generation of noise would equally likely result
in any of the other tested time lags, also at a very low cross
correlation value. In fact, this result is independent of both the
absolute noise level and the relative signal-to-noise level.

The other time-lag calculations show equally unphysical
results at very low cross correlation values: we compute a
time lag of 774 s for 335–211 Å with a cross correlation value
of 0.026; 200 s and a cross correlation value of 0.024 for
335–193 Å; −4688 s and a cross correlation value of 0.024
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events, all of the time lag maps are dominated exclusively by
post-nanoflare cooling (see also the left-hand panel of Figures 6
and 7, which also exhibit exclusively post-nanoflare cooling).
This is as expected, since the radiative signature from cooling
magnetic strands dominates the light curves (Bradshaw &
Klimchuk 2011) with little contribution from heating strands
because this phase is: (a) short-lived and (b) the density is low.
The cooling phase is well underway as the strands fill and
brighten. Cooling remains the dominant feature for the time lag
maps corresponding to the intermediate-frequency and high-
frequency nanoflare experiments too, though more structure
begins to emerge due to the re-energization of the plasma on
the magnetic strands, the effects of which we will discuss
throughout the remainder of this section.

Overall, the distribution of cooling times throughout the
model active region is consistent with the majority of the
observed time lags presented by Viall & Klimchuk (2012)
(from NOAA AR 11082, observed on 2010 June 19) for all
channel pairs, especially those computed from the two-hour

light curves (maximum timescales ∼1 hr). For example, the
time lags between the 335 and 211Åchannel pairs are shorter
than between the 335 and 171Åpairs, as expected since
171Åis sensitive to cooler plasma than 211Å. This can also
be seen in the corresponding histograms (Figure 8) where the
distribution of time lags broadens with increasing channel
temperature separation (335–211, 335–193, and 335–171Å).
Particular patterns seen in the observational data are also

reproduced by the model. For example, the shorter flux tubes in
the core of the model active region generally cool more quickly
than the longer loops at the periphery. This is most easily seen
in the 335–171Åpair, though it is evident in all of the time lag
maps. This can be compared with Figure7 of Viall &
Klimchuk (2012), where it is clear that the short loops in the
active region core have time lags corresponding to cooling
times of �1800 s between channel pairs, whereas the long
loops toward the edges have time lags approaching one hour.
Note that the color/timescales are the same as the two-hour
maps of Viall & Klimchuk (2012) and so the model active

Figure 5. Time lag maps for the 335–211 and the 335–171 Åpairs.
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0.79, and 2.5 MK). The AIA 193Å channel has a relatively
narrow temperature response that peaks at log T=6.2 (or
1.6 MK). Because the AIA 335Å channel has temperature
response at temperatures both higher and lower than the 193Å
channel, it provides an interesting case study to understand the
information in the time lag maps.

The first three example points, labeled A, B, and C, are
shown in the AIA 335 and 193Å images in Figure 2 and the
AIA 335–193Å time lag map in Figure 3. Point A is closest to
the center of the active region; the time lag associated with it is
3360 s, which is in a similar range to the surrounding data
points and also in the typical range of values found by Viall &
Klimchuk (2012). The time lag is positive, indicating the 335Å
channel intensity peaks before the 193Å intensity. Point B is
selected because it has a negative time lag of −3990 s.

Although there are several locations of negative time lags in
this pair of channels, both in the simulated results and in Viall
& Klimchuk (2012), they are more difficult to understand given
that AIA 335Å has a higher temperature response than AIA
193Å. Finally, we select Point C because the peak in the cross-
correlation function is 0.24. The time lag in this pixel is also
negative (−1890 s).
The lightcurves associated with these three points in the AIA

335 (solid) and 193Å (dashed) channels are shown in the top
panels of Figure 5. The lightcurves for Point A appear to be
relatively simple to understand. It appears that the lightcurve is
dominated by a single loop that completes two full cycles
during the 12 hr of simulation time considered here. The
brightenings in the AIA 335Å lightcurve precede brightenings
in the AIA 193Å lightcurve; hence we would conclude this

Figure 3. Maps of the time lag associated with the peak in the cross-correlation function for pairs of AIA channels. The lightcurves were over 12 hr of simulated data.
Although we allow for longer time lags than Viall & Klimchuk (2012), we use the same color scaling as Viall & Klimchuk (2012) for ease of comparison.
Additionally the color of the image has been set to white if either the peak of the cross-correlation function is less than 0.5 or the peak intensity in the lightcurve of
either channel is less than 1% of the maximum intensity in that channel.
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studied, with no background emission. The simulation also
assumes perfectly constant heating, so it cannot reproduce the
small-scale temporal variations.

The behavior of the light curves during the heating phase
(i.e., the nearly flat intensity evolution) that is seen in the
simulation is also present in the observations. We can also see
that, as in the simulation, the shape of the 335Å light curve and
those of the other bands are different (see at a time around 40 hr
in the observations of Figure 12).

The evolution of the peak temperature of the DEM and of the
total emission measure in the observations seem also to be
consistent with the behavior seen in our simulation. However,
the total emission measure evolution is noisy, probably due to
the poor constraint on the DEM slope (see the discussion in
Froment et al. 2015).
In Table 1, we present a comparison between the time lags

measured for the observed loops (Froment et al. 2015) and for
the simulated one. With the same period of intensity pulsations
(9 hr), the time lags between the AIA channels for the observed
and the simulated loop are quite similar, given the inherent
limitations of this type of analysis, as mentioned above for the
differences between the cross-correlation method and the
manual determination of the time lags between peaks. More-
over, as highlighted in Froment et al. (2015, see Table1), the
effects of the background and foreground emission could
change the channel ordering. We also need to bear in mind that
we are comparing our observational results with the simulated

Figure 9. Synthetic intensity time series in the six coronal channels of AIA in the geometry of Figure 1. For each channel, the intensity is averaged around the loop
apex, i.e., between the two dotted bars indicated in the loop profiles of Figure 4. We zoom on two cycles present in the simulation, i.e., between 8 and 30 hr. In dotted
lines, we overplot the evolution of the temperature Te (in red) and of the density ne (in blue), averaged around the loop apex. The intensities, Te and ne are all
normalized to their standard deviation (we substract the mean curve and divide by their standard deviation). The solid bar and the dashed bar indicate respectively t1
and t2, the instants for which we plot the hot and the cool profiles in Figures 4 and 8.

Figure 10. Time lag analysis for the loop simulated in Section 2. The cross-
correlation values are given for six pairs of synthetic AIA intensities, averaged
over loop apex: 94–335 (red), 335–211 (blue), 211–193 (green), 335–193
(orange), 335–171 (cyan), and 171–131(black). We explored time shifts from
−300 to 300 minutes. The time lag for each pair of channels is indicated by a
colored dot.

Table 1
Comparison of Results from the 1D Loop Simulation with the Observations

from Froment et al. (2015)

Time lag (from Cross Correla-
tions, in minutes)

1D Hydrodynamic
Simulation Observations

Between Te and ne 111 119

Between the AIA
channels

335–211 109 113

211–193 37 26
335–193 127 145
94–335 −95 −115
335–171 122 142
171–131 −11 −1
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Figure 10. EBTEL 0D hydrodynamic simulations of a 100 Mm loop, 500 km radius. In the left panel case, the heating frequency is comparable to the frequency of
events found in the AR observations. In the right panel, the frequency is three times larger. Note that the resulting Fe xviii light curves are comparable in terms of
smoothness and number of events.
(A color version of this figure is available in the online journal.)

As a first test, we computed the temperature and density
evolution of a typical loop structure that is heated repeatedly
at a frequency of about 18 events per 6 hr stretch, i.e., 3
events per hour. We chose a square heating function with
random amplitudes obtained from a power-law distribution
N (E)dE = Eα , α = −2, and a 200 s event duration. The energy
range was set to reach the typical 4 × 106 K temperatures found
at the core of ARs. The times were randomly calculated from
a normal distribution of time intervals centered at 1200 s and a
width of 1000 s. The loop length was set at 100 Mm, measured
from the footpoint separation of the Fe xviii loops and assuming
semicircular shape. To render the Fe xviii intensities from the
electron density and temperature, we assumed a loop radius of
500 km (Brooks et al. 2012).

The left panel of Figure 10 shows the time evolution of the
density, temperature, and predicted Fe xviii counts for a loop
heated at that frequency. That cadence of heat deposition is
sufficient to keep the loop at around 4 × 106 K, not allowing
it to cool, making the heating effectively steady despite its
impulsive nature. It is also interesting to note that the number
of events retrieved by the detection algorithm from the Fe xviii
light curve is inferior to the actual number of heating events
needed to produce it. In the simulated observations we see an
envelope of the emission that hides some of the events due to
the superposition of the Fe xviii responses to each of them, plus
the smearing due to the noise and the smoothing window of
the processing. This is demonstrated further when we run the
same simulation with three times the number of heating events
(right panel of Figure 10) and we obtain a similar number of
detections. We can safely conclude then that the frequency we
have measured in our AR data set is just a lower limit of the
actual heating frequency along the line of sight.

It is very unlikely, however, that there is only one loop
emitting along a given line of sight. The most likely scenario
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Figure 11. EBTEL simulation of a 100 Mm loop with low-frequency heating.
The bottom panel shows the Fe xviii and Fe xii light curves as the loop cools.
(A color version of this figure is available in the online journal.)

is that there are multiple loops. We have simulated such a
scenario considering the time loops that are heated impulsively
and at a low frequency, a frequency that allows them to cool
down to million-degree temperatures (see Figure 11). We have
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Figure 6. Fe xviii smoothed light curves for the four marked locations in NOAA 11459 in Figure 7. Shaded in gray are the events detected by the algorithm. The red
dotted line indicates the time corresponding to images shown in Figure 7.
(A color version of this figure is available in the online journal.)
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Figure 7. Spatial representation of the detection algorithm outputs in the first pass of NOAA 11459. Left: input intensities; middle: map of detections at a given instant;
right: map of the events’ phases, where time elapsed in event is normalized by duration.

(An animation and a color version of this figure are available in the online journal.)

6. EVENT DYNAMICS

The start, peak, and end times of every event, as well as the
intensity increase from start to peak in DN s−1, are saved for
statistical analysis. The number of events, multiple per light
curve with several thousand light curves per data set, allows us
to look into the statistics of the AR dynamics as observed in the
Fe xviii line.

As we are interested in the heating frequency at any location,
we first quantified the frequency of events per light curve,
namely, the number of events per hour at a single pixel location
and for all pixels in an AR. The left panel in Figure 8 shows the
histograms for all three AR data sets in their first pass on disk
and also in the two with a second pass. We also determined the
duration of all the events and the intensity increase associated
with each of them. These are shown in the middle and right
panels of the figure.

The first thing to notice is that all three ARs exhibit very
similar properties in the early stages of evolution, with nearly

identical event distributions. Those distributions change notice-
ably for the second pass on disk. The typical number of events
in the 6 hr time span is around 15–16. This represents about 2.5
events per hour, or an event every 1400 s. Sample light curves
1 and 2 in Figure 6, at the core, have 18 events each (1200 s).
The distributions show that small events are the most frequent,
as well as those that are short. Short and small events can be
due to noise fluctuations in the light curves. To investigate the
role that the detection of noise could play in our sample, we
constructed a simulated “noise-only” data set for each AIA ob-
servation, where the base image is the median intensity image
for the time series, and the fluctuations in time are random in-
tensity additions from a normal distribution centered at 0 and
with a standard deviation equal to the characteristic uncertainty
for that intensity. The relationship between different intensity
levels and noise was obtained from the errors, calculated in
turn from the standard deviation of the five 12 s cadence im-
ages averaged to make the 1 minute final cadence. We find that
estimates of the uncertainties provided by the standard AIA
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3. Quantitative Comparisons of Models and Observations

Modeling Nanoflares in AR 11726 7

Figure 3. (left) The evolution in time of the plasma temperature (black) and electron density (red) at the loop apex of the example
loop highlighted in yellow (Fig. 2) in response to randomly generated nanoflare heating. For this simulation the frequency distribution
parameters are ↵ = �2.5, � = 1.5, � = �1.5, and q0 = 5⇥10�4 erg cm�3 s�1. (right) The resulting DEM field, �, as a function of position
along the loop.

Figure 4. Comparisons of several line observed by EUNIS (top two rows) and EIS (bottom two rows) to synthetic images from the best
fit parameter set q0 = 1.0⇥ 10�3 erg cm�3 s�1, ↵ = �2.4, � = 1.5, and � = �1.0..

five temperature bins. The bottom right panel shows this
DEM integrated over its spatial extent. The DEM peaks
at a temperature of 3.3 MK and quickly falls o↵, with an
average slope of �9 in log-log space. The DEM at 10 MK
is nearly 5 orders of magnitude smaller than at the peak
at 3.3 MK. These values are comparable to those ob-
tained by Warren et al. (2012) who studied hot emission
in several active regions using the EIS instrument. By
directly imaging thermal soft X-ray bremsstrahlung from

AR 12234 during the FOXSI-2 sounding rocket flight
(Glesener et al. 2016), Ishikawa et al. (2017) found a
steeper slope of �12.
It is useful to compare our best fit parameters with pre-

dictions from coronal heating theories. Table 5 in Man-
drini et al. (2000) and extended in Table 1 of Lundquist
et al. (2008) provide concise summaries for how many of
these models scale with B, L, R, and v, where R is the
loop radius and v is the footpoint velocity. Our assump-

Allred et al. (2018) Tajfirouze et al. (2016)

agreement is remarkable, with the percent difference (∼7%)
being less than the average fluctuations of the 94Å light curve
(∼15%). The slightly higher emission observed in the 335Å
channel might be simply due to some diffuse emission along
the line of sight. Figure 8 shows the best matching model alone.
In this figure we go back to the original intensities with no
normalization. To compare the model results to the observa-
tions we have to make an assumption about the cross-section of
the strands. We find that we need a cross-section of 0.56 and
0.52 pixels in the 94Å and 335Å channels, respectively, to
match the best model to the observed light curves. Under the
assumption of 1000 equal and independent strands, this is
equivalent when each strand has a thickness of∼10 km. This
becomes a lower limit if the strands are not entirely
independent, i.e., if the same strand is heated more times
during our time lapse (see Section 3.1). We should also keep in
mind that we have a logarithmic spacing in our sampling of the
number of strands, and therefore this value of the thickness
should be taken with care.

5. DISCUSSION AND CONCLUSIONS

In this work we analyze the time evolution of the EUV
emission in the core of an active region, which shows evidence
for a very hot (T>5MK) plasma component (Reale
et al. 2011). This hot component might be a signature of the
occurrence of rapid but intense heating releases, which bring
the plasma to such high temperatures for short times. In that
active region we consider the light curves at the maximum time
resolution in three SDO/AIA channels picked up either in a
single pixel or in a row of pixels where the emission evolves
coherently.
We try to match the observed light curves with the emission

derived from specific loop modeling. The simultaneous
presence of very hot plasma and steady emission indicates
that we might have storms of events with a broad range of
energy distributions. In light of this evidence, our choice has
been to describe the evolution in a scenario of loops made by
bundles of independent strands each heated for a time shorter
than the typical plasma cooling times (e.g., Guarrasi

Figure 6. Black solid lines: light curves from realizations for each set of parameters (α, τ, and N) that best match the observed ones in the single pixel (red lines)
according to the PNN method. The light curves in both the 94Å (left column) and 335 Å (right) channels are shown. Comparison of observed (red lines) light curves
to the best model ones (black lines) found by the network for each set of parameters (α, τ, and N). For a better visual comparison, the intensities are normalized to the
average and each shifted by a different value, and the observed light curves have been smoothed with a boxcar of 8 points. The best absolute match is marked (thick
black lines).
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Modeling Emission from NOAA 1158
• Trace 5000 field lines from 

potential field extrapolation 


• Simulate T(t), n(t) of each field 
line using the two-fluid EBTEL 
model


• Discrete events on each 
strand with frequency, 
 
 
 

• Waiting time proportional to 
heating rate


• Constrain total flux over whole 
AR to be 107 erg cm-2 s-1

Warren et al. (2012), Barnes et al. (2016a)

ε =
⟨twait⟩
τcool

< 1, high frequency
∼ 1, intermediate frequency
> 1 low frequency



Modeling EM Slopes from NOAA 1158
• Synthesize emission from 6 

AIA EUV channels for all 
frequencies


• Compute EM(T) using 
method of Hannah and 
Kontar (2012)


• Bin temperature in range, 
 
with bin widths 

• Fit EM slope in each pixel 
over temperature range, 

5.5 ≤ log T ≤ 7.2

Δ log T = 0.1

8 × 105 K < T < Tpeak



Modeling Time Lags from NOAA 1158
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Observed Diagnostics from NOAA 1158



Observed Diagnostics from NOAA 1158



Observed Diagnostics from NOAA 1158

Given all of these diagnostics, with 
which heating frequency are the 
observations most consistent?



Comparing Models and Observations
• Question: With which heating 

model are the observations most 
consistent?

• Classification problem—decision tree
• 31 total “features” (EM slope, 15 time 

lags, 15 maximum cross-correlations
• 3 discrete classes: high, 

intermediate, low
• Model results = training data
• Observations = unlabeled data
• Combine multiple decision trees in a 

random forest

{a, τ94,335, τ94,171, ⋯, max 𝒞95,335, max 𝒞95,171, ⋯}
pi ≤ U

pj ≤ V
… …

…

Hastie et al. (2009), James et al. (2013)



Comparing Models and Observations

p 1

Test Error 0.3

% High 0.48

% Intermediate 0.37

% Low 0.15

EM slope only



Comparing Models and Observations

p 31

Test Error 0.03

% High 0.64

% Intermediate 0.33

% Low 0.03

EM Slope, Time Lag,
Maximum cross-correlation



• Constraints on heating properties with multiple diagnostics


• Quantitative comparisons between models and data


• Understand distribution of frequencies across active region


• How does the distribution of frequencies over multiple active regions?


• How does the distribution of frequencies vary with age?

Looking Forward



• Publications
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• Barnes, W. T., Bradshaw, S. J., Viall, N. M., 2019, “Understanding Heating in 
Active Region Cores through Machine Learning II. Observations”, in prep 


• Acknowledgment

• SOC

• LOC

• Steve Bradshaw

• Nicki Viall

https://arxiv.org/abs/1906.03350


Supplementary 
Slides



Reduced representation of data that preserves signatures of heating frequency

2. Diagnostics of Heating Frequency

Warren et al. (2012)

The Astrophysical Journal, 734:90 (12pp), 2011 June 20 Warren, Brooks, & Winebarger
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Figure 7. Emission measure distributions derived from the high- and low-
frequency heating simulations. The distribution for both the entire loop (top
panel) and loop apex (bottom panel) are shown. For comparison, our observed
emission measure distribution is also shown in the bottom panel. The arrows
indicate the differences between the observation and the low-frequency model
at log T = 6.0 and 6.9. The power-law indices (EM ∼ T b) are indicated for
several of the emission measure distributions.
(A color version of this figure is available in the online journal.)

observations, have no temporal resolution. XRT observes these
temperatures at high cadence, but has a very broad temperature
response. Since the cross-calibration of the AIA instrument is
just beginning at this point, we are interested only in some very
basic questions, such as what is the morphology of the emission
in this channel and how does it evolve with time?

To provide some context for interpreting the AIA 94 Å and
131 Å channels, we have used the simulations results for the
high- and low-frequency heating cases shown in Figures 5
and 6 to compute the expected count rates in these channels.
As one would expect, we find that the amount of high-
temperature emission observed in these channels is sensitive to
the heating timescale. For the low-frequency heating case, which
reaches temperatures close to 10 MK, observable emission
(∼50–100 DN s−1) is predicted for both channels. The high-
frequency case shows some signal in the 94 Å channel but
relatively little in 131 Å. These comparisons suggest that these
channels will provide important information on the heating
timescale. Quantitative comparisons, however, will require the
AIA calibration to be more fully understood. Also, at these
high temperatures the potential for departures from ionization
equilibrium are much greater.
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Figure 8. Response curves for AIA, EIS, and XRT illustrating the temperature
sensitivity of the various images and emission lines. The dotted vertical line
indicates the peak temperature in the emission measure distribution.
(A color version of this figure is available in the online journal.)

It is clear from the movie of the 94 Å channel, which is
available in the online version of the manuscript, that there
is significant emission from Fe xviii in the core of the active
region. This channel, however, also contains contributions from
lines formed at lower temperatures. Comparisons with the 171 Å
channel allow us to identify the high-temperature Fe xviii loops.
Such comparisons suggest that the bulk of the Fe xviii emission
lies at the inner edge of the moss on loops that connect directly
across the neutral line.

To address the question of temporal evolution we have
taken the co-aligned and de-rotated data cubes used to make
the movies and computed light curves for various points in
the active region. Light curves for three points are shown in
Figure 9. One of the points illustrates the evolution of a small
flare. Here the light curves show the progression from the
high-temperature flare emission of Fe xx–Fe xxiii, to the hot
Fe xviii and Fe xvi, to the relatively cool Fe ix. This qualitative
agreement between the observations and our expectations for a
flare light curve suggests that the emission lines contributing to
each channel are properly identified. Other small “microflaring”
events show a similar progression, except that the cooling to
the lowest temperatures is difficult to identify (middle panel).
Finally, the majority of the pixels in the core of the active region
do not show coherent behavior. In these pixels the intensities
measured in the 131 and 171 Å channels are well correlated,
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Warren et al. (2011)



3. Quantitative Comparisons of Models and Observations



3. Quantitative Comparisons of Models and Observations

predominantly coronal emission. Therefore, for L1, L2, and L3
we used DEMcor only.

We engaged in a systematic exploration of the nanoflare
parameter space for each active region. Previous active region
observations with EUV and SXR instruments are consistent
with nanoflare delay times that range from hundreds to
thousands of seconds (Cargill 2014). In the case of reconnec-
tion-related nanoflares, an event duration can be as short as the
time that a reconnecting field line is in contact with a standing
slow shock in the Petschek model, which is of the order of
seconds (Klimchuk 2006). It could also be significantly longer
(up to hundreds of seconds) if, for example, multiple
reconnection events cluster together in space and time
(Klimchuk 2015). The heating amplitude is not well-con-
strained theoretically, so we explored a wide range of values
starting from a lower limit approximately two orders of
magnitude above the background heating. The full range of
physical parameters that we chose to explore is given in
Table 2. For every active region and instrument response, we
created a 4D data cube with logarithmically spaced values of
the nanoflare parameters H0, τ, and tN corresponding to the first
three dimensions. The fourth dimension contained the model
X-ray spectra from the EBTEL simulations corresponding to
each set of parameter values. In order to reduce computational
overhead we generated count spectra for an 11×11×11
array of H0, τ, and tN, and then performed a 3D interpolation to
obtain count spectra over a 101×101×101 array with the
same minimum and maximum parameter values.

We subsequently used the following procedure to generate
3D arrays containing the total likelihood for each active region
and instrument response. The total likelihood is simply the
product of individual likelihoods for a particular pair of
modeled and observed count spectra (Bevington & Robin-
son 2003). For these spectra the individual likelihoods are
given by Poisson probabilities:
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Here, μi is the number of counts in the ith energy bin predicted
by a particular nanoflare model, and xi is the actual number of
counts detected in that energy bin. Because both NuSTAR and
FOXSI-2 count individual photons, we are free to choose our
energy bins. The energy ranges we chose for these likelihood
calculations were 2.5–5keV for NuSTAR and 5–10keV for
FOXSI-2, with bin widths of 0.2 and 1.0 keV, respectively. We
chose to use the likelihood statistic instead of chi-square

Figure 5. Parameter space results using combined data from four of the FOXSI-2 Si detectors (Det 0, Det 1, Det 5, and Det 6). (Left) 2D log likelihood intensity maps
for each combination of H0, τ, and tN. (Right) Intensity maps of the optimized third parameter corresponding to each 2D likelihood plot. Energy flux constraints
(Equation (4)) and EUV/SXR limits from AIA and XRT have been applied to the full parameter space. Both the likelihood and parameter maps were smoothed
for display purposes using the procedure described in the text. Solid lines in the left panels show 90% CIs, and dotted lines show 99% CIs for the case of three
relevant parameters.

Table 2
Range of Physical Parameters for Simulated Nanoflare Sequences

Physical Parameter Range of Tested Values

H0 0.005–25 erg cm−3 s−1

τ 5–500 s

tN 500–10,000 s

6
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Figure 8. Parameter space results for two NuSTAR-observed active regions (D1 and L1) using combined data from both telescopes (FPMA and FPMB). (Left) 2D log
likelihood intensity maps for each combination of H0, τ, and tN. (Right) Intensity maps of the optimized third parameter corresponding to each 2D likelihood plot.
Energy flux constraints (Equation (4)) and EUV/SXR limits from AIA and XRT have been applied to the full parameter space. The likelihood maps were smoothed
for display purposes using a Gaussian kernel of width σ=1 pixel. Solid lines in the left panels show 90% CIs and dotted lines show 99% CIs for the case of three
relevant parameters.
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Marsh et al. (2018)

• Single loop modeled with EBTEL
• Varied duration, magnitude, heating rate
• Computed likelihood between modeled and 

observed NuSTAR and FOXSI-2 HXR spectra 
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Computing Intensities

Mason and Monsignori Fossi (1994), Bradshaw and Raymond (2013), Del Zanna and Mason (2018)

Pc(s, t) = ∑
{ij}

PijRc(λij)

Element # of Ions # of Transitions
O 8 11892

Mg 11 31965
Si 13 30047
S 16 33091

Ca 17 42823
Fe 25 553541
Ni 19 83517

Pij =
nh

ne
Ab(X)fX,k(Te)Nj(ne, Te)AijΔEijne

Instrument
Boerner et al. (2012)

Bradshaw and Klimchuk (2011)

Nonequilibrium 
Ionization
Bradshaw (2009)

Macneice et al. (1984)

CHIANTI
Dere et al. (1997)

Young et al. (2016)

EBTEL Model
Klimchuk et al. (2008)

Cargill et al. (2012a,b)

Barnes et al. (2016a)



Modeling Emission from NOAA 1158



Effective AIA Response Functions



Observed Intensities



Random Forest—Data Preparation
1. Flatten all images (all frequencies) into “data” and “feature” matrices

2. Split model data (Xmodel) into training (2/3) and test set (1/3)

3. Train random forest on training set

4. Evaluate trained model performance on “unseen” test data 

5. Classify observed pixels using trained model (and map back to coordinates)

frequency labels

Xmodel =

a0 τ00 … τ0N 𝒞00 … 𝒞0N

a1 τ10 … τ1N 𝒞10 … 𝒞1N
⋮ ⋱ ⋮

aM τM0 … τMN 𝒞M0 … 𝒞MN

# of channel pairs (x2) + 1

Ymodel =

f0
f1
f2
⋮
fM

Yobserved = [?]

Total # of pixels

Xobserved =

a0 τ00 … τ0N 𝒞00 … 𝒞0N

a1 τ10 … τ1N 𝒞10 … 𝒞1N
⋮ ⋱ ⋮

a′�M τM′�0 … τM′ �N 𝒞M′�0 … 𝒞M′�N



Random Forests

• Question: With which heating 
model are the observations most 
consistent?

• Single decision tree = “weak learner”
• Combine multiple decision trees in a 

random forest
• Robust, efficient, easy to train
• Train on subsets of data, split on 

subsets of total features
• 500 total trees, maximum depth of 30

{⌊ p⌋}

{⌊ p⌋}

{⌊ p⌋}

{⌊ p⌋}

{⌊ p⌋}
{⌊ p⌋}

{⌊ p⌋}

Breiman (2001), Hastie et al. (2009), Pedregosa et al. (2011)
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Feature Importance

Hastie et al. (2009)

Gm = ∑
k

̂pmk(1 − ̂pmk)

ΔGm =
Mm

M (Gm −
Mm,R

Mm
Gm,R −

Mm,L

Mm
Gm,L)

Rank Name

1 a

2

3

4

𝒞211,193

𝒞193,171

𝒞211,171

Gini Index Reduction in 
Gini impuritŷpmk =

1
Mm ∑

xi∈Rm

I(yi = k)


