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The somewhat recent nodal market structure in Texas impacts wholesale
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comparative insights on consumer responses to both these prices have not
received attention. This paper attempts to fill this void by developing a
system-wide demand response model to better understand price elasticities
under DAM and RTM pricing. These insights may also assist grid opera-
tors develop improved short-term forecasts of electricity demand. Using a
large dataset from the Electric Reliability Council of Texas and a hierar-
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RTM pricing shapes demand for electricity, and the related consequences
for maintaining a reliable electricity market.
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1 Introduction

Research Motivation. Today’s competitive wholesale markets for electricity
tend to operate two formal markets for energy: a day-ahead market (DAM)
and a real-time market (RTM); see Stoft (2002). Both DAM and RTM mar-
kets are now operational in the Northeast U.S.; New York; California; the
Midwest U.S.; the Scandinavian nations; Ontario; and Texas; see Sioshansi
(2013). A similar market structure will soon be implemented in Mexico.
DAM lets market participants commit to buy or sell wholesale electricity
one day before the operating day, to help avoid price volatility (Zarnikau
et al. (2014b)). The RTM energy market lets market participants buy and
sell wholesale electricity during the course of the operating day. Some notice
period would normally be required to enable response to changing prices by
both retail consumers exposed to wholesale prices and load-serving entities
operating demand response programs. This would suggest that response
to DAM prices may be more practical, and thus DAM prices might have a
greater impact on demand. Yet, RTM prices tend to be much more volatile
and tend to reach higher price levels. The higher levels of RTM price spikes
could elicit greater attention from consumers and load-serving entities. In
one sense, RT'M prices are the result of what could be called “forecast error”
from a DAM pricing model. The latter are spot prices set a day in advance,
predicated on anticipated demand and exogenous conditions such as weather
forecasts. If for some reason (like a poor weather forecast) there is a surge
in demand, RTM prices would likely increase. This aspect of RT'M pricing

could affect how DAM prices are set in the future. On the other hand,



we would not expect DAM prices to have a similar impact on future RTM
prices.

Very few studies have sought to quantify the aggregate response of energy
consumers to changing prices in a restructured electricity market. Customer
response to DAM prices has been quantified for the electricity market in the
Netherlands (Lijesen (2007)) and upstate New York (Hopper et al. (2006)).
The price elasticity of demand to changes in 30-minute prices in the England
and Wales market has been studied by Patrick and Wolak (2001). In the
England and Wales market, energy prices are largely known by 4 pm on
the day prior to consumption, although some components of the price are
not known with certainty. Thus, the England and Wales market may not
be readily categorized as either a pure DAM or RTM market. Customer
response to RTM prices has been quantified for South Australia (Fan and
Hyndman (2011)), Ontario (Choi et al. (2011)), and Texas (Zarnikau and
Hallett (2008), Zarnikau et al. (2014a)).

Grid operators benefit from knowing which set of prices may be more
important to their short-term load forecasting efforts. Likewise, policymak-
ers benefit from knowing how changes in the rules which govern day-ahead
and real-time markets may affect energy demand. We are unaware of any
prior attempt to compare consumer response to DAM versus RTM prices in
regions where both types of markets are present.

The Electric Reliability Council of Texas (ERCOT) Market Place. In
ERCOT’s wholesale sector, there is competition among a large number of
generators, although one generator, Vistra Energy, holds a market share

of roughly 20%. Other leading suppliers of generation include NRG, CPS



Energy of San Antonio, and Calpine. In the areas opened to competition,
Reliant Energy (an affiliate of NRG), TXU Energy (affiliated with Vistra
Energy), and Direct Energy lead in market share, though many smaller
players are present. ERCOT’s competitive wholesale market has evolved
over time. with an important structural change occurring on December 1,
2010, with the introduction of a nodal market structure wherein ERCOT as-
sumed a central role in dispatching all resources using a security-constrained
economic dispatch (SCED) model. Nodal prices are used to determine the
compensation provided to generators, while a demand-weighted average of
the nodal prices within various zones is calculated to bill load-serving entities
for wholesale energy purchases (Zarnikau et al. (2014b)). The creation of a
formal DAM accompanied the nodal market’s introduction. The DAM is a
voluntary, financially-binding forward energy market, which matches willing
buyers and sellers, subject to various constraints. In the DAM, offers to sell
energy can take the form of either a three-part supply offer or an energy-only
offer. Offers and bids are location-specific. Hourly market-clearing DAM
prices result from a least-cost dispatch that co-optimizes energy generation
with ancillary services and certain congestion revenue rights. Deviations
from a transaction scheduled via the DAM are settled at the RTM prices,
which typically change every five minutes. By providing market partici-
pants with a means to make financially-binding forward purchases and sales
of power for delivery in real-time, the DAM enables market participants to
hedge energy and congestion costs on a day-ahead basis, mitigate the risk
of price volatility in real-time, and coordinate generation commitments.

On day t — 1, the DAM opens at 6 a.m., with a clearing process that



begins at 10 a.m. and ends around 6 p.m. As actual wind generation and
total system demand on day ¢ are unknown on day t — 1, the formation
of DAM prices depends on ERCOT’s day-ahead forecasts of wind genera-
tion, and hourly loads, along with other information pertaining to generator
operating plans and transmission system status. Based on the forecasted
information posted by ERCOT, a qualified scheduling entity (QSE) repre-
senting a resource or a load-serving entity may submit offers to sell energy
or bids to buy energy. At 10 a.m. on day t — 1, ERCOT starts the clearing
process, using a multi-hour mixed integer programming algorithm to max-
imize bid-based revenues minus the offer-based costs over day t, subject to
security and other constraints. By 1:30 p.m. on day ¢t — 1, ERCOT notifies
market participants of the cleared DAM transactions. Transmission security
analysis and reliability unit commitment (RUC) is then performed to ensure
sufficient generation and ancillary services are committed to reliably serve
the location-specific load forecasts. The RUC process generally completes
by 6:00 p.m. on day t — 1, allowing each QSE to adjust its trades, self-
schedules, and resource commitments until ERCOT’s real-time operation
begins on day t.

The hourly RTM energy price used in our analysis originates from ER-
COT’s 5-minute real-time energy prices based on ERCOT’s real-time oper-
ation. ERCOT uses SCED to simultaneously manage energy, system power
balance and network congestion, yielding 5-minute locational marginal prices
(LMPs) for each electrical bus within the market. The SCED process seeks
to maximize bid-based revenues minus offer-based costs, subject to power

balance and network constraints. The zonal settlement price for a load-



serving entity’s real-time energy purchase is a load-weighted average of all
5-minute LMPs in a load zone, converted to 15-minute values. For our anal-
ysis, we further convert these 15-minute values to hourly values to match
the frequency of the hourly DAM price data.

Research Issues € Questions. Researchers who analyze patterns in the
demand for energy in electricity markets and seek to estimate the price
elasticity of demand are often faced with a choice of which price series to use:
DAM or RTM prices. While these prices are correlated, there are occasions
in which a spike in prices in one market will not coincide with a spike in prices
in the other market. Further, prices during a spike could reach different
levels in the two markets. Is the response to DAM prices stronger than the
response to RTM prices? Or, do RTM prices have a greater influence on the
demand for electricity? If the demand side of markets responds to both, is
one more important than the other? Additionally, interested parties are keen
on forecasting day-ahead wholesale demand to better anticipate reactions to
price volatilities. Thus, in addition to estimation insights needed to answer
the above questions, there is also a need for improved short-term demand
forecasts. Thus, responses to DAM and RTM prices are important in terms
of their real-world relevance.

The analysis in this paper seeks to inform the above decisions.

Methodological Contribution & Findings. We explore this topic using
hourly data for the years 2011-2016 from the ERCOT market. Divided into
four major zones—North, Houston, South, West—ERCOT serves 85% of
the electrical needs of the largest electricity-consuming state in the U.S.;

it accounts for about 8% of the nation’s total electricity generation, and is



repeatedly cited as North America’s most successful attempt to introduce
competition in both generation and retail segments of the power industry
(Distributed Energy Financial Group, 2015).!

Methodological Contribution. A hierarchical, Bayesian population model is
used to jointly model both zonal and ERCOT-wide demand. This approach,
which to the best of our knowledge has not been used in studying demand for
electricity, obviates structural equation estimation by estimating interdepen-
dent demand-price probability distributions at each level of the hierarchical
model.

Findings. In all four zones and ERCOT as a whole, load demanded is price
inelastic to DAM and RTM pricing with DAM prices being slightly more
elastic. However, during periods of very high prices (above $2000 per MWh)
demand is elastic in North, Houston and South, but somewhat inelastic in
the West. DAM pricing spikes have a significantly larger impact on demand
than RTM pricing spikes in the three zones—demand reductions between 9
and 14% are seen under DAM pricing, whereas under RTM pricing these
reductions vary between 3 and 4%. Demand responses to volatilities in
RTM and DAM pricing are roughly the same. The response to transmis-
sion prices, as expected, are not statistically different under the two pricing
models. Likewise, weather impacts demand somewhat uniformly in all re-
gions under both pricing models. In the four zones, the Markovian property

of demand from one-day to the next is significant since current day’s load

1Strictly speaking, there are eight ERCOT zones, wherein South encompasses three
smaller sub-zones (Austin, LCRA, San Antonio) and North includes a tiny area (Rayburn).
From a modeling perspective, there is no loss in generality by focusing on the four major
zones that account for close to 85% of ERCOT’s load.



positively affects subsequent day’s demand. However, this effect is the same
under both pricing structures for ERCOT as a whole.

Paper Organization. Section 2 describes the data and variables used in
the study. The population hierarchical model that models all four regions
within ERCOT is detailed in Section 3. Section 4 provides both the estima-
tion and forecast results, followed by a discussion and directions for future

research in Section 5.

2 Data and variables

This section describes the data used in the analytic models, including geo-

graphical scope and sample period.

2.1 Geographical scope

The current ERCOT market with its four zones—North, Houston, South
and West—is the focus of the paper; see Figure 1 for a map of ERCOT. The
North and Houston zones account for about 37% and 27%, respectively, of
ERCOT market energy sales, while the South and West zones contribute
12% and 9%. Further, these four zones account for nearly all of the state’s
retail competition, and most of the competitive generation resides within
these zones. Thus, this study uses a very rich and large database to bet-
ter understand the differences between DAM and RTM prices on wholesale

demand.



Figure 1: Zonal Map of Electric Reliability Council of Texas (ERCOT)
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Notes: The four main regions in ERCOT are Houston, North, South and
West. South encompasses three smaller sub-zones (Austin, LCRA, San An-
tonio) and North includes a tiny area (Rayburn).



2.2 Sample period and variables

The sample period closely matches the initiation of nodal pricing and the
DAM on December 1, 2010. It begins on January 1, 2011, as price data re-
flecting the new markets and zones were unavailable for December 2010.
It ends on June 29, 2016. In this time frame, the data were analyzed
at the hourly load level; that is, for each hour in a 24-hour cycle, com-
plete data on all the variables used in the analysis were employed, lead-
ing to a very large dataset for each of the four zones. In addition to the
response variable—wholesale load demand data (measured in MWH)—in
each zone, a brief discussion of each of the independent variables now fol-
lows. These variables were selected based on careful data exploration via
summary plots/correlation tables, practical considerations of data size, mod-
eling aims, and computational complexities. Additionally, price formation
in the ERCOT market has been analyzed in a variety of antecedent studies
using many of the same data sources and variables employed in this study;
see, Woo et al. (2011); Woo et al. (2012); Zarnikau et al. (2016); Tsai and
Eryilmaz (2018); Zarnikau et al. (2019). Price formation in other wholesale
markets with similar variables has been examined by Park et al. (2006);
Redl et al. (2009); Woo et al. (2014a); Woo et al. (2014b); and Woo et al.
(2018).

DAM and RTM price effects. The zonal DAM price is the hourly settle-
ment price in each zone’s day-ahead market. The hourly zonal RTM price
is the load-weighted average of the RTM settlement prices within each zone.

Both prices are volatile, have large spikes and occasionally diverge. The
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Figure 2: DAM & RTM prices versus load: Houston and North zones
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RTM prices are at times negative, accompanied by DAM prices of below
$50/MWH.? Consider Figure 2. The four panels show the log-log plots of
demand versus DAM and RTM prices for Houston and North regions, along
with their correlations.? Price and demand are positively correlated, reflect-
ing the slope of the supply curve for electricity generation. However, there
are some key points to note. First, beyond a certain price point, the curve
is concave, suggesting demand is increasing at a decreasing rate. Second,
there are several anomalies in the data at various points where an inverse
relationship might hold. Third, the data suggest that price response is not
sensitive to the size of the operation. Energy consumers exposed to whole-
sale market prices start reducing their demand when prices reach $300 per
MWh, and as prices rise above that threshold there is additional demand
reduction. All these suggest that price by itself is not sufficient to capture
the dynamics of demand and price. Hence, we entertain the following three
additional price variables in the model.

Lagged price. This makes economic sense for DAM prices, as they are
known one-day in advance. Likewise, if RTM prices peak on a given day,
then it could lead to a reduction in demand the following day. We test this
in the analysis.

Price dummy for spike at $2000. ERCOT analysts have noted that

industrial customers tend to significantly scale back when prices exceed

2Texas electricity wholesale prices as a whole can be negative. If energy is generated
from a renewable energy source, the generator will receive a federal tax credit. Wind
generators offer electricity at a slightly negative price, as they receive a tax credit and
earn a margin on the sale if they are selected.

3Plots for South and West are omitted, as they are virtually identical to the ones in
Figure 2.
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$2000. Since we also include lagged demand as an independent variable
in the model, it would be prudent not to over fit by using too many dummy
variables. So, only one binary variable for extreme price spikes is used whose
lower threshold is $2000. Note, also, that this would affect transmission costs
discussed below. Thus, we hope to capture the downward push on demand
via this dummy variable.

Mowing average of RTM price. Two-hour moving average of RT'M prices
is used in the DAM model for reasons explained in the Introduction. In
the short-term, the rate of change due to this variable might be positive
or negative, depending on the zonal and system-wide increase in demand.
Some industrial customers may cut back production even when RTM prices
reach, say $300, whereas others might react only if prices spike to very high
levels.

Cooling degree hours (CDH). Since demand for electricity is most af-
fected by summer months in Texas, CDH captures the weather factor. It is
defined as the number of degrees in Fahrenheit by which the hourly average
indoor temperature is below or above 65 degrees. This variable is a forecast
obtained from local weather services and is expected to be positively related
to demand. DAM prices are set, based on such forecasts which would likely
influence demand.

Dummy variable for time-of-day. This binary variable measures the im-
pact of extra demand during the peak hours of 5 to 7 pm each day. Gen-
erally, this variable’s marginal effect would be positive, but depending on
the zonal temperatures (especially in the West and North) one can expect

instances where a negative effect might result. Another reason an inverse

13



relationship between demand and the time-of-day indicator variable might
hold stems from successful energy conservation programs during peak load
hours in certain zones.

Lagged load. Concurrent days of high demand are encapsulated via a
one-day lag; the marginal effect here is likely to be positive.

Transmission cost. This cost is typically a response of load serving enti-
ties and large industrial energy consumers, based on contributions to system
peak demand in four summer months (aka 4 Coincident Peaks, abbreviated
4CP). ERCOT’s staff analysis suggests demand could potentially fall by
1,000 MW during a 4CP period. In reality, since transmission cost is based
on the four highest demand readings, it is not a DAM or RTM phenomenon;
as such it cannot be calculated until the end of a summer. This makes it
difficult to know what 15-minute intervals to use in the calculation until
each month is complete. Typically, one would expect the slope coefficient
to be negative, as transmission prices are charged to large industrial energy
consumers and load serving entities during 4CPs. However, based on the
preceding description, there is considerable uncertainty in these cost data

and we can expect significant fluctuation in parameter estimates.*.

4Demand response to transmission costs can approach 1 GW in this system with a peak
demand of 71 GW, while response to energy market prices is estimated to be about half of
that: see, Analysis of load reductions associated with 4-CP transmission charges and price
responsive load/retail DR: Raish’s presentation to the ERCOT Demand Side Working
Group: available at: http://www.ercot.com/calendar/2017/3/24/115556-DSWG
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3 Models

A primary research focus of this paper is to answer the following: are there
meaningful differences in load consumption solely attributable to the in-
herent difference underlying RTM and DAM pricing structures? To better
answer this question, a population dynamic model for demand across the
four ERCOT zones is constructed. We see this as a new contribution to the
energy demand literature for the following reasons.

Under each of the two pricing structures, the interconnected nature of
the four ERCOT zones is accounted for by concurrently modeling the de-
mand for these zones via a population, hierarchical model; see, for instance,
Lindley and Smith (1972), Gelfand et al. (1990), and Koop et al. (2007).
Recall the zonal map of ERCOT shown in Figure 1. The entire region’s
demand is the population level of the Bayesian model’s hierarchy, and this
demand arises from a common population distribution for ERCOT. Now,
within this population, the demand for each region arises from its individ-
ual demand distribution; on the map, this would correspond to demand
distributions for each zone whose boundaries are shown in the figure. This
zone-by-zone demand variability is encapsulated via a second layer in our
hierarchical representation. Finally, within each zone, demand is modeled
as a function of regressors discussed in the data section. The rates of change
and intercepts in these zonal level models vary around the ERCOT-level
population parameters. This dynamic learning aspect is critical, for there is
no a priori reason to assume that these zonal rates and intercepts would be

the same. Importantly, the hierarchy also lets one model the zone-by-zone
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volatility in demand by assigning different probability representations for
the variances in the demand distributions.

As an example of the above process, under DAM the rate at which
changes in price impacts demand in Houston could be quite different than
the impact in the West. Likewise, the fluctuation (volatility) in demand in
Houston could be different from the variability in the West. One would also
expect to see some interdependency in these demands due to the intercon-
nected nature of ERCOT’s nodal market. Thus, the proposed hierarchical
model “borrows strength” from each zone to better understand the cumula-
tive effect on demand due to DAM price changes, and vice-versa, for ERCOT
as a whole.

The above modeling process is then applied to RTM pricing which would
elicit a different ERCOT-wide demand response to RTM price changes.
Thus, the population, hierarchical model structure enables us to understand
the differences in demand responses under DAM and RTM through a very
rich, interdependent modeling process.

Here is one of the key research questions posed earlier: is demand re-
sponse to DAM prices stronger than the response to RTM prices? An answer
to this is obtained by examining the ERCOT-level posterior distributions of
the demand rates under DAM and RTM. Additionally, one can go down a
layer in the hierarchy to the zone level to pinpoint differences in the demand
rates under the two pricing structures.

Remark 1. The mathematical development below highlights the crucial
interplay between demand and price. At the zonal level, demand is an ex-

plicit function of price. At the population level, once all the zonal prices are

16



known, the ERCOT level price distribution is updated by demands from all
the zones. In the subsequent Bayesian update, each of the four price dis-
tributions are implicit functions of ERCOT-level demand. This conditional
learning process is one of the strengths of our proposed model. As dis-
cussed in the final section, there is little or no empirical evidence to suggest
a simultaneous relationship between demand and price in this application.
Nonetheless, the population, Bayesian model accounts for such relationships
between demand and price via interconnected probability distributions on
all model parameters, bypassing the difficult issues inherent in estimating a
systems model.> Demand responses at the ERCOT level implicitly influence
price at the zonal level from the top level of the hierarchy to the bottom
levels; the latter, in turn, updates the ERCOT-level price parameters via the
probability structures shown in the conditional distributions below. Thus,
structural estimation is replaced via interrelated demand-price probability

distributions at each level of the layered model.

3.1 Population hierarchical model for demand

Let Y4, r=1,...,Rand t = 1,...,T denote the demand for region r at
time t on the natural log scale. Suppose there are P, regressors in each
region r. For each region, collect these independent variables in a T' X P,
matrix X, where X,; is a row vector of 1 x (P, —1). Let 3, be the P, x 1

vector of parameters, where the first element would be the intercept. Let

®See Lindley and Smith (1972) and Chapter 5 of Gelman et al. (2013) for additional
insights on such types of models.
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Y = (Y1,...,YR) where

Y1 L Xn

Y. 1 X1

Denoting the error term in each of the regressions by o2, collate these
errors in 02 = (0%,---,0%). We assume that the error term in each of the
R demand regression equations follows a Normal(0, 02) distribution. Based

on the above,

Yri|Bry 02, Xyt ~ Normal(X,43,, 02). (2)

The population dynamics across the R = 4 ERCOT zones is then mod-
eled by assuming that the intercepts and slopes in each of the r regressions

arise from a common population model:

Br ~ Normal(pu, %),

where p is a P, x 1 vector and ¥ is a P, x P, covariance matrix. These
population level parameters correspond to the entire ERCOT region. In
other words, each region’s demand model contributes to ERCOT’s network,
via interdependent demand models.

We complete the Bayesian framework by specifying the following prior
distributions for the parameters. These choices are recommended by Gelfand
et al. (1990) and Gelman et al. (2013). These prior distributions are useful

since they lead to a conditionally conjugate hierarchical model in the result-
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ing Gibbs sampler. Additionally, the prior settings for the hyper-parameters

lend themselves to encapsulate both vague or strong prior beliefs. We have:

o2|ap, b, ~ InverseGamma(a,,b,) (3)
p|lm,C  ~ Normal(m,C) (4)
Slp, S~ Wishart([pS] ™", p) (5)

where a, > 0,b, > 0, p > 0 are given constants, and C, S are positive definite
P, x P, matrices.
The posterior joint distribution for all the model parameters, by Bayes

Theorem, is now given by:

R
p(¥Y) oc | ][ p(YVoel Xrt, Bis o7 p(Br |11, =71 )p(0F |, by )

r=1

x p(plm, C)p(E~p, S), (6)

with ¥ = ({8}, 1, 371, {02}). Letting ¢ denote an element in ¥, the nota-
tion W_,, represents all parameters in W except .

The following complete posterior conditional distributions can then be
used to implement a Markov chain Monte Carlo (MCMC) algorithm—the
Gibbs sampler in this case—to obtain posterior inference (Gelman et al.

(2013)). Hence,

p(Br|¥_g,,Y;) ~ Normal(D,d,,D,), r=1,...,R, (7)
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where

D, = (XX/o?+57) ®

d = (X,Y,/o} +5 7). (9)

Note that each 8, can be sampled in turn from its corresponding com-
plete conditional distribution. These are the intercepts and slopes from the
four interdependent regression equations—one for each zone—in the hierar-
chy. The slopes represent the marginal effects of each of the independent
variables discussed earlier. Next, consider the population (or the top most)
level of the layered model that corresponds to ERCOT as a whole. The
conditional distributions of its parameters that represent each of the inde-

pendent variables is given by:

p(pu|¥_p,Y) ~ Normal(Dyd,,, Dy), (10)
where
D, = (R='4+C™) (11)
dy, = (RE7'B+mC™) (12)
_ 1 B
B = 4 Br- (13)
R

Finally, the zone-by-zone and ERCOT level differences in the volatility of

demand—the heterogeneity factor—are encapsulated via the following con-
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ditional distributions:

-1
p(0r Vs, Y;) ~ 1G (T/2 +ay, B(Yr — X)) (Yr — X Br) + bﬂ] 7
(14)
and

-1
S R+p|. (15)

R
p(E|¥_s,Y;) ~ Wishart [Z(ﬁr — 1) (Br — 1) + pS

r=1

The above modeling framework nets us two groups of models, labeled
Model-RTM and Model-DAM. The main differences between the two mod-
els are that the former contains RTM price as one of the regressors, while
the latter contains DAM prices. Also, a two-hour moving average of RTM
prices appear as a regressor in the DAM model; see discussion in the previ-
ous section for the rationale underlying this choice. All other independent
variables (described earlier) are the same in both models.

Following the suggestions in Gelfand et al. (1990) and Gelman et al.
(2013), to ensure diffuse prior beliefs in both models, we set a, = 0.00001,
b, = 0.00001, p = 100. In the RTM model, S = Ig and C = (0.0001)Ig,
where Ig denotes an 8 x 8 identity matrix. These choices render an ex-
tremely vague belief since the resulting prior variance selections are very
large. Intuitively, this is akin to centering a normal distribution around zero
with a very large variance, resulting in an almost flat normal curve. In the
DAM model, since we have one additional covariate, the dimensionality of
I increases by one.

One-day ahead predictions. Armed with the MCMC samples obtained
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upon executing the above Gibbs sampler, it is straightforward to obtain
samples from the following predictive distributions for each day. In our
case, we set aside the last day in the historical sample, June 30th, 2016
to compare the actual 24-hour demands on this day with the model-based
forecasts.

Consider the following MCMC-based estimate of the predictive distribu-
tion for each hour, Y,;, for zones r = 1,...,4 and hours [ = 1...,24 using
the corresponding stacked matrices X, (comprising the covariates data for

June 30th); and the §,’s from the S MCMC simulations.

S
. 2(i
rl|Y E z:: rl | Xrﬁﬁj)ao-r(]))' (16)

A point estimate for the one-day ahead hourly forecast is now obtained as:

'rl’y

CQ \

S
Z 210 (17)

Remark 2. The recursive estimation of probability distributions correspond-
ing to zonal and population level parameters in equations 7 through 14 ob-
viates structural estimation. The probability structure for the population
level price parameters in equations 10 and 15 are functions of demand at the
ERCOT level. Note also that these conditional distributions depend on the
zonal level price parameters. Once the population level parameters are up-
dated, then the zonal level dependence of demand on price is encapsulated
in equations 7 and 14. Thus, to repeat a key point made under Remark 1,

at the zonal level, demand is an explicit function of price. At the population
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level, once all the zonal prices are known, the ERCOT level price distribu-
tion, viewed as a function of demand, is updated by demands from all the
zones. In the subsequent Gibbs cycle, the zonal level price parameters are

then functions of system level demand.

4 Results

As shown in the previous section, all hyper-parameters in the hierarchical
model are assumed to have diffuse prior distributions; see, Gelman et al.
(2013) for details on selecting vague priors. The Gibbs sampler is run for
20, 000 iterations with a burn-in period of 10,000. The chains mix well and
convergence is attained within 20 minutes of run time. (Convergence plots

are available as supplementary files.)

Table 1: DAM & RTM Average Root Mean Square Errors

Zone RTM DAM
Houston 0.063  0.073
North 0.026  0.035
South 0.064  0.067
West 0.012  0.013

One-day ahead load predictions. Consider the panel of graphs in Figure
3. The black circles are the actual data. Under both models, for each of the
four regions, the panels depict the predictions under the DAM and RTM
models. The corresponding root mean square errors (RMSEs) are reported
in Table 1. The minimum and maximum forecast errors are 1.2% and 7.3%,
respectively. It is encouraging to note that at peak demands during the day,

the models do reasonably well in capturing the inflections in the demand
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Figure 3: Day-ahead Forecasts for the 4 Zones
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The black circles are the actual load. The Y-axis is the natural
logarithm of load. The X-axis is in hours. The predictions under all the
four zonal models are very close to the true values for both DAM and RTM
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distribution. It is these peak load values that could be used in a stochas-
tic optimization model to better control the flow of electricity throughout
ERCOT, especially under the DAM model where prices are known a day in
advance. For RTM prices, one-day ahead forecasts serve to alert industrial
customers on the maximum prices they could anticipate during summer
months, since the effect of weather on load generally sustains over a few
(even several) days. This type of anticipatory reactions could potentially
lower RTM prices. The cut-off price points for these customer responses
could vary by size of industrial customers; for instance, if RTM (or even
DAM) prices exceed $300 some plant operators are instructed to scale back
on production.

Posterior distributions of population and zonal parameters. In the fol-
lowing, only the plots of the posterior distributions of some of the key param-
eters are shown. Also, in the interests of space, we only report the numerical
posterior summaries for the ERCOT system and Houston in Tables 3 and
4, respectively. The posterior summaries for the remaining three zones are
qualitatively similar albeit with some differences; where appropriate, these
differences are discussed. However, the plots contain key information for all
the zones. Table 2 provides a snapshot of the effects due to the key price

variables; in this table, the summaries include all the four zones.

1. Tables 3 and 4: Under both the DAM and RTM models, the weather
factor (CDH) coefficients are positive and virtually indistinguishable,
as one would hope they should be. Also, the standard deviations

are fairly small suggesting that there is not much fluctuation in the
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parameter estimates.

. Tables 3 and 4: Like the Houston and ERCOT summaries, the peak
hours (5 to 7 pm) dummy variable, Hour Dummy, parameters exhibit
variability in the other zones as well, except for West and North un-
der the DAM model where the estimates are negative but with large
variances. This may be partly due to cooler weather in West Texas

and portions of North Texas.

. Tables 3 and 4: As expected, under both models, the Lagged Load
variables have a large positive impact on demand in Houston (and
other zones)—all else fixed, high demand activity one day is likely to

be followed by relatively high demand the following day.

. Tables 3 and 4: The response to transmission prices should be inde-
pendent of the response to DAM and RTM prices, unless a spike in
RTM or DAM prices coincides with a transmission price. In the Hous-
ton summary, there are some differences in this parameter’s estimates
under the two pricing models. However, as expected, at the ERCOT
level there is no statistically meaningful difference in these costs under
the two models. Generally, under DAM, transmission cost is nega-
tively related to demand. In some regions, under the RTM model,
they tend to be weakly positive. Of particular interest is the West re-
gion: here, under both the DAM and RTM models, the transmission
costs parameters are negligible. There appears to be relatively little

price-responsive demand in this zone.
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5. Figures 4, 5 and 6. In all four regions, under both DAM and RTM
models, the three price variables, marginally, exhibit similar relation-
ships with load—the rates of change in Price, Price Spike Dummy and
Lagged Price are positive, negative and negative, respectively. Recall

that the price spikes correspond to values of $2000 or more.

6. Table 2: log price. Focus on Houston’s DAM model. When price
increases by, say 10% then price elasticity of demand is 0.0119; i.e.,
demand increases by roughly one percent. Likewise, for a 10% change
in price, lagged price elasticity is -0.0194, namely a decrease in de-
mand by almost two percent. Combined together, these elasticities
reflect the gentle log-concave relationship between demand and price
for Houston shown in Figure 2. In contrast, from the same table, the
demand response to a 10% change in wholesale RTM price is even more
inelastic. Examining these elasticities under the two pricing structures
for all the zones, it is clear that demand for electricity is slightly more

elastic under DAM than RTM.

7. Table 2: price spike dummy. Consider the effect of a spike of $2000 or
more in DAM and RTM prices for Houston. Under the former pricing
model, the reduction in demand is 8.7%, whereas it is 2.2% under
the latter. Comparing this for the remaining zones, it is clear that
demand is highly price sensitive under DAM and less so under RTM for
Houston, North and South. West is least affected by such spikes. This
is consistent with the fact that pricing in the West region is tempered

by wind generated power. Thus, a key empirical question posed at the
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outset of this paper has an answer: For ERCOT, wholesale demand is
significantly more sensitive to DAM than RTM prices during periods of
very high prices. In normal periods, there are little to no differences in
the price elasticities of demand under the two pricing markets. Figure

5 shows these posterior distributions.

. Table 2 and Figure 6: lagged log price. From the table, once again,
DAM prices tend to be more elastic than RTM prices. Consider Figure
6. In each zone, the impact of lagged price on demand is different
under RTM and DAM pricing. However, at the ERCOT level, there is
little or no difference in the impact of lagged price on demand under
both pricing structures, as the posterior mass concentrates around zero
under both distributions. This “borrowing strength” interdependence
between zonal demand/price and ERCOT demand/price is one of the

novel features of the modeling approach.

. Tables 3 and 4, and Figure 7: 2-month moving average RTM price
(MA-RTM). In the DAM model, the RTM cross-price elasticity, cap-
tured via the 2-month moving average regressor, has a very small but
significant effect in each of the four zones; here the “word” significant
implies that the approximate t-statistic obtained as the ratio of the
parameter estimate to its standard deviation from the MCMC run is
at least two. Thus, under the DAM model for Houston in Table 4,
this ratio is roughly 20. Note, however, from Figure 7 that at the
ERCOT level, the dependence of MA-RTM on system-wide demand

is centered at zero values of the corresponding population level pa-
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10.

11.

rameter. Also, from Table 3, at the ERCOT level, the approximate
t-statistic for this parameter is 0.2. This is a nice illustration of how
our approach captures the dependency of price on demand and vice-
versa via probability distributions rather than structural estimation;

see, also, Remarks 1 and 2.

Figure 8: volatilities. Zone-by-zone volatility in demand under the two
pricing models is shown in this graph. Demand responses under both
prices are more volatile in the North and South regions, whereas it is
least volatile in the West. Moreover, the impacts of price volatility on

demand under both pricing schemes are roughly the same.

Tables 4: OLS estimates. For comparison, OLS point estimates for
the Houston DAM and RTM equations are shown. As expected, these
are fairly close in magnitude to the Bayesian estimates since the latter
uses highly non-informative priors. Thus, the least squares formula is
roughly equivalent to the Bayesian estimator, as seen in the mean rep-
resentations of the appropriate conditional probability distributions of
the zonal slope parameters. There is no equivalent comparison at the
ERCOT level since those estimates are draws from a probability dis-
tribution whose parameters are functions of the zonal level parameters

in the hierarchy; see Remark 1 and Remark 2.
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Table 2: Sensitivity to DAM & RTM Price Variables

Pricing Model Log(Price) Lag Log(Price) Price Spike Dummy
Houston DAM 0.119 -0.194 -0.087
Houston RTM 0.044 -0.058 -0.022
North DAM 0.19 -0.209 -0.144
North RTM 0.071 -0.089 -0.036
South DAM 0.146 -0.186 -0.128
South RTM 0.045 -0.015 -0.031
West DAM 0.018 -0.097 -0.019
West RTM 0.006 -0.002 -0.005

Notes. Values are percentages. Example: In the table, columns 2 and 3
comprise continuous covariates while column 4 is a binary covariate in a
log-log model. Hence, price and lagged price elasticities for Houston under
the DAM pricing model are 0.119% and -0.194%. All else fixed, when price
increases over $2000, under Houston DAM, demand decreases by 8.7%.
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Table 3: ERCOT: posterior summaries of parameters

RTM

90% Cred. Int.

DAM

Variable Mean SD 90% Cred. Int. Variable Mean SD
Price 012001 (0.1020.136) 5.~ 004001
Price Dummy -0.20 0.01 (-0.211,-0.179) Price Dummy _0.06 0.01
Lag(Price) 0.09 010 (-0-249,0.074) (Price) 002 0.01
Transmission Cost  0.020.01  (0.004,0.037)  28° Be0) 70
Lag(Load) 0.62 0.01  (0.59,0.63) Lag(Load) 0.66 0.01
CDH 0.01 0.01  (0.002,0.122) CDgH 0.01 0.01
Hour Dummy 0.04001  (:0.06-003) ol 0.0001 0.01
MA-RTM 0.002 0.01 (-0.0146,0.0185) Y : :

(0.027,0.059)
(-0.073,-0.041)
(-0.184,0.14)
(-0.01,0.023)
(0.64,0.68)
(0.002,0.012)
(-0.016,0.017)

Notes: (1) Price and Load are on the natural log scale in the dataset. (2) Lag
corresponds to one whole day. (3) Price dummy is 1 if price exceeds $2000,
else 0. (4) Transmission cost dummy is 1 if system experiences abnormally
high loads. (5) Hour dummy is 1 if time-of-day is 5 to 7 pm.

5 Discussion and Conclusion

A common concern regarding today’s wholesale electricity markets is that
price formation fails to reflect the willingness or ability to pay for electricity
from the demand side of the market. Most consumers are served through
load-serving entities such as utilities or competitive retailers. They, in turn,
re-sell electricity generation acquired via a wholesale market, based on fixed
or average prices, or a usage block structure, thus removing the wholesale
price signal. Metering infrastructure may pose an additional impediment to
placing some consumers on real-time pricing. Moreover, few consumers may
have an interest in monitoring and responding to dynamic prices, unless it
can be done in an automated manner. Consequently, demand and prices
may rise to inefficient levels. This had led to the imposition of wholesale

price caps in all organized markets in North America. Thus, a better un-
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Table 4: Houston: posterior summaries of parameters

DAM
Variable Mean SD 90% Cred. Int. OLS
Price 0.105 0.01 (0.103,0.108) 0.101
Price Dummy -0.169  0.02 (-0.201,-0.136) -0.171
Lag(Price) -0.086 0.01 (-0.089,-0.084) -0.080
Transmission Cost -0.039  0.01 (-0.052,-0.025) -0.041
Lag(Load) 0.662 0.01 (0.657,0.666) 0.660
CDH 0.007  0.01 (0.0069,0.0071) 0.006
Hour Dummy 0.002 0.01 (0.00076,0.0041) 0.002
MA-RTM 0.017 0.001  (0.0156,0.0184) 0.014
RTM
Variable Mean SD 90% Cred. Int. OLS
Price 0.0437 0.0l  (0.0425,0.0449)  0.041
Price Dummy -0.058 0.01  (-0.078,-0.038) -0.061
Lag(Price) 0.0216 0.01 (-0.0228,-0.0203) -0.0210
Transmission Cost  0.0005 0.01 (-0.013,0.014) 0.0001
Lag(Load) 0.664 0.01 (0.659,0.668) 0.711
CDH 0.0073 0.01 (0.0072,0.0074) 0.0071

Hour Dummy 0.0078 0.01  (0.0061,0.0095)  0.0085
Notes: (1) Price and Load are on the natural log scale in the dataset. (2) Lag
corresponds to one whole day. (3) Price dummy is 1 if price exceeds $2000,
else 0. (4) Transmission cost dummy is 1 if system experiences abnormally
high loads. (5) Hour dummy is 1 if time-of-day is 5 to 7 pm. (6) OLS:
Ordinary Least Squares

derstanding of the magnitude of demand response to price fluctuations is
of critical importance in the design and refinement of markets. In markets
where the demand side may face both a day-ahead and a real-time price, it
is important to understand the effects of each.

Separating the response on the demand side of an electricity market
resulting from a spike in DAM wholesale energy prices from a spike in RTM

wholesale prices presents a challenging statistical problem. Yet, this is an
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important topic for electricity grid operators striving to ensure that sufficient
resources are available to meet fluctuating demand, as well as for policy-
makers striving to design efficient markets. Moreover, participants in an
electricity market may benefit from a better understanding of how price
signals affect demand.

This analysis suggests that a spike in DAM prices prompts a greater
reduction in demand than a spike in RTM prices of a similar magnitude in
Texas” ERCOT electricity market. Presumably, the advance notice associ-
ated with a day-ahead price signal permits the demand side of this market
more time to respond to the price signal—by rescheduling production at
industrial facilities and dispatching demand response programs—thus re-
sulting in greater demand response. Such information may be important
in the design of more effective demand response programs. While the re-
sponse to a real-time market price is somewhat muted—perhaps because
the settlement price is not known with certainty until after the 15-minute
settlement interval concludes—it is nonetheless important, since price spikes
in the RTM occur with greater frequency and may reach higher levels. For
researchers and forecasters faced with the decision of whether to use a DAM
or RTM price to explain fluctuations in demand in an energy market, the
trade-off is illuminated here.

The practical consequences of the above are several. The finding that
demand is more-responsive to DAM prices might support the contention
that demand response programs benefit from a day-long notice period. Yet,
it might also lead a policy-maker to focus on opportunities to increase the

responsiveness of the demand side to RTM prices, since RTM prices may
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be a better signal of system conditions on an electricity grid, tend to be
more volatile than DAM prices, and may reach higher levels. Opportuni-
ties to improve the response to RTM prices may include greater exposure
of consumers to real-time prices; better communication with consumers re-
garding system conditions (e.g., text or email alerts); direct load control by a
utility, retailer, or third-party of thermostats, water heaters, and industrial
processes; and better automating the response to price signals.
Methodologically, the Bayesian model developed here is an appropriate
way of handling the economic relationship between ERCOT’s demand and
DAM and RTM prices. Acknowledging that no model is perfect, in the
present context, the Bayesian hierarchical, population model appropriately
captures key features in the data. This is because the Bayesian approach
assigns probability distributions to all unknown parameters in the model.
Thus, the need for a systems approach is replaced by a distributional ap-
proach to modeling price and demand; see, also, Remark I and Remark
2 in Section 3 that elaborates on these points. In this regard, it is worth
mentioning that a series of Hausman tests with different instrumental vari-
ables (IVs) fails to detect endogeneity. This conclusion is not surprising for
two reasons. First, endogeneity is likely not an issue for DAM pricing, as
these prices are known in advance. For RTM price changes, barring rare
instances, demand response is rarely simultaneous. Second, Crown et al.
(2011) astutely note, “Just as we can never know the true magnitude of the
endogeneity problem to begin with, we can never know exactly how contam-
inated our instrument really is (both quantities depend on the unobservable

residuals of the outcome equation)...we urge caution in using IV methods at
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even the merest suggestion of endogeneity.”

Then there are issues related to large samples. Convergence is problem-
atic in IV-based estimation when sample sizes are large. Importantly, large
samples are no guarantee of sound estimation using IV methods. Bound
et al. (1995) state, “We find evidence that, despite huge sample sizes, [their]
IV estimates may suffer from finite-sample bias and may be inconsistent as
well. These findings suggest that valid instruments may be more difficult to
find than previously imagined.” IVs also have significant problems in small
scale models (Goldberger (1983)). Crown et al. (2011) advise that only un-
der the most ideal circumstances are IV methods likely to produce estimates
with less estimation error than ordinary least squares. Clearly, ERCOT’s
demand system, with its attendant complexities, is far from such an ideal
situation.

The full information maximum likelihood method to solve systems of
dependent equations—a complex iterative procedure—is also infeasible for a
variety of reasons, not the least of which are convergence issues in a problem
of this scale. Importantly, as noted above and discussed elsewhere in the
paper, there is no practical need for a simultaneous equations approach to
model ERCOT’s wholesale demand.

We believe another useful methodological approach to try in this context
is state-space models. In this paper, the marginal effects are fixed in time.
While the lagged demand variables capture some autoregressive features in
the demand data, what would be worth exploring is the time-varying nature
of the slopes themselves; see, West and Harrison (1997). One way of captur-

ing zone-by-zone heterogeneity in such a framework is to cast the seemingly
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unrelated regression (SUR) model (Zellner (1971)) within a state-space rep-
resentation; indeed, this is a viable approach than simultaneous equation
models. State-Space SURs will allow one to monitor the evolutionary dy-
namics of price changes on demand. The challenges in this approach are one
of scale and related problems of MCMC convergence. This will be pursued

in future research.
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Figure 4: Posterior distributions: log price
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RTM price on demand. This also c&rries over to the ERCOT level. See
Table 2 for corresponding numerical summaries.



Figure 5: Posterior distributions: price spike dummy
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Figure 6: Posterior distributions: lagged log price
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Figure 7: Posterior distributions: 2-month moving average RTM price
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Notes. In all four zones under the DAM model, the RTM 2-hour moving
average price weakly impacts demand. This carries over to the ERCOT level
where this cross price variable has no effect on system-wide demand.

44



Figure 8: Posterior distributions of zonal variances
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pricing schemes are generally the same in all four zones. North and South
tend to be more variable than the West and Houston zones, as seen by larger
values along the X-axis for the former zones.
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