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Context (1)
◆ High order spectral  

discontinuous methods  
are promising for LES  
and DNS
▪ Accuracy
▪ Good vectorisation
▪ High parallel efficiency
▪ Local treatment

◆ In addition, compatible with hp-adaptation

◆ Within the TILDA project, we wish to demonstrate the 
capability of such methods to perform massively parallel LES 
and DNS, far from the capability of current LES solvers. 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Context (2)

◆ Basic ingredients:
▪ Polynomial representation of unknowns per mesh cell 
▪ Discontinuity => flux given by a Riemann solver, as in 

Finite Volume

◆ At the present time: 
▪ Many efforts done to perform such simulations, 

focusing on spatial scheme (many versions of DG, 
SD, FR, HDG schemes…)

▪ Much less attention paid on the analysis of the time 
integration technique.
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Context (3)

◆ For LES/DNS, the standard time integration 
schemes are the Runge-Kutta schemes
▪ Explicit time integration with controls on 1- the 

number of steps, 2- the scheme accuracy and 3 - its 
mathematical properties (TVD)

◆ Our experience with our solver based on the 
Spectral Difference method shows that the CFL 
constraint is stronger with SD than with FV, 
leading to smaller time steps
▪ More iterations to perform!
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Context (4)

◆ Two solutions to recover the same computational time 
for the spectral discontinuous methods and high-order 
FV:

1. Make many efforts on CPU optimisation in 
order to perform more iterations than FV for the 
same physical time

2. Optimise the time integration technique in 
order to allow larger stable time steps

◆ In this context, choice to focus our attention on 
the optimisation of the time integration technique.  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Context (5)

◆ In which points are our approach different with 
the previous ones?
1. Coupled space/time analysis, using results 

published recently in J. Comput. Phys [1].
2. Dedicated to the Spectral Difference Method
3. Based on the 6 step RK scheme (the 6-step 2nd 

order RK DRP scheme of Bogey and Bailly [2] is our 
reference for aeroacoustic simulations)
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Outline

◆ Spatial Discretisation

◆ Time Discretisation

◆ Optimization

◆ Numerical Verification
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The Spectral Difference Method

◆ Solves the strong form of the NS Eq. (as FD). 
 

◆ Two sets of polynomials:
▪ Degree p for the solution <=> p+1 fields in SP
▪ Degree p+1 for the flux <=> p+2 fields in FP

◆ In order to recover the solution polynomial degree 
when computing the flux divergence. 

◆ Staggered approach and directional treatment 
suitable for meshes composed of unstructured hexa
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Principle of the spatial discretisation

◆ Algorithm:
1. Interpolate solution from SP to FP
2. Compute the flux from solution (for internal FP) or 

using a Riemann solver (for FP on cell interface).
3. Define the flux polynomial and compute the 

divergence in SP
4. Update in time

◆ For the definition of optimised RK schemes, let’s apply 
the algorithm to the advection equation.
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◆ 1D linear advection equation:

◆ Mesh composed of regular elements of length 
◆ General definition of the exact Riemann solver:

◆ Step 1: define the SD formulation in matrix form: 
 
 
 
where M represents both extrapolation and flux, index 
refers cell index and D is the derivation matrix.

Spatial Discretisation (1)
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Spatial Discretisation (2)
◆ Insert a spatial Fourier mode

◆ With the dimensionless wave number, one gets

◆ This can be written as
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Time integration

◆ Time integrate 

◆  With low-storage 6-stage RK method:

◆ The coefficients       define the accuracy of the RK 
method
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 Key points (1)

◆ Details in Revisiting the spectral analysis for high-order 
spectral discontinuous methods, J. Comput. Phys. 337 
(2017) 379–402.
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Key points (2)

◆ High accuracy of the method
◆ Error in dissipation and dispersion increases with 

the wavenumber
◆ It seems possible to control error in dissipation 

and dispersion by optimising the behaviour in 
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Optimisation

◆ The algorithm is stable if

◆ When the CFL is increased, the first value of k for which 
the spectral radius is equal to one is 

◆ To get 4th order RK scheme for linear advection, the first 
four coefficients are imposed.
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Optimisation
◆ The last two coefficients are optimised.
◆ Maximize CFL subject to 

◆ Solve the equation for a given set of 

◆ Use dichotomy to define the surface 

◆ Optimization is done using Nelder-Mead method
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Remarks on the optimisation process

◆ At present, optimisation is in CFL in order to 
allow greater time steps

◆ Possible to define optimised RK schemes in 
dissipation and dispersion (DRP) by a coupled 
space / time analysis

◆ The spectral properties change with p and as a 
consequence, one optimised RK scheme is 
associated with one value of p
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Optimisation results (1)
◆ Optimised coefficients and corresponding CFL numbers
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Optimisation results (2)
◆ Comparison with reference RK scheme RK06s of Bogey 

and Bailly
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Same CPU cost but larger stability!



The JAGUAR solver

◆ JAGUAR is CERFACS’ CFD code using the SD 
method.

◆ New solver developed for 5 years.
◆ Dedicated today to LES / DNS on unstructured 

hexa grids
◆ Mesh splitters: Metis, ParMetis, Manual splitting 
◆ Many efforts for HPC
▪ Serial optimisation, vectorisation
▪ MPI, OpenMP, hybrid MPI/OpenMP
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Strong scaling on Blue Gene 

◆ #99 for TOP500
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◆ Transport of an isentropic vortex solution of Euler 
equations in a periodic box.

◆ Test case from the High Order Workshop
◆ Input data: initialisation of a mean flow + 

superposition of the vortex

Numerical verification
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Numerical verification - 2D vortex

◆ Transport of an isentropic vortex solution of Euler 
equations in a periodic box.
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Numerical verification - 2D vortex
◆ Comparison with RK scheme of Bogey and Bailey, p=4
◆      error Vs. CFL number 
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Numerical verification - 2D vortex
◆ Comparison with RK scheme of Bogey and Bailey, p=4
◆      error Vs. CFL number 
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Conclusion
◆ Our goal was to propose a new set of coefficients to 

enable larger time steps while keeping accuracy 
◆ Using a revisited analysis, we have performed a spectral 

analysis
▪ Coupled time and space discretisation 
▪ Using a 6 stage low-storage RK scheme

◆ Finally, a technique was proposed to increase the 
maximum stable CFL number for 4th-order 6-stage RK 
schemes for SD and polynomial degree from 2 to 8

◆ Time step increased by 60%!
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Future work
◆ The optimisation problem is today solved for wavenumber 

at 

◆ The procedure has to be extended to optimise on the 
whole spectral domain
▪ Avoid any hypothesis on the shape of the dissipation / 

dispersion curves

◆ Another optimisation may consist using a DRP criteria on 
the time RK schemes.
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