

UHF-Dielectrophoresis Crossover Frequency Measurements do Allow Discriminating Cancerous Stem Cells From Differentiated Cells.

Arnaud POTHIER

arnaud.pothier@xlim.fr

Sumcastec

¹CAPTuR, Limoges, France ²IHP,Frankfurt (Oder), Germany ³Bangor University, UK ⁴ENEA, Rome, Italy ⁵Padova University, Italy ⁶CREO Medical, Bath, UK

Outline

- SUMCASTEC project objectives
- Motivation: Targeting Cancerous Stem Cells
- Main challenges to identify CSC
- UHF dielectrophoresis as a new cell characterization approach
- Going to a novel UHF DEP cytometer for efficient CSC isolation?
- Conclusion and perspectives

The SUMCASTEC project Sumcastec H2020 FET program supported by EU commission

New Generation of Microwave Lab-on-Chip for Cancerous Stem Cells Neutralization using Electromagnetic Waves Stimulation

Methodology: Take benefit of

-*Microsystem technologies* to individually treat cells on a dedicated Lab-on-Chip (LOC) -*CMOS technology* to implement required microwave sources, sensors, applicators and <u>Pro</u> detectors on the same chip

17/07/2019 Biomedical Applications of Electromagnetic Energy Workshop

<u>Concept:</u> Exploit the non-thermal effects of EM radiations on living organizes to sense and stimulate specifically targeted biological cells

Prototype of microfluidic sensing platform on CMOS chip

Why CMOS technology?

Advantages of BiCMOS technology:

 \checkmark Complete system integration with several electronic functions on the same chip

Instrumented CMOS lab-on chip

Advantages of BiCMOS technology:

- \checkmark Complete system integration with several electronic functions on the same chip
- \checkmark Miniaturization of the complete device and Lab-On-Chip compatible

Full and monolithic integration of microfluidic

Motivation: Handling pathology with high recurrence

Need for new therapeutic strategies dedicated to poor outcome diseases

<u>Ex: Meduloblastoma ,</u> <u>Glioblastoma:</u>

- ► Tumor with high recurrence
- Strong resistance to existing treatments
- ► Highly heterogeneous brain tumors

Resulting efficiency from standard therapies is very low

Role of some hidden tumor-initiating cells ?

How fight them more efficiently? How many are they? Where are they?

Cancerous Stem Cells

Tumorigenic cells with ability to give rise to all tumor cell types:

- ▶ with self-renewal capabilities
- differentiation into multiple cell types (progenitors...)
- hypothesized to be the main cause of relapse and metastasis

New therapies targeting CSCs

Quiescent properties -> Resistant to conventional chemo and ionizing treatments :

How biologists study CSC's currently?

Optical microscopy

Staining

Fluorescence labeling

<u>Main difficulties :</u>

- CSC's are rare and require amplification of population
- Specific immunostaining markers are lacking

Stemness lineament are accessed using *generic markers* of normal stem cells:

- Undifferentiation & Anti proliferation markers :Nanog, Sox2, OCT4, CD133...
- Cross coupling of makers gives evidence but without 100% absolute certainty

17/07/2019 Biomedical Applications of Electromagnetic Energy Workshop

<u>QPCR & Protein Array analysis</u>

Functional tests allow to identify CSC

Functional tests prove ability to renew a tumor mass

But.... long (~20-40 days), costly and complex tests to implement

-> Never used in clinic..

Interest to develop others approaches investigating intracellular specificities

What about using EM field to identify CSC's?

Depending the <u>frequency</u> EM field <u>could</u> interact with different cell constituents

- Low frequency -> Cell shape/ morphology/size influence
 - Mid frequency -> Plasma Membrane specificities

High frequency -> Intracellular content properties

Own cell dielectric properties = A signature that can be specific

High frequency signal well suitable to access to cell interior properties and measure specificities

Dielectric spectroscopy allows **non destructive** & **label free** characterization

Dielectrophoresis basics

DEP relies on the fact that EM fields generate forces that can move cells

 $F_{DEP} = 2\pi\varepsilon_m r^3 \operatorname{Re}[K(\omega)] \nabla |E_{rms}|^2$ Related to the E field gradient intensity -1<Re[K(ω)] <1 $K(\omega) = \left(\frac{\varepsilon_p^* - \varepsilon_m^*}{\varepsilon_p^* + 2\varepsilon_m^*}\right) \quad \blacksquare \quad \varepsilon_p^* = \varepsilon_p - j \frac{\sigma_a \rho}{\omega}$ Complex permittivity of the Clausius-Mossotti factor Cells can be individually particle Re[K(ω)] >0 *Re*[*K*(ω)] <0 electromanipulated accordingly **Repulsive force Attractive force** their own dielectric properties

Specificities of cell DEP spectral signature

Characterize cells to identify their 2nd DEP cross over frequencies as a discriminant specificity

Methodology for crossover frequency

 $F_{DEP} = 2\pi\varepsilon_m r^3 \operatorname{Re}[K(\omega)] \nabla |E_{rms}|^2$

 $-> F_{DEP}$ will be high in strong field areas

-> low in weak field areas

Strong

weak field

field

Methodology:

1) Cells are trapped in DEP<0

2) Flow is stopped

measurement

3) Frequency is tuned <u>every</u> <u>MHz</u> until finding positive DEP

Obtaining CSC population starting from cell line

Mimic CSC micro environment conditions to enrich population

Followed methodology for cell characterization

17/07/2019 Biomedical Applications of Electromagnetic Energy Workshop

Xlim

Confirmation of culture conditions influence on cell phenotype

Glioblastoma human cell lines: Analysis of CSC markers at transcriptional and protein level LN18 Line

NN culture

DH culture

DN culture

NN culture

DH culture

Large CSC enrichment for Define Medium cultures

Crossover frequency characterization of GBM cell lines

More than 500 cells measured

R. Manczak et al, DOI: 10.1109/JERM.2019.2895539

Culture conditions influence on cell

Medulloblastoma human cell lines:

- ✓ D283 cells naturally express high level of CD133 and others CSC markers
- ✓ DAOY line shows **poor** CSC features

For D341 & D283, evidence of CSC enrichment in Define Medium cultures

Crossover frequency characterization of MB cell lines

More than 400 cells measured

Phenotypic analysis showed **highest** CSC number for:

- D283: NN⁺ or DN⁺⁺ culture
- D341: DN ⁺⁺ culture
- DAOY: NN⁻ or DN⁻ culture = poor/ no CSC-> similar signature expected

Negative correlation between crossover frequency and CSC number

Difference of phenotype -> difference of DEP signature

What about primary culture?

17 patient glioblastoma tumors investigated

Cells expressing CSC protein membrane markers are isolated by fluorescence flow cytometry

Sub population phenotype and functional features are tested

Crossover frequency of GBM primary culture cells

Clear difference of signature

Correlation between difference of crossover frequency and expression level of CD133 and so **CSC occurrence**

Crossover frequency of GBM primary culture cells

Whatever patient considered CD133⁺ cells always show lower DEP signatures

• UHF-DEP crossover frequency appears as relevant CSC marker!

How exploiting cell crossover frequency specificities

Prior cell population characterization will help to select the more selective sorting UHF-DEP frequency

Expected selective electromanipulation

Selected approach: gradual cell deviation using single frequency biasing

T. Provent et all, IMS 2019

Cell sorting on a lab-on chip

7 Axiocam 105 colo	or: En direct		
		14.	
	-	Ne.	

Conclusion

- Wide Potential of EM waves use for oncology purposes: Diagnostic therapeutic
- Example of actual need for better Cancerous Stem Cells study and handling offer possibility to develop and work on new & original approaches though very interesting and fruitful transdisciplinary research
- Collaborative work between different community is the key to reply to such complex societal challenges
- Regarding SUMCASTEC targeted objectives: a lot of work is still required
 - Proof of concept still need to be push away and fully demonstrated
 - Pre clinical trials might be set
 - Extension to other diseases envisioned

Acknowledgement

Sumcastec : This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement N° 737164

Z 2N 2020

