

WFA

Electromanipulate biological cells with high frequency signals: a new way to characterize cell aggressiveness in the frame of cancer treatment

¹ R. Manczak, ²S. Saada, ¹T. Provent, ¹C. Dalmay, ²B. Bessette, ³C.Merla, ³B. Tanno, ³M. Mancuso, ⁵C. Baristiran Kaynak, ⁵M. Kaynak, ⁶C. Palego, ²F. Lalloue, and ¹A. Pothier

Sumcasted

¹XLIM UMR 7252, ² CAPTuR EA3842, ³ENEA, ⁴Padova university, ⁵IHP, ⁶Bangor university

PRIFYSGOL ANGOF

- SUMCASTEC project objectives
- Motivation: Cancerous Stem Cells issues
- Main challenges to identify CSC
- UHF dielectrophoresis as a new cell characterization approach
- Going to a novel UHF DEP cytometer for efficient CSC isolation?
- Conclusion and perspective

SUMCASTEC project

Sumcastec: H2020 FET program supported by EU commission

New Generation of Microwave Lab-on-Chip for Cancerous Stem Cells Neutralization using Electromagnetic Waves Stimulation

<u>Concept:</u> Exploit the non-thermal effects of <u>EM</u> radiations on living organizes to <u>sense</u> and <u>stimulate</u> specifically targeted biological cells

<u>Methodology:</u> Take benefit of -Microsystem technologies to individually treat cells on a dedicated Lab-on-Chip (LOC)

-CMOS technology to implement required microwave

sources, sensors, applicators and detectors on the same chip

Why CMOS technology?

Advantages of BiCMOS technology:

 \checkmark Complete system integration with several electronic functions on the same chip

Why CMOS technology?

Advantages of BiCMOS technology:

- \checkmark Complete system integration with several electronic functions on the same chip
- ✓ Miniaturization of the complete device and Lab-On-Chip compatible

Full and monolithic integration

of microfluidic

SUMCASTEC team

A multidisciplinary consortium to address a broad spectrum of research challenges

10 teams from 6 institutions

- **RF & Microwave Engineering:**BANGOR, CREO, IHP, XLIM(UNILIM)
- Photonic & Imaging Engineering :
 BANGOR
- Micro Technology Development:
 > IHP, XLIM(UNILIM)
- Biology & Oncology
 > ENEA, UNIPD, CAPTuR (UNILIM)
 - Biophysics
 ENEA, XLIM (UNILIM)

Motivation: Handling pathology with high recurrence

Need for new therapeutic strategies dedicated to poor outcome diseases

<u>Ex: Meduloblastoma ,</u> <u>Glioblastoma:</u>

- ► Tumor with high recurrence
- ► Strong resistance to existing treatments
- Highly heterogeneous brain tumors

Resulting efficiency from standard therapies is very low

Role of some hidden tumor-initiating cells ?

How fight them more efficiently? How many are they? Where are they?

Cancerous Stem Cells

Tumorigenic cells with ability to give rise to all tumor cell types:

- with self-renewal capabilities
- differentiation into multiple cell types (progenitors...)
- hypothesized to be the main cause of relapse and metastasis

New therapies targeting CSCs

Quiescent properties -> Resistant to conventional chemo and ionizing treatments :

WFA-7: Electromanipulate biological cells with high frequency signals: a new way to characterize cell aggressiveness in the frame of cancer treatment

nternational Microwave Symposium

How biologists study CSC's currently?

Staining

Fluorescence labeling

<u>Main difficulties</u> : - CSC's are rare and require amplification of population

- Specific immunostaining markers are lacking

Stemness lineament are accessed using *generic markers* of normal stem cells:

- Undifferentiation & Anti proliferation markers :Nanog, Sox2, OCT4, CD133...
- Cross coupling of makers gives evidence but without 100% absolute certainty

Functional tests allow to identify CSC

Functional tests prove ability to renew a tumor mass

But.... long (~20-40days), costly and complex tests to implement

Interest to develop others approaches investigating intracellular specificities

What about using EM field to identify CSC's?

Depending the <u>frequency</u> EM field <u>could</u> interact with different cell constituents

- Low frequency -> Cell shape/ morphology/size influence
 - Mid frequency -> Plasma Membrane specificities
 - High frequency -> Intracellular content properties

Own cell dielectric properties = **A signature** *that can be specific*

High frequency signal well suitable to access to cell interior properties and measure specificities

Discriminating cells with dielectric spectroscopy

Dielectric spectroscopy on living cells

Probing flowing cells (microfluidic channel) with microwave sensors allows to measure own dielectric specificities of cell cytoplasm

CLKche

BWRC

I_{OVC0}

To dielectric spectroscopy cytometer concept

Potentially High-Throughput flowing cells microwave characterization

Challenges:

-Require strong sensitivity (ppm range!) sensor design with attoF resolution

- Need to be associated with cell sorting system

WFA-7: Electromanipulate biological cells with high frequency signals: a new way to characterize cell aggressiveness in the frame of cancer treatment

Sensing electrodes

r€ to gove

10µm 10µm

units)

Another approach: Dielectrophoresis

Dielectrophoresis basics

DEP relies on the fact that EM fields generate forces that can move cells

Specificities of cell DEP spectral signature

Characterize cells to identify their 2nd DEP cross over frequencies as a

Methodology for crossover frequency measurement

Obtaining CSC population starting from cell line

Mimic CSC micro environment conditions to enrich population

Followed methodology for cell characterization

Confirmation of culture conditions influence on cell phenotype

18 N N

18 D N

N18 DH

BMI1

Glioblastoma human cell lines: Analysis of CSC markers at transcriptional and protein level

LN18 Line

Large CSC enrichment for Define Medium cultures

More than 500 cells measured

R. Manczak, et all, DOI: 10.1109/JERM.2019.2895539

Culture conditions influence on cell phenotype & functional properties

Medulloblastoma human cell lines:

Neurosphere

- ✓ D283 cells naturally express high level of CD133 and others CSC markers
- ✓ DAOY line shows **poor** CSC features

For D341 & D283, evidence of CSC enrichment in Define Medium cultures

More than 400 cells measured

Phenotypic analysis showed highest CSC number for:

- D283: NN⁺ or DN ⁺⁺ culture
- D341: DN ++ culture
- DAOY: NN⁻ or DN⁻ culture = poor/ no CSC-> similar signature expected

Negative correlation

between crossover frequency and CSC number

Difference of phenotype -> difference of DEP signature

What about primary culture?

17 patient glioblastoma tumors investigated

- Cells expressing CSC protein membrane markers are isolated by fluorescence flow cytometry
 Sub population phenotype and functional features are tested
 - Ability to renew tumor evaluated by LDA method

Crossover frequency of GBM primary culture cells

Clear difference of signature

Correlation between difference of crossover frequency and expression level of CD133 and so **CSC occurrence**

Prior cell population characterization will help to select the more selective sorting UHF-Expected selective electromanipulation DEP frequency

Proposed cytometer design

Coupling of DEP & hydrofluidic forces to dynamically sort cell

Control the initial cell trajectory

Working principle:

Tune the DEP force at constant fluidic force to act on cell trajectory -> by the electrode design (angle related to cell flow)

-> by the DEP signal magnitude

-> by the choice of DEP frequency related to targeted cell crossover

Proposed cytometer design

Proposed cytometer design

f_{x02A} Median

Cells B

1E + 8

pDEP

30

μm

(MHz)

0,7

 f_{x02B} 3rd Quartile

Cells A

100

For targeted cell: optimal DEP signal frequency and magnitude vs flow speed have to

Improvement to limit cell clogging are still required: Electrodes surface treatment

be set

IEEE 🔊

- Exploiting DEP 2nd Crossover frequencies appears very promising for label free cell discrimination applications
- Especially for CSC case exploiting intracellular specificity vs differentiated cells
- An novel UHF DEP cytometer has been prototyped and validated
- Application for validation of CSC isolation from enriched or basal cell population is currently on going...
- Application to others concerns/pathologies might be considered too

2020

Project partners:

PRIFYSGOL

BANGOR

NREPORT.

Acknowledgement

Sumcastec : This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement N° 737164

