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Abstract

We present progress in fast, high-resolution imaging, material classification, and fault detection using
hyperspectral X-ray measurements. Classical X-ray CT approaches rely on data from many projection
angles, resulting in long acquisition and reconstruction times. Additionally, conventional CT cannot
distinguish between materials with similar densities. However, in additive manufacturing, the majority of
materials used are known a priori. This knowledge allows to vastly reduce the data collected and increase
the accuracy of fault detection. In this context, we propose an imaging method for non-destructive testing
of materials based on the combination of spectral X-ray CT and discrete tomography. We explore the
use of spectral X-ray attenuation models and measurements to recover the characteristic functions of
materials in heterogeneous media with piece-wise uniform composition. We show by means of numerical
simulation that using spectral measurements from a small number of angles, our approach can alleviate
the typical deterioration of spatial resolution and the appearance of streaking artifacts.

1 Introduction

Motivated by recent advances in spectral X-ray detectors [1] and algorithms in discrete tomography [2], we
show that upon formulating an inverse problem for energy-resolved attenuation data, quantitative imaging
is feasible from a limited data set, comprising only projections from a small number of angles. Effectively,
we anticipate that the proposed methodology can expedite the data acquisition process in non-destructive
testing of such media, and increase screening throughput with minimal compromise on spatial resolution.
Our approach is fundamentally based on poly-energetic attenuation models that capture beam-hardening
phenomena and a new formulation of the inverse unmixing problem that leads to a number of binary image
reconstruction problems for the support functions of the medium’s constituent materials. Essentially this
process renders the resulting imaging process suitable to the framework of discrete tomography, that can
achieve full-angle CT levels of spatial resolution from a very small number of acquisition angles.

2 Spectral attenuation model

We consider the application of non-destructive testing of three-dimensional domains Ω consisting of a rela-
tively small number of N disjoint regions such that

Ω =

N⋃
k=1

Ωk, Ωk ∩ Ωl = ∅ if k 6= l, (1)

using non-monochromatic diagnostic X-ray sources and energy-discriminating detectors. Without any loss
of generality, the measurements are assumed to be captured on flat panel pixelized detectors with Nu ×Nv
photon-counting cells, each of which can resolve the arriving photons into Nb energy resolving bins according
to some user-defined energy-sensitivity profile. Realistically, the above experimental quantities satisfy

Nu, Nv � Nb ≥ N > 1. (2)
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In this context, let a beam trajectory L depart from the source at some direction angle θ and end on an
arbitrary detector cell. Define a vector of N parameters β ∈ RN with elements

βk =

∫
L

dxχk(x), k = 1, . . . , N, (3)

where χk is the characteristic function of the k-th material in the sample defined as

χk(x) =

{
1 if x ∈ Ωk,

0 elsewhere.
(4)

Then the noiseless model for the expected spectral measurement given the sample of N materials is

G(β)b =

∫ ∞
0

de S(e)Db(e) exp

{
−

N∑
k=1

µk(e)βk

}
(5)

where G : β 7→ y is the nonlinear parameters-to-data map that describes the poly-energetic spectral atten-
uation [3]. In the above, S(e) is the source photon flux density spectrum, Db(e) is the spectral sensitivity
function of the bth bin of the detector, ideally taken uniform between some bounds, and µk(e) is the linear
attenuation coefficient spectrum corresponding to the kth material in the sample. Normalising the source
flux to a probability distribution function as

S(e) = pS(e)y0, with

∫ ∞
0

de pS(e) = 1, (6)

and introducing the mass attenuation spectrum of the kth material as

mk(e) = µk(e)ρ−1
k ,

for a density ρk > 0, the mean spectral measurement model (5) becomes

G(β)b = y0

∫ ∞
0

de pS(e)Db(e) exp

{
−

N∑
k=1

ρkmk(e)βk

}
, (7)

for which y0, pS(e) (resp. S(e)) and Db(e) can be obtained from the specifications of the source and the
detector, while m(e) for a selection of materials can be traced from the NIST databases or otherwise estimated
from spectroscopic measurements [4]. Incorporating noise effects, the photon count measurement at the bth
bin of the cell is known to be a Poisson random variable

yb ∼ P(ȳb), (8)

for a mean value ȳb given by the conditional expectation over β

ȳb
.
= E[yb|β] = G(β)b + η̄b(β) ≥ 0. (9)

where η̄b > 0 denotes the mean of a random variable ηb(β) incorporating the contributions of the coherent
and incoherent scattering effects in the measurements. From the measurement likelihood (8), and the
mean observation model (7) the probability of the measurement given the integrals-of-the-characteristics
parameters β is

p(yb|β) =
1

yb!
ȳybb exp{−ȳb}, (10)

and as the bin photon counts y = {y1, . . . , yNb
} are statistically independent the probability of the spectral

measurements vector y given the parameters β is

p(y|β) =

Nb∏
b=1

p(yb|β). (11)

We end this section by mentioning that from the spectral data y one can readily compute the ‘conventional’
energy-integrating scalar attenuation measurement as 1Ty, while in replacing the source with a mono-
energetic source the spectral integral in (7) collapses and the model reduces to the scalar expression of
Beer-Lambert’s law [5].

2



2.1 Discrete formulation

To compute the measurement expectation we must discretize the model (7). Using a three-dimensional grid

of Ng voxels, we can express the discretized parameters (with a slight abuse of notation) as βk =
∑Ng

i=1 |L|iχik,
where |L|i denotes the length of the beam trajectory L crossing voxel i and the binary characteristic function
χik = 1 if the kth material occupies voxel i. Similarly, using a discretization of the energy domain into Ne
intervals, we can express energy-dependent quantities in terms of Ne coefficients which we write as vectors
mk,pS ,Db for the mass attenuation coefficient, the normalized source spectrum and the detector spectral
sensitivity respectively. Collecting also the mk into a Ne ×N matrix M , we can write

G(β)b = y0 p
T
S (Db � exp {−M diag(ρ)β}) , (12)

for b = 1, . . . , Nb, where � denotes element-wise multiplication of vectors. A quantity that will be needed
for the optimization problem is the derivative ∂βG(β)b which is given by

∂βG(β)b = −y0 p
T
S (Db � exp {−M diag(ρ)β}Mdiag(ρ)) , (13)

and collecting the Db into an Ne ×Nb matrix D, we can write the Jacobian matrix J(β) = ∂βG(β) as

J(β) = −DTdiag (y0pS � exp {−Mdiag(ρ)β})Mdiag(ρ). (14)

3 Imaging methodology

Our hypothesis is that estimating β from the noisy data y decouples the inverse problem of imaging the
attenuation spectra of the materials within the domain into N discrete inverse problems for the binary-
valued characteristic functions χ1(x), . . . χN (x). If necessary, the resulting images can then be scaled by the
densities of the respective materials and merged into a single spectral image, often referred to as coloured
X-ray image.

3.1 Recovery of β

To begin with, an approach to estimate β is to compute the maximum likelihood estimator by working out
the negative log-likelihood of the parameters

H(β) = − log p(y|β) = 1T ȳ − yT log ȳ. (15)

The minimization of H is equivalent to the minimization of the (discrete) Kullback-Leibler (KL) divergence,
which can be considered as a data misfit measure when regressing Poisson data, given by

DKL(y‖ȳ) = yT log

(
y

ȳ

)
+ 1T (ȳ − y) (16)

with the conventions 0 log(0) = 0 and − log(x) = ∞, x ≤ 0. Incorporating the positivity constraint on the
parameters β and the additional consistency constraint∑

k

χk(x) = 1, ∀x ∈ Ω⇒
∑
k

βk = |L|, for eachL, (17)

where |L| denotes the length of the beam trajectory L, we formulate the penalized minimization problem as

β̂ = arg min
β∈∆

DKL(y‖ȳ(β)), or equivalently β̂ = arg min
β
DKL(y‖ȳ(β)) + ı∆(β) (18)

where ı∆ is the indicator function on the simplex ∆ defined as

∆
.
=

{
β ∈ RN |

N∑
k=1

βk = |L| andβ ≥ 0

}
. (19)
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Due to the non-linearity of the measurements model

ȳ(β) = G(β) + η̄(β), (20)

DKL is generally not guaranteed to be convex (unless specific conditions such as ȳ ≥ y are satisfied, see
appendix A) and may have local minima, rendering the optimization a difficult task. In our extensive
numerical tests, we have found that a non-linear variant of the Alternating Direction Method of Multipliers
(ADMM) [6] performs well for this problem. The ADMM with non-linear operator constraints is a convex
optimization method for non-smooth functionals, which offers flexibility in the use of a variety of smooth
and non-smooth penalization/regularization terms. The formulation adapted to our problem is described in
Algorithm 1 and requires as input, apart from the functions ı∆, DKL, ȳ, two parameters δ and 0 < c < 1
controlling the step size, which after tests we set to values δ = 0.001 and c = 0.95. Since the algorithm is
based on the linearization of the forward operator, we calculate the derivative as ∂βȳ(β) ≈ J(β) where we
have ignored contributions from scattering. Additionally, we require the proximal operator for the indicator
function ı∆ which takes the form of solving a projection problem onto the simplex and can be calculated
fast by e.g. the method in [7]. On the other hand, the proximal operator of DKL with parameter σ is given
in closed form by

proxσDKL
(x) = x−

σ1 + x−
√

(x/σ − 1)2 + 4σy

2
, (21)

After initialization of β to some value that satisfies constraint eq. (17), the algorithm proceeds by updating
the primal variable β and the dual variable µ. Finally, the algorithm as requires the estimation of the spectral
norm ‖Jβ‖ in each iteration, which quickly becomes computationally expensive. To alleviate this, we resort
to a randomized SVD method to approximate the largest singular value. This is calculated for each of the
first 20 iterations and then only every 30-40 iterations as the spectral norm doesn’t change significantly in
between.

Algorithm 1 Algorithm based on preconditioned ADMM with nonlinear operator constraint [6]

Input: ı∆, DKL, ȳ, δ, c
Initialization: β0, z0, µ0,µ0 = µ0, k = 0, σ = δ/2
while convergence criterion is not met do

Ak = J(βk)
Set τk = c/δ‖Ak‖2

βk+1 = proxτkı∆

(
βk − τk(Ak)Tµk

)
Set w = ȳ(βk+1)
zk+1 = proxσDKL

(
zk + σ(µk + δ(w − zk))

)
µk+1 = µk + δ(w − zk+1)
µk+1 = 2µk+1 − µk
k = k + 1

end while
return βk

3.2 Recovery of characteristic functions of materials

At the next step, from the estimated meta-data β, we reconstruct the binary images χk for each material k =
1, . . . , N , using the discrete tomography DART algorithm [2] in combination with unsupervised segmentation.
In the original publication of the DART algorithm, the authors use a simple global thresholding scheme
to segment the reconstruction. This can be take the form for example of Otsu’s thresholding method.
However, more sophisticated segmentation methods can improve the segmentation accuracy and in turn the
reconstruction result. We have opted to use the method of Morphological Active Contours without Edges
(MorphACWE) which belongs to the family of Morphological Snakes methods for image segmentation [8].
The original Active Contours model is based on matching a deformable model (splines) to an image by
minimising an energy functional. Within this general context, the ACWE model is based on a level-set
formulation where the curve is evolved by propagating an interface represented by the zero level-set of a
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smooth function, using a time-dependent partial differential equation (PDE). However, such a formulation
suffers from high computational cost and numerical stability issues. The MorphACWE method aims to
resolve these issues by replacing terms in the contour evolution PDE with morphological operators such as
dilation and erosion that have equivalent infinitesimal behaviour and whose effect can be computed stably
fast. We outline one iteration of the algorithm in table 1

Initialisation: compute an initial image χ̂0
k by running a conventional continuous tomography

algorithm, e.g. conjugate gradient method for normal equations.
Segmentation: use MorphACWE to produce a segmented binary image χ̂1

k from χ̂0
k.

Clustering: cluster the pixels of χ̂1
k in two groups: those for which we have high confidence (fixed)

and the rest (free). This can be achieved by setting the free pixels as the boundary pixels in χ̂1
k,

identified using the gradient magnitude. The image gradient can be estimated by applying the
Sobel operator (convolving in each direction with the Sobel 3 × 3 kernels). The boundary pixels
are then augmented with some random pixels chosen with a fixed probability 0 < p ≤ 1. The fixed
pixels are defined as the remaining pixels in χ̂1

k.
Re-calibration: keeping the fixed pixels at their existing segmented value, we compute their
contribution to the data βk and then solve an imaging problem re-estimating only the free pixels
from the residual data (lots of data, few pixel unknowns) which gives χ̂2

k.
Smoothing: smooth the reconstructed segmented image by applying a Gaussian filter to obtain
a continuous image χ̂3

k and loop back to the segmentation stage.

Table 1: DART algorithm with MorphACWE unsupervised segmentation.

4 Numerical examples

Figure 1: Target: silica (negative) preform with lead glass inhomogeneity (red).

In this section we present some numerical results demonstrating our proposed method, based on a 3D
parallel-beam geometry, though the algorithm applies unchanged to cone beam sources as well. In this case
the imaging target is a silica (SiO2, density=2.32 g/cm3) fiber (negative) preform with a 0.08×0.4×0.08 cm3

cuboid, lead glass (density=6.22 g/cm3) inhomogeneity inserted as shown in fig. 1. The positive preform and
the surrounding space are both air (density=1.205 mg/cm3) for a total of N = 3 materials with attenuation
coefficients shown in fig. 2 (data taken from the NIST database [4]). The materials are embedded into a
[−0.625, 0.625]× [−1.5, 1.5]× [−0.625, 0.625] cm3 simulation space that is discretized into Ng = 5123 voxels,
while the flat 2D [−1.65, 1.65]× [−0.825, 0.825] cm2 detector is discretized into Nu×Nv = 128×64 pixels and
can discriminate photon energies within 8 bins distributed evenly in log-space as shown in fig. 2. We make
measurements at Nθ = 20 different angles evenly distributed from 0◦ to 90◦. The source is a 140kVp x-ray
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Figure 2: Mass attenuation coefficients for silica (SiO2), lead glass and air from NIST data [4]. The source
spectrum is for a 140kVp source. The vertical dashed lines depict the intervals for the 8 energy bins used.

source with spectrum generated with Spektr [9] as shown in fig. 2. For the numerical example we ignore
scattering effects η which is a valid approximation in the energies 40 − 140 assumed. The implementation
of the model is done in Python using the well known open-source libraries NumPy, SciPy as well as the
specialized libraries ASTRA toolbox [10, 11] for 3D tomography, ITK toolkit [12] for image processing and
the ODL library [13] for efficient model specification and optimization.

4.1 Reconstruction of β

We set the initial intensity/dose to y0 = 108 and simulate a synthetic dataset of dimension 8× 20× 128× 64
before introducing Poisson noise. We run the optimization algorithm as described in section 3.1 starting
from a single material occupying the whole volume. We set the update step size in ADMM at δ = 0.001 and
perform 5000 iterations, with the final results depicted in fig. 3. Note that we only report the results for one
angle as those from the remaining 19 ones are very similar. The reconstruction is excellent as reported with
metrics the Structural Similarity Index (SSIM) of the image and the relative error defined as ‖βk− β̂k‖/‖βk‖
(where quantities are now taken as 128 × 64 long vectors for beam trajectories L at one angle). Note that
the optimization method is sensitive to the choice of parameters for this problem, requiring a small step size
and therefore many iterations.

4.2 Reconstruction of material images

From the reconstructed ‘unmixing data’ β̂k, we reconstruct the spatial support images (characteristic func-
tions) of the three materials using the algorithm in 3.2. We perform 50 iterations of the algorithm with
parameters the probability p = 0.15, with Gaussian smoothing of standard deviation σ = 1, and with Mor-
phACWE set to 5 iterations for segmentation. The results (x = 0 slice and y = 0 slice) are shown in fig. 4.
Note that for the reconstruction of the air image, there is no significant improvement with iterations of the
algorithm so we only report the initial segmented image. The results show that the main features of the
images are reconstructed to a satisfactory degree although there are some artifacts and distortions due to
the limited-angle data. It’s important to note that the lead glass inhomogeneity is clearly identified which
may be the final task objective in an NDT setting.

5 Conclusions

Spectral X-ray CT measurements include information that can compensate for the lack of full angle data,
and can thus lead to a shorter acquisition times. To exploit this advantage we have developed a discrete
tomography algorithm that combines model-based inversion and segmentation within the reconstruction
process to produce images of spatial resolution equivalent to that of full angle tomography. Numerical tests
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(a) βk for silica. (b) βk for lead glass. (c) βk for air.

(d) β̂k for silica. SSIM: 0.9997, rel. er-
ror: 8.82 × 10−2

(e) β̂k for silica. SSIM: 1.0000, rel. er-
ror: 7.89 × 10−2

(f) β̂k for silica. SSIM: 0.9978, rel. er-
ror: 1.42 × 10−2

Figure 3: Reconstruction of β. Top: true parameters βk for each material. Bottom: reconstructed parameters
β̂k for corresponding material with SSIM and relative error metrics.

on objects with discrete material composition, like those encountered in additive manufacturing, indicate
good performance and robustness to noise.
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(a) y = 0 slice for true silica image. (b) x = 0 slice for true silica image. (c) y = 0 slice for true lead glass image.

(d) y = 0 slice for reconstructed silica
image (50 iter.).

(e) x = 0 slice for reconstructed silica
image (50 iter.).

(f) y = 0 slice for reconstructed lead
glass image (0 iter.).

(g) x = 0 slice for true lead glass image. (h) y = 0 slice for true air image. (i) x = 0 slice for true air image.

(j) x = 0 slice for reconstructed lead
glass image (0 iter.).

(k) y = 0 slice for reconstructed air
image (50 iter.).

(l) x = 0 slice for reconstructed air im-
age (50 iter.).

Figure 4: True χ̂k and reconstructed χ̂k material images (y = 0 and x = 0 slices) for silica, lead glass and
air.
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A Conditions for the convexity of L(β)

Define F (β)
.
= y0 pS � exp

{
−M diag(ρ)β

}
. Then the partial derivatives of L(β) are given by

∂L(β)

∂βk
=

(
1− y

y

)T
∂y

∂βk
,

where ∂y
∂βk

=
[
∂y1

∂βk
, . . . ,

∂yNb

∂βk

]
and

∂yb
∂βk

= −DT
b (mkρk � F (β)).

Therefore, defining the Nb ×Ne matrix D = [D1, . . . ,DNb
]T , we can write for the Jacobian matrix

∇L(β) = −
(

1− y

y

)T
Ddiag(F (β))Mdiag(ρ). (22)

The elements of the Hessian matrix are given by

∂2L(β)

∂βl∂βk
=

(
1− y

y

)T
∂2ȳ

∂βl∂βk
+

(
y

ȳ�2

)T (
∂y

∂βk
� ∂y

∂βl

)
,

where ∂2ȳ
∂βl∂βk

=
[
∂2ȳ1

∂βl∂βk
, . . . ,

∂2ȳNb

∂βl∂βk

]
and

∂2ȳb
∂βl∂βk

= DT
b (mkρk �mlρl � F (β))

∂2L(β)

∂βl∂βk
=

(
1− y

y

)T
D(mkρk �mlρl � F (β)) (23)

+

(
y

ȳ�2

)T
(D(mkρk � F (β)))� (D(mlρl � F (β)))

The Hessian can thus be written as

H = diag(ρ)(H1 +H2)diag(ρ)

where

H1 = MTdiag

{(
1− y

y

)T
D diag(F (β))

}
M

and

H2 = MT (D diag(F (β)))T diag

(
y

ȳ�2

)
D diag(F (β))M

Assuming y > 0, ȳ > 0 and D,F (β) are positive, it is evident that H2 is positive definite since diag
(

y
ȳ�2

)
is positive definite and rank[D diag(F (β))M ] = N . We can therefore simultaneously diagonalize H1 and
H2 [14, Theorem 7.6.4], to write H2 = SIST and H1 = SΛST for some non-singular S and a diagonal Λ
with the eigenvalues of H−1

2 H1 in its diagonal. Then, if ȳ ≥ y, H1 is positive semidefinite and thus Λ is
non-negative diagonal, which leads to a positive definite H. If the assumption ȳ ≥ y is not true, then some
of the entries of Λ will be negative and we require that Λii ≥ −1 for i = 1, . . . , N . In conclusion, if the above
assumptions are valid L(β) is strictly convex in the open domain β > 0 since the Hessian is positive-definite.
By continuity, it is also convex in the domain β ≥ 0.
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