

# Journal of Geophysical Research: Space Physics (Technical Methods)

#### Supporting Information for

#### Low Resource Technique for Measurement of H<sup>+</sup> and O<sup>+</sup> in the Terrestrial Magnetosphere

#### P.A. Fernandes<sup>1</sup>, H.O. Funsten<sup>1</sup>, E.E. Dors<sup>1</sup>, R.W. Harper<sup>1</sup>, B.A. Larsen<sup>1</sup>,

E.A. MacDonald<sup>2</sup>, D.B. Reisenfeld<sup>1</sup>, R.M. Skoug<sup>1</sup>, J.T. Steinberg<sup>1</sup>, and M.F. Thomsen<sup>3</sup>

<sup>1</sup>Los Alamos National Laboratory, Los Alamos, NM 87545

<sup>2</sup>NASA Goddard Space Flight Center, Greenbelt, MD 20771

<sup>3</sup>Planetary Science Institute, Tucson, AZ 85719

# Contents of this file

Introduction to Data Set S1, Data Set S2, Data Set S3 Captions for Data Set S1, Data Set S2, Data Set S3

# Additional Supporting Information (Files uploaded separately)

Single Microsoft Excel file containing Data Set S1, Data Set S2, Data Set S3

# Introduction

All of the supplemental data are located in a single Microsoft Excel file. The three data sets are located in three sheets within this Excel file; the sheets are titled: Data Set S1, Data Set S2, Data Set S3.

Data Set S1 is simulation data of the estimated range of H<sup>+</sup> and O<sup>+</sup> in carbon using Stopping Range of Ions in Matter (SRIM) software. SRIM is publicly available software (see http://www.srim.org). Column A is the input energy range of the simulated ions ranging from 0.1 to 100 keV. Columns B–G are outputs from SRIM, with columns B, C, and D pertaining to H+ while columns E, F, and G pertain to O+. Column B shows the stopping power (dE/dx) for H+ in carbon in units of keV/µg cm<sup>2</sup>. Column C shows the range in Angstroms of H+ ions in carbon. Column D is calculated from Column C: it is the range in units of µg/cm<sup>2</sup> of H+ in carbon assuming a carbon density of 2.253 g/cm<sup>3</sup>. Columns E, F, and G are the Oxygen equivalents of columns B, C, and D, respectively. These data are shown graphically in Figure 1. Data Set S2 is a table of laboratory measurement data of the scattering half-angle of protons though eight ultrathin carbon foils. Column A is the energy of the incident proton beam in keV. Row 1 is the manufacturer-reported nominal thickness ( $\mu$ g·cm<sup>-2</sup>) of the 8 foils tested. The entries in this table (rows 3–10, columns B–I) are the measured scattering half-angle in degrees.

Data Set S3 is laboratory measurements of the transmission of H+ and O+ through ultrathin carbon foils using the apparatus described in Figure 5 of the paper. Column A is the foil used for each measurement for the O+ transmission study. Column B is the energy of the incident O+ beam in keV. Column C is the foil constant calculated as described in the paper using Equation 2. Column D is the measured ratio R of counts in detector D1 relative to detector D2. Columns F–M are the fits of the data to a sigmoid function; Column F is the energy range from 1–100 keV, and Columns G, H, I, J, K, L, and M are the fits for Foil numbers 2, 3, 4, 5, 6, 7, and 8, respectively.

This repeats for H+ within Data Set S3. Column O is the foil used for each measurement for the H+ transmission study. Column P is the energy of the incident H+ beam in keV. Column Q is the foil constant calculated as described in the paper using Equation 2. Column R is the measured ratio R of counts in detector D1 relative to detector D2. Columns T–Y are the fits of the data to a sigmoid function; Column T is the energy range from 0.4–100 keV, and Columns U, V, W, X, and Y are the fits for Foil numbers 2, 3, 4, 7, and 8, respectively.

This document is approved for public release and assigned document number LA-UR-19-26266.

# Captions

**Data Set S1.** Simulation data of the estimated range of  $H^+$  and  $O^+$  in carbon using Stopping Range of Ions in Matter (SRIM) software. These data are shown graphically in Figure 1.

**Data Set S2.** The measured angular scattering halfwidth at half maximum of H<sup>+</sup> transmitted through carbon foils of various nominal thickness as a function of the incident ion energy. These data are shown graphically in Figure 3.

**Data Set S3.** Transmission data for H+ and O+ beam of various energies through all carbon foils, displayed as the ratio of counts in detector D1 relative to detector D2. These data are shown graphically in Figure 6.