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1 INTRODUCTION

ł...experienced users claim that code bases are train wrecks because of overzealous use of implicits.ž śM. Odersky, 2017

ł...can impair readability or introduce surprising behavior, because of a subtle chain of inference.ž śA. Turon, 2017

łAny sufficiently advanced technology is indistinguishable from magic.ž śA.C. Clarke, 1962

Programming language designers strive to find ways for their users to express programming tasks
in ways that are both concise and readable. One approach to reduce boilerplate code is to lean on
the compiler and its knowledge and understanding of the program to fill in the łboring partsž of
the code. The idea of having the compiler automatically provide missing arguments to a function
call was first explored by Lewis et al. [2000] in Haskell and later popularized by Scala as implicit
parameters. Implicit conversions are related, as they rely on the compiler to automatically adapt data
structures in order to avoid cumbersome explicit calls to constructors. For example, consider the
following code snippet: "Just like magic!".enEspanol Without additional context one would expect
the code not to compile as the String class does not have a method enEspanol. In Scala, if the compiler
is able to find a method to convert a string object to an instance of a class that has the required
method (which resolves the type error), that conversion will be inserted silently by the compiler
and, at runtime, the method will be invoked to return a value, perhaps "Como por arte de magia!".

Implicit parameters and conversions provide ways to (1) extend existing software [Lämmel and
Ostermann 2006] and implement language features outside of the compiler [Miller et al. 2013],
and (2) allow end-users to write code with less boilerplate [Haoyi 2016]. They offload the task
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At a glance:

− 7,280 Scala projects
− 18.7M lines of code
− 8.1M implicit call sites
− 370.7K implicit declarations

98% of projects use implicits

78% of projects define implicits

27% of call sites use implicits

The top of the graph shows the ra-
tio of call sites, in each project, that
involves implicit resolution. The
bottom shows the number of im-
plicit definitions in each project.

Fig. 1. Implicits usage across our corpus

of selecting and passing arguments to functions and converting between types to the compiler.
For example, the enEspanol method from above uses an implicit parameter to get a reference to a
service that can do the translation: def enEspanol(implicit ts:Translator):String. Calling a function
that has implicit arguments results in the omitted arguments being filled from the context of the
call based on their types. Similarly, with an implicit conversion in scope, one can seamlessly pass
around types that would have to be otherwise converted by the programmer.

The Good: A Powerful Tool. It is uncontroversial to assert that implicits changed how Scala is used.
Implicits gave rise to new coding idioms and patterns, such as type classes [Oliveira et al. 2010].
They are one of a few key features which enable embedding Domain-Specific Languages (DSLs) in
Scala. They can be used to establish or pass context (e.g., implicit reuse of the same threadpool in
some scope), or for dependency injection. Implicits have even been used for computing new types
and proving relationships between them [Miller et al. 2014; Sabin 2019]. The Scala community
adopted implicits enthusiastically and uses them to solve a host of problems. Some solutions gained
popularity and become part of the unofficial programming lexicon. As usage grew, the community
endeavored to document and teach these idioms and patterns by means of blog posts [Haoyi 2016],
talks [Odersky 2017] and the official documentation [Suereth 2013]. While these idioms are believed
to be in widespread use, there is no hard data on their adoption. How widespread is this language
feature? And what do people do with implicits? Much of our knowledge is folklore based on a
handful of popular libraries and discussion on various shared forums.
Our goal is to document, for language designers and software engineers, how this feature is

really used in the wild, using a large-scale corpus of real-world programs. We provide data on how
they are used in popular projects engineered by expert programmers as well as in projects that are
likely more representative of how the majority of developers use the language. This paper is both a
retrospective on the result of introducing this feature into the wild, as well as a means to inform
designers of future language of how people use and misuse implicits.

The Bad: Performance. While powerful, implicits aren’t without flaws. Implicits have been ob-
served to affect compile-time performance; sometimes significantly. For example, a popular Scala
project reported a three order-of-magnitude speed-up when developers realized that an implicit
conversion was silently converting Scala collections to Java collections only to perform a single
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case class Card(n:Int, suit:String) {

def isInDeck(implicit deck: List[Card]) =

deck contains this

}

implicit def intToCard(n:Int) = Card(n, "club")

implicit val deck = List(Card(1, "club"))

1.isInDeck

1.isInDeck

intToCard(1).isInDeck deck.apply(1).isInDeck

deck.apply(1).isInDeck(deck)

NoSuchElementException

intToCard(1).isInDeck(deck)

1 2

Fig. 2. Instead of injecting a conversion to intToCard (1), the compiler injects deck.apply (2) since List[A]

extends (transitively) Function[Int,A]. An exception is thrown because the deck contains only one element
(http://scalapuzzlers.com/)

operation that should have been done on the original object.1 Another project reported a 56 line
file taking 5 seconds to compile because of implicit resolution. Changing one line of code to remove
an implicits, improved compile time to a tenth of second [Torreborre 2017]. Meanwhile, faster com-
pilation is the most wished-for improvement for future releases of Scala [Lightbend 2018]. Could
implicit resolution be a significant factor affecting compilation times across the Scala ecosystem?

The Ugly: Readability. Anecdotally, there are signs that the design of implicits can lead to confus-
ing scenarios or difficult-to-understand code. Figure 2 illustrates how understanding implicit-heavy
code can place an unreasonable burden on programmers2. In this example, the derivation chosen by
the compiler leads to an error which requires understanding multiple levels of the type hierarchy
of the List class. Such readability issues have even lead the Scala creators to reconsider the design
of Scala’s API-generation tool, Scaladoc. This was due to community backlash [Marshall 2009]
following the introduction of the Scala 2.8 Collections library [Odersky and Moors 2009]Ða design
which made heavy use of implicits in an effort to reduce code duplication. The design caused
a proliferation of complex method signatures across common data types throughout the Scala
standard library, such as the following implementation of the map method which was displayed by
Scaladoc as: def map[B,That](f:A=>B)(implicit bf:CanBuildFrom[Repr,B,That]):That. To remedy this,
Scaladoc was updated with use-cases,3 a feature designed to allow library authors to manually
override method signatures with simpler ones in the interest of hiding complex type signatures
often further complicated by implicits. The same map signature thus appears as follows in Scaladoc
after simplification with a @usecase annotation: def map[B](f: (A) => B): List[B]

ThisWork. To understand the use of implicits across the Scala ecosystem, we have built an open
source and reusable pipeline to automate the analysis of large Scala code bases, compute statistics
and visualize results. We acquired and processed a corpus of 7,280 projects from GitHub with over
8.1M implicit call sites and more than 370.7K implicit declarations across 18.7M non-empty lines of
Scala code. We observed over 98.2% projects using implicits, and 78.2% projects declaring implicits.
With close to 27.2% of call sites requiring implicit resolution, implicits are the most used feature of
Scala. Figure 1 summarizes the usage of implicits in our corpus. Our results document which idioms
and patterns are popular and in application, library and tests. We provide data on the compilation
time cost of implicits and the complexity of implicits. Our artifact is available at:

https://doi.org/10.5281/zenodo.3369436

1Documented in https://github.com/mesosphere/marathon/commit/fbf7f29468bda2ec29b7fbf80b6864f46a825b7a.
2For example, an entire book is devoted to so-called łpuzzlers,ž or łenigmatic Scala code that behave highly contrary to
expectationsž which łwill entertain and enlighten even the most accomplished developerž [Phillips and Serifovic 2014]
3cf. https://docs.scala-lang.org/overviews/scaladoc/for-library-authors.html
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2 AN OVERVIEW OF SCALA IMPLICITS

Scala is a statically typed language that bridges the gap between object-oriented and functional
programming. Implicits were included in the first release in 2004. In that version implicit conversions
were used to solve the late extension problem; namely, given a class C and a trait T , how to have C
extend T without touching or recompiling C . Conversions add a wrapper when a member of T is
requested from an instance of C . Scala 2.0 added implicit parameters in 2006.

2.1 Implicit Conversions

Implicit conversion provides a way to use a type where another type is required without resorting to
an explicit conversion. They are applied when an expression does not conform to the type expected
by its context or when a called method is not defined on the receiver type. A conversion is defined
with an implicit function or class, or an implicit value of a function type (e.g., implicit val x:A=>B).

Implicit conversions are not specific to Scala. They also appear in languages such as C++ or C#.
The difference is that conversions are typically defined in the class participating in the conversion,
while in Scala the implicit conversions can be defined in types unrelated to the conversion types.
This allows programmers to selectively import conversions. For example it is possible to define an
implicit conversion from a String to an Int:

implicit def string2int(a: String): Int = Integer.parseInt(a)

val x: Int = "2"

Implicit conversions are essential to provide seamless interoperability with Java which was impor-
tant in the early days of Scala. Conversions are also one of the main building blocks for constructing
embedded Domain-Specific Languages (DSLs). For example, the following code snippet adds some
simple time unit arithmetic that feels natural in the language.

case class Duration(time: Long, unit: TimeUnit) {

def +(o: Duration) = Duration(time + unit.convert(o.time, o.unit), unit)

}

implicit class Int2Duration(that: Int) {

def seconds = new Duration(that, SECONDS); def minutes = new Duration(that, MINUTES)

}

5.seconds + 2.minutes //Duration(125L, SECONDS )

2.2 Implicit Parameters

A method or a constructor can define implicit parameters. The arguments to these parameters will
be filled in by the compiler at every call site with the most suitable values in the calling context.
For example, a function def sub(x:Int)(implicit y:Int)=x-y with implicit parameter y can be called
with sub(1) provided that the compiler can find an implicit such as implicit val n=1. The compiler
looks for implicits in the current lexical scope and if there are no eligible identifiers then it searches
the implicit scope of the implicit parameter’s type (associated companion objects4 and packages).
If a value is found, the compiler injects it into the argument list of the call. If multiple values are
found and none of them is more specific than the others, an ambiguity compilation error is thrown.
An error is also raised when no eligible candidate is found. Importantly, besides having the correct
type, an implicit value from a lexical scope must be accessible using its simple name (without
selecting from another value using dotted syntax). This means that normal rules for name binding
including shadowing apply. Implicit values (val), variables (var), objects (object) and functions (def)
without explicit parameters can all be used to fill implicit parameters. An implicit parameter of
a function type A => B can be used as an implicit conversion in the method body. For example

4A companion object is a singleton associated with a class used to define static fields and methods.
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def get[T, C](xs: C, n: Int)(implicit conv: C => Seq[T]):T = xs(n) can be called with any type C, as
long as there is implicit conversion in scope that can convert C into a sequence.

2.3 Idioms and Patterns

Over time, programmers have put implicits to many uses. This section describes the most widely
discussed implicit idioms. This list is based on our understanding of the state of practice. It is not
expected to be exhaustive or definitive.

2.3.1 Late Trait Implementation. This idiom is a solution for the late extension problem, and was
the original motivation for adding implicits to Scala in the first place. To add a new trait to an
existing class, one can define a one-parameter conversion that returns an instance of the trait.

implicit def call2Run(x: Callable[_]): Runnable = new Runnable { def run = x.call }

This snippet adds the Runnable interface to any any type that implements Callable. Conversions can
also take implicit parameters, they are then referred to as conditional conversions.

implicit def call2Future[T](x: Callable[T])(implicit ctx: ExecutionContext): Future[T]

For example, the above defines a late trait implementation that is only applicable if there exists an
execution context in scope.

2.3.2 Extension Methods. Extension methods allow developers to add methods to existing classes.
They are defined with an implicit def that converts objects to a new class that contains the desired
methods. Scala 2.10 added syntactic sugar to combine conversion and class declaration in the
implicit class construct. The conversion takes a single non-implicit parameter as shown in the
following snippet where zip is added to any Callable.

implicit class XtensionCallable[T](x: Callable[T]) {

def zip[U](y: Callable[U]): Callable[(T, U)] = () => (x.call, y.call)

}

val c1 = () => 1; val c2 = () => true; val r = c1 zip c2 // r: Callable[(Int, Boolean)]

An extension method is convenient as it allows to write c1 zip c2 instead of zip(c1, c2). It is an
important feature for embedded DSLs. On the other hand, unlike static methods, it is harder to
read. Without knowing the complete code base it is difficult to know where a calling method
is defined and how the definition got into the current scope. Extension methods can also be
conditional. For example, we can add a def schedule(implicit c: ExecutionContext) method that will
run the callable on the implicitly provided execution context if it is present. If there is none,
the developer will get a compile-time error łcannot find an implicit ExecutionContext ... import
scala.concurrent.ExecutionContext.global.ž. This is because the ExecutionContext is annotated with
@implicitNotFound, a Scala annotation allowing one to customize the compile-time error message
that should be outputted in the case no implicit value of the annotated type is available.

2.3.3 Type Classes. Oliveira et al. [2010] demonstrated how to use implicit parameters to implement
type classes [Wadler and Blott 1989]. Fig. 3a defines a trait Show that abstracts over pretty-printing
class instances. The function show can be called on instances T, for which there is an implicit value of
type Show[T]. This allows us to retrospectively add support to classes we cannot modify. For example,
given a class Shape(sides: Int) from a 3rd party library, we can define the implicit value ShapeShow to
add pretty printing (Fig. 3b). This is an implicit object that extends Show and implements show. Thus
when show is called with an explicit argument of type Shape, for example show(Shape(5)), the compiler
adds the implicit ShapeShow as the implicit argument ev, resulting in show(Shape(5))(shapeShow).
Since functions can be used as implicit parameters, we can generalize this example and create an
implicit allowing us to show a sequence of showable instances. In the following snippet, listShow is
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trait Show[T] {

def show(x: T): String

}

def show[T](x: T)(implicit ev: Show[T]) =

ev.show(x)

(a)

case class Shape(n: Int)

implicit object shapeShow extends Show[Shape] {

def show(x: Shape) = x.n match {

case 3 => "a triangle"; case 4 => "a square"

case _ => "a shape with $n sides" }

}

(b)

implicit def listShow[T](implicit ev: Show[T]) = new Show[List[T]] {

def show(x: List[T]) = x.map(x => ev.show(x)).mkString("a list of [", ", ", "]")

}

(c)

Fig. 3. Type classes

a generic type class instance that combined with an instance of type Show[T] returns a type class
instance of type Show[List[T]] (Fig. 3c). Thus, a call to show(List(Shape(3), Shape(4))) is transformed
to show(List(Shape(3), Shape(4)))(listShow[Shape](shapeShow)), with two levels of implicits inserted.
This implicit type class derivation is what makes type classes very powerful. The mechanism can
be further generalized using implicit macros to define a default implementation for type class
instances that do not provide their own specific ones [Miller et al. 2014; Sabin 2019].

2.3.4 Extension Syntax Methods. Type classes define operations on types, when combined with
extension methods it is possible to bring these operations into the corresponding model types. We
can extend the Show[T] type class and define an extension method

implicit class ShowOps[T](x: T)(implicit s: Show[T]) { def show = s.show(x) }

allowing one to write directly Shape(3).show instead of show(Shape(3)). The ShowOps[T] is a conditional
conversion that is only applied if there is an instance of the Show[T] in scope. This allows library
designers to use type class hierarchies instead of the regular sub-typing. The name extension syntax
methods comes from the fact that developers often lump these methods into a package called syntax.

2.3.5 Type Proofs. Implicit type parameters can used to enforce API rules at a compile time by
encoding them in types of implicit parameters. For example, flatten is a method of List[A] such
that given an instance xs: List[List[B]], xs.flatten returns List[B] concatenating the nested lists
into a single one. This is done with an implicit parameter:

class List[A] { def flatten[B](implicit ev: A => List[B]): List[B] }

Here, A => List[B] is an implicit conversion from A to List[B]. It can also be viewed as a predicate
that must be satisfied at compile time in order for this method to be called. We can define an
implicit function implicit def isEq[A]: A=>A = new =>[A,A]{} that will act as generator of proofs such
that A in A => List[B] is indeed List[B]. Therefore, a call List(List(1)).flatten will be expanded to
List(List(1)).flatten(isEq[List[Int]]) since A is a List while List(1).flatten will throw a compile
time exception: łNo implicit view available from Int => List[B]ž.

2.3.6 Contexts. Implicit parameters can reduce the boilerplate of threading a context parameter
through a sequence of calls. For example, the methods in scala.concurrent, the concurrency library
in Scala’s standard library, all need an ExecutionContext (e.g., a thread pool or event loop) to execute
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their tasks upon. The following code shows the difference between explicit and implicit contexts.

val ctx = ExecutionContext.global

val f1 = Future(1)(ctx)

val f2 = Future(2)(ctx)

val r = f1.flatMap(r1 =>

f2.map(r2 => r1 + r2)(ctx)

)(ctx)

With explicit context

implicit val ctx = ExecutionContext.global

val f1 = Future(1)

val f2 = Future(2)

val r = for(r1 <- f1; r2 <- f2) yield r1 + r2

With implicit context

On the left, an explicit context is passed around on every call to a method on Future, while on the
right much of the clutter is gone thanks to implicits. This de-cluttering hides the parameters and
makes calls to map and flatMap more concise. The idiom consists of the declaration of an implicit
context (usually as an implicit val), and the declaration of the functions that handle it.

2.3.7 Anti-patterns: Conversions. A widely discussed anti-pattern is the conversions between types
in unrelated parts of the type hierarchy. The perceived danger is that any type can be automatically
coerced to a random type unexpectedly; e.g., imagine a conversion from Any to Int introduced into
the root of a big project. One could imagine such a conversion wreaking havoc in surprising places
in a code base and being difficult to track down. Another anti-pattern is conversions that go both
ways [Odersky 2017]. Since conversions are not visible, it is difficult to reason about types at a given
call site as some unexpected conversion could have happened. An example is the, now deprecated,
Java collection conversion. In an earlier iteration, Scala defined implicit conversions between Java

collections and its own, such as:

implicit def asJavaCollection[A](it: Iterable[A]): java.util.Collection[A]

implicit def collectionAsScalaIterable[A](i: java.util.Collection[A]): Iterable[A]

As they were often imported together using a wildcard import collection.JavaConversions._, it was
easy to mistakenly invoke a Javamethod on a Scala collection and vice-versa silently converting the
collections from one to another. Furthermore, in this case, these conversions also change semantics
as the notion of equality in Java collections is different from Scala collections (reference vs. element
equality). Since implicit conversions can introduce some pitfalls, the compiler issues a warning
when compiling an implicit conversion definition. It can be suppressed by an import (or a compiler
flag) which is usually automatically done by an IDE and thus diminishing the utility of these
warnings.

2.4 Complexity

Implicits help programmers by hiding the łboring partsž of programming tasks, the plumbing
that does not require skill or attention. The problem is that, as the above idioms demonstrate,
implicits are also used for subtle tasks. Their benefits can turn into drawbacks. One way to measure
the potential complexity of implicits is to look at the work done by the compiler. When implicits
work, programmers need not notice their presence. But when an error occurs, the programmer
suddenly has to understand the code added by scalac. For example, a comparison of two tuples
(0,1)<(1,2) gets expanded to orderingToOrdered((0,1))(Tuple2(Int, Int))<(1,2). The compiler injects
two additional calls (orderingToOrdered implicit conversion, Tuple2 type class) with two implicit
arguments (Int). The question is how much of this filling there is.

Tooling can help navigate the complexity added by implicits. The plugin for IntelliJ IDEA has a
feature that can show implicit hints, including the implicit resolution in the code editor. This effec-
tively reveals the injected code making it an indispensable tool for debugging. However, turning the
implicit hints on severely hinders the editor performance, creating a significant lag when working
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with implicits-heavy files. The second problem with this is that the IntelliJ compiler is not the same
as scalac, and often implicit resolution disagrees between the two compiler implementations.
Another common problem that hinders understanding is related to implicit resolution. Eligible

implicits for both conversions and parameters are searched in two different scopes. The search
starts in the lexical scope that includes local names, enclosing members and imported members and
continues in the implicit scope that consists of all companion objects associated with the type of
the implicit parameter. The advantage of the implicit scope is that it does not need to be explicitly
imported. This prevents errors caused by missing imports for which, due to the lack of global
implicit coherence, the compiler cannot give a better error message than a type mismatch, łmember
not foundž or łcould not find implicit valuež. Implicit scope has a lower priority allowing users to
override defaults by an explicitly importing implicit definition into the lexical scope. A consequence
of this is that an import statement can change program semantics. For example, in the code bellow
contains two late trait implementations of a trait T for a class A: C1 defined in implicit scope of the
class A, and C2 defined in an unrelated object O:

trait T { def f: Int }

class A; object A { implicit class C1(a: A) extends T { def f = 1 } }

object O { implicit class C2(a: A) extends T { def f = 2 } }

new A().f

At the call to f, the compiler will use the C1 conversion resolved from the implicit scope so the
result will be 1. However, if later there is an import O._ before the call site, the expression will return
2. The import will bring C2 into the lexical scope prioritizing C2 over C1.
Further, implicits defined in the lexical scope follow the name binding rules and thus can be

shadowed by explicit local definitions. For instance, adding any definition with a name C2 (e.g.,
val C2 = null) into the scope before the call to f will result in returning again 1, since the imported
O.C2 implicit will be shadowed by this local definition. In the case C1 did not exits, the compiler will
simply emit łvalue f is not a member of Až error. To avoid this, library authors try to obfuscate the
implicits names which in turn affects the ergonomics. A notable example is in the Scala standard
library where the implicit providing a proof that two types are in a sub-type relationship is named
$conforms in order to prevent a potential shadowing with a locally defined conforms method.5

2.5 Overheads

Implicit resolution together with macro expansion can sometimes significantly increase compilation
time. To illustrate the problem, consider the JSON serialization of algebraic data types using the
circe.io

6, a popular JSON serialization library. We define two ADTs: case class A(x: String) and
case class B(xs: List[A], ys: List[A]), and a method to print out their JSON representation:

def print(a: A, b: B) = println(a.asJson, b.asJson)

The asJson method is an extension method defined in the circe.io as def asJson(implicit encoder:

Encoder[T]): Json. It uses an implicit parameter of type Encoder[T] effectively limiting its applicability
to instances that define corresponding encoder. For the code to compile, two encoders Encoder[A]

and Encode[B] that turn A and B into Json are needed. The circe.io library gives three options for
creating the encoder: manual, semi automated and automated.
The manual encoding involves implementing the single method in Encoder, manually creating
an instance of Json with the appropriate fields (cf. Listing. 4a). While simple, it is a boilerplate
code. The semi-automated solution delegates to derivedEncored that synthesizes the appropriate
type at compile time through implicit type class derivation and macros (cf. Listing. 4b). The fully

5Reported in Scala issue #7788, cf. https://github.com/scala/bug/issues/7788
6cf. https://github.com/circe/circe
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object manual {

implicit val eA: Encoder[A] = (a: A) =>

obj("x"->str(a.x))

implicit val eB: Encoder[B] = (b: B) =>

obj("xs" -> arr(b.xs.map(_.asJson)),

"ys" -> arr(b.ys.map(_.asJson)))

}

(a) manual

object semiauto {

import io.circe.generic.semiauto._

implicit val eA: Encoder[A] = deriveEncoder[A]

implicit val eB: Encoder[B] = deriveEncoder[B]

}

(b) semi-automated
import io.circe.generic.auto._

(c) automated

Fig. 4. Type class derivations

automated solution, does not require extra code at the client side beside importing its machinery
(cf. Listing. 4c). Compile time is affected by the choice of approach; taking the manual as a base
line, semi-automated is 2.5x slower and automated is 3.8x slower.

Table 1. Count of implicit resolutions
and macro expansions, and timing of
the typer phase in scalac 2.12.8 with
-Ystatistics:typer flag.

Implicits Macros Time

Manual 13 0 .1s
Semi 35 51 .3s
Auto 52 78 .5s

The reason for this compile-time slow-down is the in-
crease in the number of implicit resolutions triggered
and macro expansion as shown in Table 1. The difference
between the automated and semi-automated is that the
former caches the derived instances in the implicit values
eA and eB and so the eA which is synthesized before eB

will be reused for deriving eB. The automated derivation
synthesizes new instances for each application. In this
simple example, it generates 140 additional lines of code
at the println

7. Caching of derived type classes was al-
ready reported to significantly improve the compilation
time of various projects [Cantero 2018; Torreborre 2017]. One difficulty is that since the implicit
scope is invisible, it is harder to figure out which implicits are derived where and which are causing
slowdowns. Currently, the only way is to use a scalac-profiling8, compiler plugin which outputs
more detailed statistics about implicit resolution and macro expansion.

3 SCALA ANALYSIS PIPELINE

We have implemented a data analysis pipeline targeting large-scale analysis of Scala programs.
To the best of our knowledge, this is the only pipeline able to scale to thousands of projects. Our
infrastructure can be extended for other analyses and it is available in open source.

Figure 5 gives an overview of the pipeline; every step shown in the figure is fully automated. The
first step is to download projects hosted on GitHub. Next, gather basic metadata and in particular
infer the build system each project uses. Incompatible projects are discarded in the next step. These
are projects that do not meet the technical requirements of the analysis tools. The fourth step is to
use the DéjàVu tool [Lopes et al. 2017] to filter out duplicate projects. The fifth step is to attempt to
compile the corpus and generate semantic information. The final step is to load the extracted data
and analyze them. The pipeline is run in parallel using GNU parallel [Tange et al. 2011] but the
analysis is resource intensive. On our server (Intel Xeon 6140, 2.30GHz with 72 cores and 256GB of
RAM) we were not able to compile more than 12 projects in parallel.

7Measured in the expanded code obtained from -Xprint:typer compiler flag
8cf. https://github.com/scalacenter/scalac-profiling
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Fig. 5. Scala Analysis pipeline. (1) is the size of source code, (2) is the size of source plus compiled code and
generated SemanticDB, (3) is the size of extracted implicits data model, (4) is the size of exported CSV files.
The code size include tests.

The pipeline is reusable for other semantic analyses on Scala code bases, as only the last two
steps relate specifically to implicits. At the end of the Compile and generate SemanticDB task, the
corpus contains built projects with extracted metadata and SemanticDB filesÐthese SemanticDB
files contain syntactic information as well as semantic information (Scala symbols and types).

The pipeline logs all the steps for each project and provide an aggregated summaries. The analysis
is done in R, and even though it is possible to load Google Protocol Buffers into R, it is not practical.
Thus, we first aggregate the extracted data and export them into CSV format, which is more natural
to work with in R. This is implemented in ~500 lines of make files and ~5K of R code. The implicit
extractor is written in ~7.2K lines of Scala code.

The pipeline uses Scalameta9, a library that provides a high-level API for analyzing programs.
One part of this library is a compiler plugin that for each compilation unit produces a data model
with syntactic and semantic information. This includes a list of defined and referenced symbols
as well as synthetic call sites and parameters injected by the compiler. The result is stored in
a binary SemanticDB10 file (in Google Protocol Buffer serialization format). It can also extract
symbol information from compiled classes allowing us to find implicits defined in external project
dependencies. Note that this analysis would have not been possible with only syntactic information;
compile-time information like types is required to match up call site and declaration site due
to the fact that implicits themselves are type-directed rewritings performed by the compiler at
type-checking time.

Based on this we have built a tool that extract implicit declarations and call sites. There are two
limitations with Scalameta: it is limited to certain versions of Scala (2.11.11 in the 2.11 branch and
2.12.4 in the 2.12 branch), and it does not support white-box macros (i.e., macros without precise
signatures in the type system before their expansion) [Burmako 2017].

Another thing to consider when using SemanticDB is that it requires compiling the projects. The
Scala compiler is about an order of magnitude slower than a Java compiler11 and the SemanticDB
compiler plugin adds additional overhead. For our analysis Sbt is used to rebuild each project three
times. There is no easy way around this. As noted above, lightweight, syntax-based approaches
using regular expressions or pattern matching over AST nodes would not work because the call

9cf. https://scalameta.org/
10cf. https://scalameta.org/docs/semanticdb/specification.html
11cf. https://stackoverflow.com/a/3612212/219584
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sites that use implicits are not visible in the source/AST, and to identify these patterns requires
resolving terms and types from the declaration- and use-sites.

Scala projects are compiled by build tools which are responsible for resolving external dependen-
cies. We chose Sbt as it is the most-used tool in the Scala world. Since version 0.13.5 (August 2014),
it supports custom plugins which we use to build an extractor of metadata. Next to the version
information and source folder identification, the extracted metadata gives us information about
project internal and external dependencies. This is necessary for assembling project’s class-path
that is used to resolve symbols defined outside of the project.

3.1 Implicit Extraction

The SemanticDB model contains low-level semantic information about each compilation unit.
This includes synthetics, trees added by compilers that do not appear in the original source (e.g., in-
ferred type arguments, for-comprehension desugarings, C(...) to C.apply(...) desugarings, implicit
parameters and call sites). These trees are defined as transformations of pieces of the original Scala
AST and as such they use quotes of the original sources. For example, the following Scala code:

import ExecutionContext.global; Future(1)

will have two synthetic trees injected by the compiler:

- ApplyTree(OriginalTree(1,60,1,86), IdTree("EC.global"))

- TypeApplyTree(SelectTree(OriginalTree(1,60,1,83),IdTree("Future.apply()")),TypeRef("Int"))

In this form, SemanticDB is not convenient for higher-level queries about the use of implicits. In
order to do this, we transform SemanticDB into our own model that has declarations and call
sites resolved. This is done in two steps. First, we extract implicit declarations by traversing each
compilation unit and collecting declarations with the implicit modifier. For each declaration, we
resolve its type using the symbol information from the SemanticDB and the project class path. This
is done recursively in the case the declaration type has parents. Next, we look into the synthetic
trees and extract inserted implicit function applications. Together with the project metadata, both
declaration and call sites are stored in a tree-like structure using the Google Protocol Buffer format.
In our example, the extractor will produce 13 declarations and one implicit call site including:

// def apply [T ]( body : => T)( implicit executor : EC)

- Declaration("Future.apply()", DEF, ret=Ref("Future.apply().[T]"), params=List(

ParamList(Param("body", Ref("Future.apply().[T]"))),

ParamList(Param("executor", Ref("EC"), isImplicit=true))))

// implicit val global : EC

- Declaration("EC.global", VAL, ret=Ref("EC",List()), isImplicit=true)

// Future . apply [ Int ](1) ( EC. global )

- CallSite("Future.apply()", typeArgs=Ref("Int"), implicitArgs=Ref("EC.global"))

Such model can be queried using the standard Scala collection API. For example, we can list a
project’s ExecutionContext declarations and the corresponding call sites that use them as follows:

val declarations = proj.declarations filter (dcl =>

dcl.isImplicit && dcl.isVal && dcl.returnType.isKindOf("EC"))

val callsites = {

val ids = declarations.map(_.declarationId).toSet

proj.implicitCallsites filter (cs =>

cs.implicitArguments exists (arg => ids contains arg))

}

The extractor is run per project in parallel and the results are merged into one binary file. This file
can be streamed into a number of processors that export information about declarations, call sites,
implicit conversions and implicit parameters into CSV files.
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4 PROJECT CORPUS

For this paper we analyzed 7,280 projects consisting of 18.7M lines of Scala code (including 5.9M
lines of tests and 2.2M lines of generated code). Most projects are small, the median is 677 lines
of code, but the corpus also includes projects with over 100K lines of source code. 4,197 projects
use Scala 2.11 but they account for less code (43.8%) and fewer stars (33.7%). For the remainder
of the paper we partition our corpus in four categories: small apps are project with fewer than
1,000 LOC, large apps are projects with more than 1,000 LOC, libraries are projects that are listed
on Scaladex. We also extract the test code from all projects into the tests category. Scaladex is a
package index of projects published in Maven Central and Bintray repositories. These labels are
somewhat ad-hoc as there is not always a strong reason behind the addition of a project to Maven
Central or Bintray. However, manual inspection suggests that most of the projects that appear on
Scaladex are intended for reuse.

Table 2. Project categories

Category Projects Code size GitHub stars Commits
Small apps. 3.3K 1M (mean=0.3K) 28K (mean=8) 139K (mean=41)
Large apps. 1.3K 5M (mean=4.0K) 74K (mean=57) 425K (mean=325)
Libraries 2.6K 6M (mean=2.4K) 285K (mean=108) 712K (mean=271)
Tests 5.4K 5M (mean=1.1K) - -

Figure 6 shows all projects, the size of the dots reflects number of stars, the color their category
(large/small apps or libraries), the x-axis indicates the number of lines of code (excluding 5.9M lines
of tests) in log scale, the y-axis gives the number of commits to the project in log scale. Solid lines
indicate the separation between small and large applications. Dotted lines indicate means.

The corpuswas obtained frompublicly available projects listed in theGHTorrent database [Gousios
2013] and Scaladex. The data was downloaded between January and March 2019. We started with
65,177 non-empty, non-fork projects, which together contained 121.4M lines of code. We filtered
out projects that were not compatible with our analysis pipeline (e.g., projects using early versions
of Scala) and removed duplicates. 43K use Sbt as their build system (other popular build systems
are Maven with 5.1K projects and Graddle with 1.5K). From the Sbt projects, 23.6K use Sbt version
0.13.5+ or 1.0.0+ that is required by our analysis. We thus discarded about half of the downloaded
code.

For duplicates, the problem is that even without GitHub forks, the corpus still contained unofficial
forks, i.e., copies of source code. For example, there were 102 copies of spark. Since spark is the largest
Scala project (over 100K LOC), keeping them would significantly skew the subsequent analysis
as 37.6% of the entire data set would be identical. In general, getting rid of duplicate projects is
difficult task as one needs to determine the origins of individual files. We use that following criteria
to retain a project: (1) it must have more than one commit, (2) it must be active for at least 2 months,
(3) it must be in Scaladex or have less than 75% of file-level duplication or more than 5 stars on
GitHub, and (4) it must be in Scaladex or have less than 80% duplication or more than 500 stars on
GitHub. These rules were tuned to discard as many duplicates as possible while keeping originals.
While large numbers of GitHub stars do not necessarily mean that a project widely-used, originals
tend to have higher star counts than copies. The actual thresholds were chosen experimentally to
make sure we keep all the bigger (> 50K LOC) popular Scala projects without any duplicates. We
excluded 12,550 projects (33.1M lines of code). While this is over half of the source code from the
compatible Sbt projects, we lost fewer than 2.8% stars.
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Fig. 6. Corpus overview

From the resulting 11,057 projects, we were able to successfully compile 7,326 projects. 3,731
projects failed to build. We follow the standard procedure of building Sbt projects. If a project
required additional steps, we marked it as failed. The following are the main sources of failures:
− Missing dependencies (2.1K).Mostmissed dependencieswere for scalajs (964), a Scala-to-JavaScript

compiler with a version that was likely removed because of security vulnerabilities. The next
most frequent issue was due to snapshot versions (263) that were no longer available. The remain-
der were libraries that were taken down or that reside in non-standard repositories. Following
common practice, we use a local proxy that resolves dependencies. No additional resolvers were
configured. The proxy downloaded 204K artifacts (110GB).

− Compilation error (873). Some commits do not compile, and others fail to compile due our
restriction on Scala versions. Scalameta requires Scala 2.11.9+ or 2.12.4+. Some projects are
sensitive even down to the path version number. Some of these version upgrades might have
also caused the missing dependencies in case the required artifact was built for a particular Scala
version.

− Broken build (189). The Sbt could not even start due to errors in the build.sbt.
− Empty build (156). Running Sbt did not produce class files, leaving the projects empty. This

happens when the build has some non-standard structure.
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Finally, in the analysis, we discarded 46 projects (1.1% of the code) because some of their referenced
declarations were not resolvable (the Scalameta symbol table did not return any path entry) and
inconsistencies in SemanticDB. Table 3 lists some of the top rated projects that were included in
the final corpus, including number of stars, lines of code, number of commits, level of duplication,
Scala version and whether it is listed in Scaladex.

Table 3. Top 40 open source projects

Project GitHub stars Code size Commits Duplication Scala version Scaladex
apache/spark 21,067 238,062 23,668 0.4 2.12.8 Y
apache/predictionio 11,696 12,764 4,461 0 2.11.12 N
scala/scala 11,386 139,300 28,062 0.9 2.12.5 Y
akka/akka 9,666 109,359 22,966 0.001 2.12.8 Y
gitbucket/gitbucket 7,612 31,144 4,874 0 2.12.8 Y
twitter/finagle 7,003 63,976 6,386 0.01 2.12.7 Y
yahoo/kafka-manager 6,958 16,733 596 0.5 2.11.8 N
ornicar/lila 5,218 175,054 30,617 0.01 2.11.12 N
rtyley/bfg-repo-cleaner 5,014 1,351 465 0 2.12.4 Y
linkerd/linkerd 4,910 74,775 1,344 0.003 2.12.1 Y
fpinscala/fpinscala 4,244 5,914 327 1 2.12.1 N
haifengl/smile 4,242 4,731 1,271 0 2.12.6 Y
gatling/gatling 4,151 24,322 7,900 0 2.12.8 Y
scalaz/scalaz 4,079 34,146 6,523 0 2.12.8 Y
mesosphere/marathon 3,823 39,097 6,694 0.03 2.12.7 N
sbt/sbt 3,782 35,574 6,726 0.4 2.12.8 Y
twitter/diffy 3,375 3,778 73 0 2.11.7 Y
lampepfl/dotty 3,278 88,680 14,616 0.3 2.12.8 N
twitter/scalding 3,113 29,346 4,133 0 2.11.12 Y
typelevel/cats 3,093 23,607 3,878 0.009 2.12.7 Y
scalanlp/breeze 2,816 35,747 3,461 0.002 2.12.1 Y
scalatra/scalatra 2,382 8,914 3,174 0.3 2.12.8 Y
netflix/atlas 2,288 22,474 1,450 0 2.12.8 Y
spark-jobserver/spark-jobserver 2,286 7,403 1,571 0.3 2.11.8 Y
twitter/util 2,243 26,927 2,472 0.2 2.12.7 Y
slick/slick 2,188 23,622 2,084 0 2.11.12 Y
laurilehmijoki/s3_website 2,178 1,435 1,014 0 2.11.7 N
twitter/summingbird 2,011 9,057 1,790 0.3 2.11.12 Y
MojoJolo/textteaser 1,942 420 49 0 2.11.2 N
twitter/finatra 1,888 14,071 1,772 0.001 2.12.6 Y
twitter/algebird 1,836 23,676 1,502 0 2.11.12 Y
scala-exercises/scala-exercises 1,775 5,398 1,570 0 2.11.11 Y
circe/circe 1,633 8,140 1,749 0.006 2.12.8 Y
datastax/spark-cassandra-connector 1,569 11,120 2,418 0.2 2.11.12 Y
rickynils/scalacheck 1,480 4,038 1,091 0 2.12.6 Y
monix/monix 1,466 33,749 1,251 0 2.12.8 Y
http4s/http4s 1,459 27,412 6,765 0.003 2.12.7 Y
sangria-graphql/sangria 1,442 14,999 975 0.2 2.12.7 Y
spotify/scio 1,439 20,477 2,659 0.002 2.12.8 Y
coursier/coursier 1,417 13,313 1,984 0 2.12.8 Y

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 163. Publication date: October 2019.



Scala Implicits Are Everywhere 163:15

5 ANALYZING IMPLICITS USAGE

This section presents the results of our analysis and paints a picture of the usage of implicits in our
corpus of Scala programs. We follow the structure of Section 2 and give quantitative data on the
various patterns and idioms we presented including details about how identified them. We further
discuss the impact of implicits on code comprehension and compilation time.

Identifying implicits requires performing a number of queries on the data files produced by our
pipeline. Doing this also turned out to be necessary to remove duplication due to compilation
artifacts. These come from projects compiled for multiple platforms and projects compiled for
multiple major versions of Scala. While the main compilation target for Scala projects is Java
byte-code (7,075 projects), JavaScript and native code are also potential targets. To prevent double
counting, we make sure that shared code is not duplicated. Since Scala 2.11 and 2.12 are not binary
compatible, libraries supporting both branches cross compile to both versions. We take care to
compile only to one version.
In the remainder of this paper, when we refer to the łScala library,ž łScala standard library,ž or

sometimes just to łScalaž we mean code defined in org.scala-lang:scala-library artifact.

Overview of Results. Out of the 7,280 analyzed projects, 7,148 (98.2%) have at least one implicit
call site. From over 29.6M call sites in the corpus (explicit and implicit combined), 8.1M are call
sites involving implicits. Most of these calls are related to the use of implicit parameters (60.3%).
Figure 7 shows for each category a distribution of implicit call site ratios. The box is the 25th/75th
percentiles and the line inside the box represents the median with the added jitters showing the
actual distribution. For applications and libraries, the median is similar. It is smaller ~17.1%. In
the case of test code, it is more than double, 38%. There tend to be more implicit call sites in tests
than in the rest of the code. That is not surprising because the most popular testing frameworks
heavily rely on implicits. Across the project categories the median is 23.4% (shown by the dashed
line)Ði.e., one out of every four call sites involves implicits.
Figure 8 shows the distribution of the declarations that are being called from the implicit call

sites. There is a big difference between the test and non-test category. In the case of the both
applications and libraries, most implicits used come from the standard library, followed by their
external dependencies. The main sources of implicits in Scala are collections, concurrency and
reflection packages together with the omnipresent scala.Predef object.

The collections are used by 80.3% projects (from 96.6% in large apps to 44.6% in tests). Most of the
collection transforming operations such as map, use a builder factory passed as an implicit parameter
CanBuildFrom. 38.3% of all implicit call sites involving methods that use this implicit parameter appear
in libraries. Implicit parameters are used for reflection. Instances of Manifest, ClassTag or TypeTag

classes can be requested from the compiler to be passed as implicit arguments, allowing one to
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Large apps

Libraries

Tests
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Fig. 7. Ratio of implicit call
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get in-depth information about the type parameters of a method at runtime, circumventing the
limitation of Java’s type erasure. This is used a lot in large applications (90.2%). Less in libraries
(61.7%) and small projects (56%) or tests (56.4%). Over half of all the large projects (58.5%) and third
of libraries (32.1%) employ some concurrency routines from the Scala standard library. scala.Predef
defines basic conversion like String to StringOps (extending the functionality of Java strings) or an
arrow association, allowing one to use a->b to create a tuple of (a,b). These are used by almost all
the projects regardless of category.

Excluding the Scala standard library and testing frameworks, the rest of the implicits in the case
of application and libraries come from a number of different external dependencies. There are
some well known and projects with rich set of implicit usage such as the Lightbend/Typesafe stack
with Play (a web-application framework, used in 5% of implicit call sites), Slick (object-relational
mapping, 2.6%) or akka (an actor framework, 2.3%). These libraries define domain-specific languages
which, in order to fit well in the host language yet to appear to introduce different syntactic forms,
heavily rely on implicits. Next to a more flexible syntax (as compared to Java or C#), implicits are
the main feature for embedding DSLs.
In the case of tests, the vast majority of implicits comes from project dependencies, which are

dominated by one of the popular testing frameworks. These frameworks define DSLs in one form
or another, striving to provide an API that reads like English sentences. For example a simple test:

"Monte Carlo method" should "estimate pi" in { MCarloPi(tries=100).estimate === 3.14 +- 0.01 }

contains six implicit call sites. Four are implicit conversions adding methods should to String, in
to ResultOfStringPassedToVerb (the resulting type of calling the should method), === and +- to Double.
Three of them additionally take implicit parameters for pretty-printing, source position (generated
by a macro), test registration, and floating point operations. The implicit macro generating the
source position is actually the single most used implicit parameter in the corpus with 912.7K
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instances. Excluding the test frameworks, the ratio of implicit locations become very close to that
of the main code, with collections and scala.Predef dominating the distribution.

5.1 Implicit Conversion

We recognize conversions by finding signatures that are either: (1) an implicit def with one non-
implicit parameter (and 0+ implicit parameters) and a non-Unit return, or (2) an implicit val, var or
object that extends a function type T=>R such that R is not Unit. Note, that implicit class declarations
are already de-sugared into a class and a corresponding implicit def.

Table 4 summarizes conversions across the four categories of projects; X (Y% Z%) are such that
X is the number of occurrences, Y% is the ratio of X across all categories and Z is a ratio of projects
identified in the given category. As expected, the majority of implicit conversions (80%) are defined
in libraries (52% of libraries define at least one conversion) while most use is in the tests (61% of all
implicit conversion call sites).

Table 4. Conversions

Small Apps Large Apps Libraries Tests
Declarations 2K (04% 22%) 7K (13% 58%) 49K (80% 52%) 2K (03% 11%)
Call sites 89K (04% 88%) 384K (15% 99%) 514K (20% 94%) 1M (61% 95%)

Table 5 lists the projects declaring and using the most conversions; each project’s GitHub name is
followed by its star rating, lines of code, and the number of occurrences. It is interesting to observe
that the projects that define the most conversions are not necessarily the ones which use the most,
as usage is likely correlated to project size.

Table 5. Top conversions

Project Declarations Project Callsites
shadaj/slinky (265, 46K) 34K exoego/aws-sdk-scalajs-facade (3, 302K) 130K
pbaun/rere (4, 14K) 446 scalatest/scalatest (782, 76K) 116K
etorreborre/specs2 (642, 26K) 440 apache/spark (21K, 238K) 60K
sisioh/aws4s (7, 15K) 402 akka/akka (10K, 109K) 30K
CommBank/grimlock (29, 22K) 385 gapt/gapt (48, 68K) 22K
scala/scala (11K, 139K) 346 ornicar/lila (5K, 175K) 17K
scalatest/scalatest (782, 76K) 343 psforever/PSF-LoginServer (28, 41K) 15K
scalan/special (2, 33K) 336 broadinstitute/cromwell (384, 65K) 15K
scalaz/scalaz (4K, 34K) 301 hmrc/tai-frontend (0, 31K) 14K
lift/framework (1K, 42K) 280 getquill/quill (1K, 11K) 14K

Conversions are used in 96.8% of all projects (7,050). There are 2.5M implicit conversions or 31.5%
of all implicit call sites. This is understandable as it is hard to write code that does not, somehow,
trigger one of the many conversions defined in the standard library. In fact, for application code
47.4% of implicit conversions have definitions originating in the standard library. Most conversions,
61.1% to be exact, happen in tests; for those, 59.4% of them have definitions that originate from one
of the two popular testing frameworks (scalatest or specs2). If we exclude the standard library and
testing frameworks, most conversions are defined in imported code, only about 18.8% are calls to
conversions with definitions local to their project.

In terms of conversion declarations, 41.1% of projects (2,991) provide 61,995 conversions (16.7% of
all declarations) with a median of 3 per project and a s.dev of 615.5. As expected, testing frameworks
have many declarations (343 in scalatest, 440 in specs2). We note that slinky defines over 33.6K
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conversions (almost all programatically generated). The reason is that this project aims at allowing
one to writing React code (a JavaScript library for building user interfaces) in Scala in a similar
manner as to that of JavaScript. This project is hardly used, we could find only 2 clients (with 3.6K
LOC) that used 8 slinky conversions.
The most used conversion is ArrowAssoc as it enables users to create tuples with an arrow (e.g.,

1 -> 2). The next most popular is augmentString, a conversion that allows users to use index sequence
methods on String objects. On average, projects targeting JavaScript use 2.5 times more often
implicit conversions than JVM projects. Most of these conversions come from libraries that simplify
front-end web development with DSLs for recurring tasks such as DOM construction and navigation.
Only 1.1K (0.3%) of the implicit conversions were defined with functional types (i.e., using implicit

val, var or object); this is good as implicit values that are also conversions can be the source of
problems.

5.2 Implicit Parameters

We record all method and constructor declarations with implicit parameter list. Table 6 summarizes
parameters across the four categories of projects; X (Y% Z%) are such that X is the number of
occurrences, Y% is the ratio ofX over all categories and Z is a ratio of projects in the given category.

Table 6. Parameters

Small Apps Large Apps Libraries Tests
Declarations 8K (06% 35%) 50K (32% 73%) 87K (55% 68%) 11K (07% 23%)
Call sites 134K (04% 89%) 749K (20% 99%) 691K (19% 94%) 2M (58% 95%)

Table 7 lists the projects declaring and using the most implicit parameters; each project’s GitHub
name is followed by its star rating, lines of code, and the number of occurrences. As with conversion,
the projects that define the most implicits are not necessarily the ones with most calls.

Table 7. Top implicit parameters

Project Declarations Project Callsites
lampepfl/dotty (3K, 89K) 4K scalatest/scalatest (782, 76K) 242K
scalaz/scalaz (4K, 34K) 4K apache/spark (21K, 238K) 59K
typelevel/cats (3K, 24K) 3K typelevel/cats (3K, 24K) 53K
robertofischer/hackerrank (0, 50K) 2K CommBank/grimlock (29, 22K) 52K
scalatest/scalatest (782, 76K) 2K exoego/aws-sdk-scalajs-facade (3, 302K) 49K
sirthias/parboiled2 (604, 6K) 1K akka/akka (10K, 109K) 43K
laserdisc-io/laserdisc (23, 7K) 1K monix/monix (1K, 34K) 40K
slamdata/quasar (742, 27K) 1K scalaz/scalaz (4K, 34K) 39K
etorreborre/specs2 (642, 26K) 984 slamdata/quasar (742, 27K) 31K
EHRI/ehri-frontend (10, 68K) 981 lampepfl/dotty (3K, 89K) 29K

Calls sites with implicit parameters are frequent, they account for 46.2% (3.7M) of all Scala call
sites. As shown in Table 6, tests account for 58% of these calls. Small applications have a lower
proportion, most likely because they account for relatively few lines of code.

In terms of declarations, 78.2% of projects (5.7K) have over 370.7K implicit parameter declarations.
The remaining projects do not declare any. The majority, 89.6% (332.2K), of declarations are public.
Over half of the declarations come from 200 projects which often implement DSL-like APIs. This
also happens internally in applications. For example, ornicar/lila, an open source chess server,
is one of the largest and most popular apps in the corpus. It uses implicits for a small database
management DSL.
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5.3 Idioms and Patterns

In this subsection, we look at popular implicit idioms and answer the question how frequently are
these idioms used. For each, we describe the heuristic used to recognize the pattern and give a table
with the 10 top most projects in terms of declarations as well as in use in terms of call sites. Each of
the table has the same structure: each project’s GitHub name is followed by its star rating, lines of
code, and the number of occurrences for declarations and call sites.

Table 8 gives a summary of the declaration and uses of the various idioms and patterns split by
our code categories; X (Y% Z%) are such that X is the number of occurrences, Y% is the ratio of X
over all categories and Z is a ratio of projects in the given category.

Table 8. Idioms and patterns

Pattern Small Apps Large Apps Libraries Tests
Late Trait Implementation 278 (08% 04%) 968 (28% 15%) 2.1K (59% 14%) 177 (05% 01%)
Extension Methods 1.7K (09% 17%) 5.1K (28% 48%) 10.5K (57% 45%) 1.2K (06% 08%)
Type Classess 4.3K (05% 19%) 17.2K (21% 49%) 54.2K (67% 53%) 5.8K (07% 15%)
Extension Syntax Methos 1.3K (06% 09%) 4.3K (20% 28%) 13.9K (66% 31%) 1.6K (08% 06%)
Type Proofs 110 (06% 01%) 320 (18% 05%) 1.3K (73% 06%) 39 (02% 00%)
Context 5K (06% 25%) 34.9K (41% 62%) 39.2K (46% 50%) 5.7K (07% 14%)
Unrelated Conversions 672 (02% 07%) 2.3K (06% 26%) 38.1K (92% 20%) 441 (01% 03%)
Bidirectional Conversion 197 (17% 01%) 321 (28% 06%) 556 (49% 03%) 61 (05% 00%)

(a) Declarations

Pattern Small Apps Large Apps Libraries Tests
Late Trait Implementation 21.4K (07% 54%) 67.3K (22% 84%) 97.8K (31% 54%) 125.4K (40% 47%)
Extension Methods 40.9K (03% 68%) 207.7K (13% 95%) 250.7K (15% 82%) 1.1M (69% 90%)
Type Classess 99.4K (05% 86%) 502.2K (23% 99%) 544K (25% 92%) 1.1M (48% 88%)
Extension Syntax Methos 42.7K (03% 55%) 213.5K (16% 89%) 227.5K (17% 61%) 881K (65% 75%)
Type Proofs 1.7K (03% 19%) 10.6K (19% 61%) 14.9K (27% 44%) 28.8K (51% 19%)
Context 35.9K (02% 60%) 239.2K (14% 87%) 154.6K (09% 61%) 1.3M (75% 84%)
Unrelated Conversions 29.7K (07% 72%) 107.4K (25% 96%) 112.9K (26% 78%) 178.1K (42% 57%)
Bidirectional Conversion 1.9K (06% 13%) 7.9K (25% 42%) 8.8K (28% 26%) 13.2K (41% 13%)

(b) Call sites

5.3.1 Late Trait Implementation. Late traits are recognized by looking for implicit def T=>Rwhere R

is a Scala trait or Java interface. Technically, the same effect can be achieved with an implicit class

extending a trait, but in all cases the implicit class adds additional methods, and thus is disqualified.
As Table 8 shows there are only a few declarations of this pattern, mostly in libraries. Table 9 gives
the top 10 projects using late traits.
Most conversions, 79.8%, are used between types defined in the same project. Conditional imple-
mentation account for 16.4% of this pattern. 19.7% convert Java types (from 176 different libraries).
Focusing on the JDK, 53 conversions are related to I/O, 50 are from Java primitives and 27 involve
time and date types. There are 990 conversions from Scala primitives with String (217) and Int (77)
being the most often converted from.

5.3.2 Extension Methods. In general extension methods can be defined using both implicit class

and implicit def. While the former is preferred, the latter is still being used. Since an implicit def

can be also used for late trait implementation or to simply relating two types, we only consider

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 163. Publication date: October 2019.



163:20 Krikava, Miller, Vitek

Table 9. Top late traits

Project Declarations Project Callsites
lift/framework (1K, 42K) 152 exoego/aws-sdk-scalajs-facade (3, 302K) 49K
lampepfl/dotty (3K, 89K) 106 scalatest/scalatest (782, 76K) 9K
etorreborre/specs2 (642, 26K) 94 akka/akka (10K, 109K) 6K
scala/scala (11K, 139K) 82 CommBank/grimlock (29, 22K) 4K
CommBank/grimlock (29, 22K) 81 hmrc/tai (1, 13K) 3K
scalatest/scalatest (782, 76K) 74 broadinstitute/cromwell (384, 65K) 3K
l-space/l-space (3, 17K) 68 maif/izanami (91, 19K) 2K
anskarl/auxlib (1, 1K) 63 etorreborre/specs2 (642, 26K) 2K
anskarl/LoMRF (58, 13K) 63 mattpap/mathematica-parser (24, 476) 2K
squeryl/squeryl (521, 9K) 49 playframework/play-json (193, 5K) 2K

implicit def with a return type that is neither a Scala trait nor a Java interface and that is defined in
the same file as the conversion target because extension methods are usually collocated in either the
same compilation unit or in the source file. We found 12,150 implicit classes, 65.3% of all extension
methods. Table 8 shows that extension methods are widely used, they are defined across the corpus
and in particular in large applications and libraries. Their use is widespread as well. The top 10
projects using extension methods appear in Table 10.

Table 10. Top extension methods

Project Declarations Project Callsites
pbaun/rere (4, 14K) 428 scalatest/scalatest (782, 76K) 87K
etorreborre/specs2 (642, 26K) 295 exoego/aws-sdk-scalajs-facade (3, 302K) 46K
scalaz/scalaz (4K, 34K) 281 apache/spark (21K, 238K) 24K
scalan/special (2, 33K) 248 akka/akka (10K, 109K) 22K
lampepfl/dotty (3K, 89K) 214 hmrc/tai-frontend (0, 31K) 14K
ritschwumm/scutil (6, 12K) 214 getquill/quill (1K, 11K) 13K
typelevel/cats (3K, 24K) 171 hmrc/tai (1, 13K) 13K
lift/framework (1K, 42K) 168 monix/monix (1K, 34K) 12K
broadinstitute/cromwell (384, 65K) 166 broadinstitute/cromwell (384, 65K) 10K
monsantoco/aws2scala (19, 10K) 134 hmrc/iht-frontend (1, 49K) 10K

There are 1.9K conditional extensions (10.2%). From these, 1.6K are related to type classes and
323 to contexts. 1.7K instances extends Java types (9.3%) across 676 libraries. Similarly to late
traits, the Java I/O (224), date and time (200) and Java primitives (59) are the most often extended.
Extension methods are also used to extends Scala primitives (3.7K), again String and Int being the
most popular (1,169 and 452 respectively). This is understandable as these are the basic types for
building embedded DSL.

5.3.3 Type Classes. We recognize type classes from their instances that are injected by a compiler
as implicit arguments. What differentiate them from an implicit argument is the presence of type
arguments linked to type parameters available in the parent context. This is what distinguishes a
type class and a context. For example, the following do not match:

def f(x: Int)(implicit y: A[Int]) def f[T](x: T)(implicit y: T)

while the following do:

def f[T](x: T)(implicit y: A[T]) implicit class C[T](x: T)(implicit y: A[T])

Wematch implicit parameters with at least one type argument referencing a type parameter. Table 8
shows that type classes are the most widely declared pattern. Both libraries and large application
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use it frequently. They are also the most frequent call sites. The top 10 projects using type classes
are in Table 11.

Table 11. Top type classes

Project Declarations Project Callsites
scalaz/scalaz (4K, 34K) 4K scalatest/scalatest (782, 76K) 96K
typelevel/cats (3K, 24K) 3K exoego/aws-sdk-scalajs-facade (3, 302K) 49K
robertofischer/hackerrank (0, 50K) 2K typelevel/cats (3K, 24K) 48K
sirthias/parboiled2 (604, 6K) 1K apache/spark (21K, 238K) 46K
slamdata/quasar (742, 27K) 1K CommBank/grimlock (29, 22K) 43K
laserdisc-io/laserdisc (23, 7K) 1K scalaz/scalaz (4K, 34K) 38K
scalatest/scalatest (782, 76K) 947 slamdata/quasar (742, 27K) 30K
twitter/algebird (2K, 24K) 899 laserdisc-io/laserdisc (23, 7K) 18K
scalanlp/breeze (3K, 36K) 887 scalaprops/scalaprops (226, 6K) 17K
nrinaudo/kantan.csv (244, 5K) 832 nrinaudo/kantan.csv (244, 5K) 16K

Type classes are involved in 30% of the implicit calls which use over 11K type classes. Type classes
are dominated by the standard library (42%). As expected, most come from the collection framework,
scala.Predef and the math library. Next are testing libraries (15%) followed by the some of the most
popular frameworks and libraries including Typelevel cats and scalaz that provide basic abstractions
for functional programming, including a number of common type classes. These two libraries are
used by almost 40% in the corpus.

5.3.4 Extension Syntax Methods. From extension methods we select instances that define implicit
parameters that match out type class definition from Section 5.3.3. Summary is in Table 12.

Table 12. Top extension syntax methods

Project Declarations Project Callsites
pbaun/rere (4, 14K) 428 scalatest/scalatest (782, 76K) 87K
etorreborre/specs2 (642, 26K) 295 exoego/aws-sdk-scalajs-facade (3, 302K) 46K
scalaz/scalaz (4K, 34K) 281 apache/spark (21K, 238K) 24K
scalan/special (2, 33K) 248 akka/akka (10K, 109K) 22K
lampepfl/dotty (3K, 89K) 214 hmrc/tai-frontend (0, 31K) 14K
ritschwumm/scutil (6, 12K) 214 getquill/quill (1K, 11K) 13K
typelevel/cats (3K, 24K) 171 hmrc/tai (1, 13K) 13K
lift/framework (1K, 42K) 168 monix/monix (1K, 34K) 12K
broadinstitute/cromwell (384, 65K) 166 broadinstitute/cromwell (384, 65K) 10K
monsantoco/aws2scala (19, 10K) 134 hmrc/iht-frontend (1, 49K) 10K

We found 18.6K of syntaxmethods instances in 2.5K projects. Most of them are defining operations
of generic algebraic data types.

5.3.5 Type Proofs. We recognize this pattern by select implicit def that take generalized type
constraints, such as equality (=:=), subset (<:<) and application (=>) as implicit type parameters.
Summary is in Table 13.

This revealed a very few projects (270) besides Scala itself and related projects (the new Scala 3
compiler). They define 1.6K methods taking type proofs as implicit parameters. Most of them are
small applications which seem to be projects experimenting with type level programming. There are
however interesting use cases. Manually inspecting the bigger projects we found common use cases,
both are related to enforcing certain API restrictions at compile time. In one case (scalajs-reactÐ
another project bringing React application development into Scala), it is used to ensure that a given
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Table 13. Top type proofs

Project Declarations Project Callsites
scalatest/scalatest (782, 76K) 167 CommBank/grimlock (29, 22K) 5K
scalikejdbc/scalikejdbc (982, 13K) 91 akka/akka (10K, 109K) 3K
scalanlp/breeze (3K, 36K) 67 typelevel/cats (3K, 24K) 2K
mpollmeier/gremlin-scala (412, 2K) 54 outworkers/phantom (1K, 12K) 2K
playframework/play-json (193, 5K) 45 scalatest/scalatest (782, 76K) 2K
xuwei-k/applybuilder (7, 767) 42 sisioh/aws4s (7, 15K) 2K
japgolly/test-state (108, 6K) 39 laserdisc-io/laserdisc (23, 7K) 1K
NICTA/scoobi (487, 13K) 34 apache/spark (21K, 238K) 623
scoundrel-tech/scoundrel (0, 10K) 34 tixxit/framian (118, 7K) 546
twitter/scalding (3K, 29K) 34 scoundrel-tech/scoundrel (0, 10K) 541

method is called only once. Another instance (finagle, an RPC system) creates a type-safe builder
pattern that throws a compile-time error in the case the constructed object is missing required field.
In both cases authors used @implicitNotFound annotation to provide customized error message.

5.3.6 Context. Whether or not an implicit argument is an instance of the context pattern is hard
to quantify, since it depends on intent. We recognize them by selecting implicit call sites that are
neither labeled as a type class application nor as a type proof. Summary is in Table 14.

Table 14. Top context

Project Declarations Project Callsites
lampepfl/dotty (3K, 89K) 4K scalatest/scalatest (782, 76K) 201K
scalatest/scalatest (782, 76K) 1K apache/spark (21K, 238K) 38K
sirthias/parboiled2 (604, 6K) 1K akka/akka (10K, 109K) 28K
EHRI/ehri-frontend (10, 68K) 779 monix/monix (1K, 34K) 27K
ornicar/lila (5K, 175K) 774 lampepfl/dotty (3K, 89K) 26K
ponkotuy/MyFleetGirls (86, 26K) 717 CommBank/grimlock (29, 22K) 18K
Sciss/SoundProcesses (23, 13K) 715 hmrc/iht-frontend (1, 49K) 18K
sciss/fscape-next (6, 27K) 696 hmrc/tai-frontend (0, 31K) 17K
ruimo/store (5, 38K) 688 gapt/gapt (48, 68K) 16K
sciss/patterns (1, 8K) 620 twitter/finagle (7K, 64K) 13K

As expected, contexts are used heavily in projects such as Scala compiler (dotty is the new Scala
compiler), spark or akka, i.e., projects that are centered around some main context which is being
passed around in number of methods. Java types are also used as context parameters. Together
50 types from JDK are used in 1.8K methods across 179 projects. The top used one is SQLConnection

followed by interfaces from java.io. Scala primitive types are used in 1,044 methods in 159. Function
types are also used as contexts (645 methods in 154 projects), providing a convenient way to define
application counters, implicit filters and other default data processors.

5.3.7 Anti-pattern: Conversions. Unrelated conversions are public, top-level definitions defined
outside of either from or to compilation units. We recognize them by selecting implicit conversions
that are not block-local, or private, or protected and are not defined in the same compilation unit
as the source or the target type. Summary is in Table 15.
There are 41.5K of unrelated conversions spanning across 1.2K projects (16.2%). Most of them

(33.6K) belong to the already mentioned slinky projects bringing React apps development to Scala.
They are used in 6.1K (83.9%) projects. If we change the query to only regard the same artifact then
it drops too 1.9K conversions in 619 projects. There are some indication that unrelated conversions
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Table 15. Top unrelated conversions

Project Declarations Project Callsites
shadaj/slinky (265, 46K) 34K apache/spark (21K, 238K) 21K
sisioh/aws4s (7, 15K) 402 gapt/gapt (48, 68K) 11K
CommBank/grimlock (29, 22K) 299 scalatest/scalatest (782, 76K) 8K
scala/scala (11K, 139K) 166 akka/akka (10K, 109K) 7K
etorreborre/specs2 (642, 26K) 130 CommBank/grimlock (29, 22K) 6K
squeryl/squeryl (521, 9K) 128 ornicar/lila (5K, 175K) 6K
scoundrel-tech/scoundrel (0, 10K) 113 ilya-klyuchnikov/tapl-scala (126, 13K) 3K
scala/scala-java8-compat (353, 4K) 112 scoundrel-tech/scoundrel (0, 10K) 3K
typelevel/cats (3K, 24K) 110 broadinstitute/cromwell (384, 65K) 2K
lift/framework (1K, 42K) 101 mattpap/mathematica-parser (24, 476) 2K

might be deprecated in the upcoming revision of the Scala language12. The numbers here show,
that these conversions are being defined, but they are usually in the scope of the same library. From
the unrelated conversions, 1.6K from 552 projects involves Scala primitive types. They are present
in all categories, but majority comes from libraries where they are used as building blocks for DSLs.
Only a very few (81 in 47 projects) convert just between primitive types.

For the conversions that go both ways, we consider all pairs of such conversions that are defined
in the same artifact and thus could be easily imported in the same scope.
We have identified 1.1K such conversions defined in 209 (2.9%) projects and used across 1.9K

(26.5%) projects. As expected, this has matched all the Scala-Java collection conversions defined in
the scala.collection package. They are used in 728 (10%) projects. This is significantly less than the
recommended alternative using explicit asJava or asScala decorators that are being used by 22.4% of
projects. 244 projects mix both approaches.
From a manual inspection of some of the other popular bi-directional conversion, we find that

it is used in libraries that provide both Java and Scala API (e.g., spark or akka) allowing one to
freely mix Java and Scala version of the classes. Some libraries use them to provide easier syntax
for its domain objects (e.g., using a tuple to represent a cell coordinate), or lifting types from/to
scala.Option. Another distinct category are conversions between many of the different date and
time representations in both Java and Scala. We found only 129 bi-directional conversions involving
primitive types, out of which 13 are only between primitives.

5.4 Complexity

One question we wanted to address was the amount of work performed by the Scala compiler. This
is motivated by the need for the programmer to reverse engineer the compiler’s work to understand
how to fix their code when an error is related to implicits. In terms of code size, if one were to
sum up the length of the symbols inserted by the compiler at the various call sites that use implicit
arguments, this would amount to 55M characters or about 3.5x the size of the entire Scala project.
Figure 9 shows the distribution of injected implicit arguments into methods. We limit the graph
to 10 injected arguments, but in practice there is a long tail. The measurements are obtained by
inspecting each call site where implicit resolution is involved and counting arguments injected
directly to the target function as well as arguments injected to nested calls needed for the implicit
derivation. While the distribution has a long tail, going all the way to 5,695, the median is 1. At the
extreme, the xdotai/typeless project is exploring type-level programming and has one call site
that includes 5,695 nested implicit calls and value injection. Expressed in length of the injected
code, that call site has the compiler inject 56.2K characters. Figure 10 shows the distribution of

12cf. https://github.com/lampepfl/dotty/pull/2060
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Fig. 9. Injected arguments
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Fig. 10. Implicit parameters

the number of implicit parameter declarations. The data suggests that programmers are likely to
encounter functions with one or two implicits rather frequently. And they are likely to deal with
functions with four or more implicits several times per project.
To help navigate this complexity, the Scala plugin for Intellij IDEA has a feature that can show

implicit hints, including implicit resolution in the code editor. This effectively reveals the injected
code making it an indispensable tool for debugging. However, turning the implicit hints on severely
hinders the editor performance creating a significant lag when working with implicits-heavy files.
The second problem with this is that the Intellij Scala compiler is not the same as scalac and implicit
resolution often disagrees between compiler implementations (e.g., Intellij does not consider implicit
shadowing in lexical context). Another way to mitigate some of the complexity related to errors
occurring during resolution is to customize the error message emitted when an implicit type is not
found. Scala provides the @implicitNotFound(message) annotation to this end, where message can be
parameterized with the names of type parameters that the type defines. In the corpus, we have
found it defined 1.2K times in 436 projects, and used in 110.9K call sites.

5.5 Overheads

Another question we are interested to investigate is the effect of implicits on compile time. We
have demonstrated that on a synthetic example, resolution can significantly impact type-checking
performance. There are 1,969 (8.4M LOC) using Scala 2.12.4+ for which we can get compile time
statistics using the -Ystatistics:typer compiler flag. Furthermore 488 projects (2.8M LOC) use the
shapeless library which is the most common approach to guide the type class derivation [Cantero
2018]. The result of measuring compilation speed between these two sets of projects is shown in
Figure 11. More precisely, the figure shows data for projects that have more than 1,000 lines of
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code (for smaller projects compilation times may be dominated by startup costs). The x-axis shows
the density of implicit call sites (their ratio per line of code, ranging between 0 and almost 2). The
y-axis shows compilation speed measured in lines per second. For this figure we capture the entire
compilation time of each project, including I/O. Higher is better on this graph. Colors distinguish
projects that use type classes (red) from those who do not (blue). The lines indicate an estimate
of the conditional mean function (loess). If implicits were not influencing compilation time, one
would expect both lines to be roughly flat and at the same level. What we see instead confirms
our hypothesis, the cost of compilation increases with the density of implicits and the use of type
classes further reduce compilation speed.

Another manifestation can be found in the scalatest testing framework. It defines a Prettifier for
pretty printing which looks like a perfect candidate for a type class, yet the authors have decided
to use it as a context parameter instead. The reason given for that is performance: łPrettifier is
not parameterized ... because assertions would then need to look up Prettifiers implicitly by type. This
would slow compilation.ž In the corpus there are over 563.6K calls to methods using the Prettifier

context. Resolving all of them implicitly using the implicit type class derivation machinery could
indeed induce a slowdown across 2.5K projects.

5.6 Threats to Validity

We report on two source of threats to validity. One threat to external validity is linked to selection
of code that was analyzed. We analyzed 15% of the Scala code publicly-available on GitHub. Our
findings only generalize to industry if the code we analyzed is representative of industrial use of
implicits. It is possible, for instance, that some companies enforce coding guidelines that impact
the usage of implicits. We have no evidence that this is the case, but cannot rule it out. In terms
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of threats to internal validity we consider our data analysis pipeline. It has several sources of
inaccuracies. We rely on Scalameta to gather synthetic call sites. Scalameta restricts us to two
Scala versions and it only generates metadata for about half of the selected projects. We are also
aware that for 3% of implicit uses symbols could not be resolved.

6 RELATED WORK

The design of implicits as it appears in Scala is but one point in a larger space. While alternative
designs are out of the scope of this work, we mention some important related work. Oliveira
et al. [2010] established the connection between Haskell’s type classes and Scala implicits with
multiple examples. Oliveira et al. [2012] formalized the key ideas of implicits in a core calculus.
Rouvoet [2016] expanded the Oliveira et al. work and proved soundness and partial completeness
independent of termination. Schrijvers et al. [2019] present an improved variant of the implicit
calculus. One key property of this work is the notion of coherence (which is attributed to Reynolds
[1991]). Coherence requires a program to have a single meaning, i.e. it precludes any semantic
ambiguity. Scala eschews coherence in favor of expressivity by allowing overlapping implicits.
Schrijvers et al. propose a design that recovers coherence.

There have been efforts to study how Scala is used by practitioners. Tasharofi et al. [2013] looked
at how often and why Scala developers mix the actor model with other models of concurrency. They
analyzed only GitHub 16 projects at the compiled byte-code level with a custom tool. The choice
of byte-code had some drawbacks. For example, their analysis could not detect indirect method
invocations and thus they had to supplemented it with manual inspection. The same corpus is used
by Koster [2015] to analyze different synchronization mechanisms used in Scala code. Despite using
the same projects, he analyzed 80% more lines of code as the projects were updated to their latest
commit. The increase was mostly due to spark that grew from 12K to 104K lines of code. Unlike
the previous study, he opted for source code analysis based on string matching. De Bleser et al.
[2019] analyzed the tests of 164 Scala projects (1.7M LOC) for a diffusion of test smells. They used
a similar way of assembling a corpus. While they started with 72K projects, but only managed to
compile 2.9K projects. They discard projects with less than 1K LOC or without scalatest unit tests.
For analysis, they also used semantic data from the SemanticDB.
Pradel and Sen [2015] analyzed the use of implicit type conversions in JavaScript. They use

dynamic analysis running hundreds of programs including the common JavaScript benchmarks
and popular real-world websites. In JavaScript, implicit type conversion is basically a type coercion.
Despite that the coercion rules are well formalized, they are fairly complex and confuse even
seasoned JavaScript developers. Unlike in Scala that has static type system, JavaScript uses implicit
type conversion extensively (it is present in over 80% of the studied programs), yet the study finds
that over 98% of the conversion is what the authors consider as harmless.

7 CONCLUSIONS

Implicits are a cornerstone of the Scala programming language. There is hardly any API without
them as they enable elegant architectural design. They allow one to remove a lot of boilerplate by
leveraging the compiler’s knowledge about the code. However, they can be also easily misused and if
taken too far seriously hurt the readability of a code. Implicits are driven by type declarations. Thus,
while, implicits are used transparently, with no indication in the program text, their application is
guided by clear and precise rules. Our data shows that programmers have embraced them, with
98.2% of the projects we analyzed using them, and 78.2% of projects defining at least one implicit
declaration. We also observed the prevalence of the idioms described, as most projects use them in
some form. For implicit conversions, our results indicate that 96.8% of projects make use of them
at some point, with the most popular conversions coming from the standard library and testing
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libraries. From the idioms we presented in this paper, type classes and extension methods are used
extensively. Regarding conversions, most convert to and from types within the scope of the project.
However, there is a number of conversions defined on unrelated types. While deprecating this form
of conversion has been discussed, doing so would break 1.2K projects (16.2%) in our corpus.

Observations for language designers. We have seen many source of complexities related to the
notion of coherence. Future designs of implicits should strongly consider adopting some limits
to expressivity in order to improve code comprehension. A related point is to avoid relying on
names of implicits during their resolution as this leads to subtle errors. Better tool support and
static analysis could help diagnose performance problems and could help code comprehension, but
it is crucial that IDEs and the Scala compiler agree on how resolution is to be performed.

Observations for library designers. Over-engineered libraries are hard to understand. It is worth
considering the costs and benefits of adding, for example, type classes to an API. Asking questions
such as łIs retroactive extension an important use case?ž or łHow much boilerplate can actually be
avoided?ž may help target the right use-cases for implicits. Often the key design issue is whether
good defaults can be provided. When they cannot, the benefits of implicits decrease significantly. A
good library design is one that lets regular users benefit without forcing them fully understand
the cleverness that the library designer employed. Finally, we leave designers with the following
unsolicited advice: Do not use unrelated implicits! Do not use conversions that go both ways! Do
not use conversions that might change semantics!

ACKNOWLEDGMENTS

Borja Lorente Escobar implemented an early version of the pipeline presented in this paper, we
thank him for his contributions. We thank the reviewers for constructive comments that helped
us improve the presentation. We thank Ólafur Páll Geirsson for his help with SemanticDB and
Scalameta. We thank the members of the PRL lab in Boston and Prague for additional comments
and encouragements. This work received funding from the Office of Naval Research (ONR) award
503353, from the European Research Council under the European Union’s Horizon 2020 research
and innovation program (grant agreement 695412), the NSF (awards 1544542, and 1617892), and the
Czech Ministry of Education, Youth and Sports (grant agreement CZ.02.1.010.00.015_0030000421).

REFERENCES

Eugene Burmako. 2017. Unification of Compile-Time and Runtime Metaprogramming in Scala. (2017). https://doi.org/10.
5075/epfl-thesis-7159

Jorge Vicente Cantero. 2018. Speeding Up Compilation Time with scalac-profiling. https://bit.ly/32gwTwP
Jonas De Bleser, Dario Di Nucci, and Coen De Roover. 2019. Assessing Diffusion and Perception of Test Smells in Scala

Projects. In International Conference on Mining Software Repositories (MSR). https://doi.org/10.1109/MSR.2019.00072
Georgios Gousios. 2013. The GHTorrent dataset and tool suite. InWorking Conference on Mining Software Repositories (MSR).

https://doi.org/2487085.2487132
Li Haoyi. 2016. Implicit Design Patterns in Scala. https://web.archive.org/web/20180326160306/http://www.lihaoyi.com/

post/ImplicitDesignPatternsinScala.html.
Joeri De Koster. 2015. Domains: Language Abstractions for Controlling Shared Mutable State in Actor Systems. Ph.D.

Dissertation. Vrije Universiteit Brussel, Belgium.
R Lämmel and K Ostermann. 2006. Software extension and integration with type classes. Conference on Generative

Programming and Component Engineering (GPCE). https://doi.org/10.1145/1173706.1173732
Jeffrey R. Lewis, John Launchbury, Erik Meijer, and Mark B. Shields. 2000. Implicit Parameters: Dynamic Scoping with

Static Types. In Symposium on Principles of Programming Languages (POPL). https://doi.org/10.1145/325694.325708
Lightbend. 2018. Scala Developer Suvey. https://bit.ly/2Uk56sB.
Cristina V. Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub Zitny, Hitesh Sajnani, and Jan Vitek. 2017. DéjàVu:

a map of code duplicates on GitHub. Proc. ACM Program. Lang. 1, OOPSLA. https://doi.org/10.1145/3133908

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 163. Publication date: October 2019.



163:28 Krikava, Miller, Vitek

Chris Marshall. 2009. Is the Scala 2.8 collections library a case of the longest suicide note in history? https://stackoverflow.
com/questions/1722726/is-the-scala-2-8-collections-library-a-case-of-the-longest-suicide-note-in-hist.

Heather Miller, Philipp Haller, Eugene Burmako, and Martin Odersky. 2013. Instant Pickles: Generating Object-oriented
Pickler Combinators for Fast and Extensible Serialization. In Cconference on Object Oriented Pogramming Systems

Languages and Applications (OOPSLA). https://doi.org/10.1145/2509136.2509547
Heather Miller, Philipp Haller, and Martin Odersky. 2014. Spores: A Type-Based Foundation for Closures in the Age of

Concurrency and Distribution. In European Conference on Object-Oriented Programming (ECOOP). https://doi.org/10.
1007/978-3-662-44202-9_13

Martin Odersky. 2017. What to leave implicit. https://www.youtube.com/watch?v=Oij5V7LQJsA. In ScalaDays Chicago.
Martin Odersky, Olivier Blanvillain, Fengyun Liu, Aggelos Biboudis, Heather Miller, and Sandro Stucki. 2017. Simplicitly:

foundations and applications of implicit function types. PACMPL 2, POPL. https://doi.org/10.1145/3158130
Martin Odersky and Adriaan Moors. 2009. Fighting bit rot with types (experience report: Scala collections). In Foundations

of Software Technology and Theoretical Computer Science (FST TCS). https://doi.org/10.4230/LIPIcs.FSTTCS.2009.2338
Bruno Oliveira C. d. S., Adriaan Moors, and Martin Odersky. 2010. Type classes as objects and implicits. In Conference on

Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA). https://doi.org/10.1145/1869459.1869489
Bruno Oliveira C. d. S., Tom Schrijvers, Wontae Choi, Wonchan Lee, and Kwangkeun Yi. 2012. The implicit calculus: a

new foundation for generic programming. In Conference on Programming Language Design and Implementation (PLDI).
https://doi.org/10.1145/2254064.2254070

Andrew Phillips and Nermin Serifovic. 2014. Scala Puzzlers. Artima Inc.
Michael Pradel and Koushik Sen. 2015. The Good, the Bad, and the Ugly: An Empirical Study of Implicit Type Conversions

in JavaScript. In European Conference on Object-Oriented Programming (ECOOP). https://doi.org/10.4230/LIPIcs.ECOOP.
2015.519

John C. Reynolds. 1991. The coherence of languages with intersection types. Theoretical Aspects of Computer Software

https://doi.org/10.1007/3-540-54415-1_70
Arjen Rouvoet. 2016. Programs for Free: Towards the Formalization of Implicit Resolution in Scala. Master’s thesis. TU Delft.
Miles Sabin. 2019. Shapeless. https://github.com/milessabin/shapeless.
Tom Schrijvers, Bruno C. d. S. Oliveira, Philip Wadler, and Koar Marntirosian. 2019. Cochis: Stable and Coherent Implicits.

Journal of Functional Programming https://doi.org/10.1017/s0956796818000242
Joshua D Suereth. 2013. Implicit Classes. https://web.archive.org/web/20170922191333/https://docs.scala-lang.org/overviews/

core/implicit-classes.html.
Ole Tange et al. 2011. Gnu parallel-the command-line power tool. The USENIX Magazine 36, 1.
Samira Tasharofi, Peter Dinges, and Ralph E. Johnson. 2013. Why Do Scala Developers Mix the Actor Model with other

Concurrency Models?. In European Conference on Object-Oriented Programming (ECOOP). https://doi.org/10.1007/978-3-
642-39038-8_13

Eric Torreborre. 2017. Achieving 3.2x Faster Scala Compile Time. https://jobs.zalando.com/tech/blog/achieving-3.2x-faster-
scala-compile-time/

Philip Wadler and Stephen Blott. 1989. How to Make ad-hoc Polymorphism Less ad-hoc. In Symposium on Principles of

Programming Languages (POPL). https://doi.org/10.1145/75277.75283

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 163. Publication date: October 2019.


	Abstract
	1 Introduction
	2 An Overview of Scala Implicits
	2.1 Implicit Conversions
	2.2 Implicit Parameters
	2.3 Idioms and Patterns
	2.4 Complexity
	2.5 Overheads

	3 Scala Analysis Pipeline
	3.1 Implicit Extraction

	4 Project Corpus
	5 Analyzing Implicits Usage
	5.1 Implicit Conversion
	5.2 Implicit Parameters
	5.3 Idioms and Patterns
	5.4 Complexity
	5.5 Overheads
	5.6 Threats to Validity

	6 Related Work
	7 Conclusions
	References

