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This white paper proposes the next generation of disaster 
data infrastructure, which includes both novel and the 
most essential information systems and services that a 
country or a region can depend on to successfully gather, 
process and display disaster data to reduce the impact of 
natural hazards. 

As a result of climate change and global warming, the 
frequency and severity of extreme weather has been 
increasing all around the world. According to the Sendai 
Framework for Disaster Risk Reduction, between 2005 and 
2015 over 700,000 people lost their lives, more than 1.4 
million were injured and approximately 23 million people 
were made homeless as a result of disasters. The severity 
of disasters is expected to surpass those of the past within 
the foreseeable future. In addition, the huge amount of 
disaster data collected from different sources could easily 
overwhelm and impair disaster risk reduction related 
applications, systems and their hardware platforms, 
especially in the case of large-scale disasters. 

To build resilience and reduce losses and damages, the 
Sendai Framework prioritizes actions in the following four 

1. Introduction

Figure 1: Integrated urban climate 
change and disaster resilience 
(Fakhruddin et al., 2019 [42])

areas: (1) understanding disaster risk (2) strengthening 
disaster risk governance to manage disaster risk 
(3) investing in disaster risk reduction for resilience 
(4) enhancing disaster preparedness for effective 
response and to “Build Back Better” in recovery, 
rehabilitation and reconstruction. In particular, the 
framework emphasizes that governments should 
strengthen the utilization of media, including social 
media, traditional media, big data and mobile phone 
networks, to support nationwide disaster management 
and damage reduction. The availability of public access 
to multi-hazard early warning systems, disaster risk 
information and assessments should substantially 
increase by 2030. To assist in this dissemination to 
the public, governments should consider the needs 
of different categories of users and bespoke data 
dissemination to enhance disaster preparedness for 
effective response. In addition, satellite and in situ 
information, including geographic information systems 
(GIS), are needed to be fully utilized to enhance disaster 
analysis tools and to support real time access to 
reliable disaster data. 
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It has been more than four years since United Nations 

member states adopted the Sendai Framework for 

Disaster Risk Reduction 2015–2030 on March 2015, at 

the Third United Nations World Conference on Disaster 

Risk Reduction in Japan (UNDRR 2015). Three other 

UN landmark agreements linking with the Sendai 

Framework were made in 2015 and 2016, including the 

Sustainable Development Goals (SDGs) (United Nations 

2015), the Paris Climate Agreement (UNFCC 2015), and 

the Habitat III New Urban Agenda (United Nations 

Habitat III 2016) .

The Sendai Framework has strong links with the 

SDGs. The SDGs help end poverty, inequality, climate 

change and build resilience to disasters. Measuring 

and following progress in achieving these targets 

is fundamental in order to enable identification of 

priority areas where member states should focus their 

resources. Furthermore, the adoption of the New Urban 

Agenda Development Framework would be beneficial 

in completing the integration and provide a pathway 

for integrated climate change and disaster resilience 

improvements.

The safety of a country’s economy and its citizens is 

reliant upon functioning critical infrastructure systems. 

An infrastructure system is defined as “a network of 

independent, mostly privately-owned, human-made 

systems and processes that function collaboratively and 

synergistically to produce and distribute a continuous 

flow of essential goods and services”. Disasters amount 

to “the interdependent cascade of failure triggered by 

an extreme event that is exacerbated by inadequate 

planning and ill-informed individual or organizational 

actions” (Comfort, 2005) [33]. There are many methods 

available based on data availability both to better 

understand the criticality of any infrastructure system, 

as well as to support decision making and planning. For 

the modelling and simulations of interdependencies 

across critical infrastructure, these include: empirical 

approaches, agent-based approaches, system dynamic 

approaches, economic theory based approaches and 

network based approaches (Ouyang, 2014) [34]). 

Based on the above discussion and the targets of the 

Sendai Framework, this white paper proposes the 

next generation of disaster data infrastructure natural 

hazards. Fundamental requirements of disaster data 

infrastructure include (1) effective multi-source big 

disaster data collection (2) efficient big disaster data 

fusion, exchange, and query, (3) strict big disaster data 

quality control and standard construction (4) real time big 

data analysis and decision making and (5) user-friendly 

big data visualization. 

The rest of the paper is organized as follows: First, 

several future scenarios of disaster management are 

developed based on existing disaster management 

systems and communication technology. Second, 

fundamental requirements of next generation disaster 

data infrastructure inspired by the proposed scenarios 

are discussed. Following that, research questions and 

issues are highlighted. Finally, policy recommendations 

and conclusions are provided at the end of the paper. 
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2. Future scenarios and applications

2.1 Active hazard warning and emergency 
response system for living environments
With the rapid development of hazards early warning 
systems technology and sophisticated network 
infrastructure, many countries have already adopted 
standard Multi-Hazards Early Warning Systems (MHEWS) 
(WMO, 2019 [43] to inform the public that a natural hazard 
has either occurred or will happen. For example, after an 
earthquake strikes in the U.S., the official agency uses the 
Public Warning System (PWS) to broadcast CAP (Common 
Alerting Protocol) warning messages to inform people in 
the affected areas. This is done through different media 
channels, such as radio, television, short message service 
(SMS), smart phones, the internet or electronic signs. In 
addition, XML (Extensible Markup Language)-formatted 
CAP messages are sent to Active Emergency Response 
Systems (AERS) to automatically start the process of 
disaster risk reduction, such as stopping elevators at 
the closest floor, cutting off the gas, opening doors and 
windows, slowing down high-speed trains and putting 
factory machines into protection mode to avoid possible 
damages. The CAP standard is being leveraged in an 
increasing number of countries worldwide to greatly 
improve emergency alerting, so that everyone in harm’s 
way receives timely and appropriate messages that enable 
them to act to protect their lives and livelihoods. The rapid 
alert notification system (RANS) using CAP is now widely 
used for rapid onset hazard information dissemination. 
RANS is a process that rapidly and widely communicates 
hazard warning information to the public from National 
Warning Service Providers. A RANS requires the 
establishment of emergency communication procedures 
and protocols to meet a country’s unique attributes and 
culture, government structure and available technologies, 
mechanisms and infrastructure for emergency 
communication. RANS also ensures the implementation 
of the International Telecommunications Union (ITU) 
guidelines on “National Emergency Telecommunication 
Plans” (NETP). These guidelines should be adhered to in 
order to carry out best practice for efficient RANS (SPREP, 
2019 [44]).

In the future, AERS will play an increasingly important role 
in disaster prevention and become ubiquitous in our living 
environment. AERS, with its simple functionality, will also 
support people with decision making. Customized warning 
messages will also be sent to different recipients based on 
their identities, spatial locations and the emergency levels 
of the disaster to assist people to be better prepared for 
natural hazards. Relevant services, such as health care and 
transportation, will also be integrated with AERS to support 
mass crowd evacuations and emergency medical services. 
Advances in big data, in particular space-based data, space 
technologies and corresponding data science can be used 

to improve all components of early warning and 
disaster response systems. Fusing different big data 
sources offers great potential to increase timeliness 
and granularity of a data-driven MHEWS. Space-
based data and space technologies can be used 
to monitor transboundary hazards and the use of 
satellite telecommunications, enabling the monitoring 
of hazards in remote places. It is recommended that 
those involved in developing and managing EWS, 
whether international organizations or national and 
local organizations, develop a coherent data/digital 
strategy - a digital roadmap of how to include big 
data into the different MHEWS components, as well 
as into their internal processes.

Currently evacuation systems for people inside 
buildings only provide static information (i.e. 
evacuation maps, fire equipment locations and 
emergency contacts). In the future, AERS will provide 
them with dynamic evacuation instructions, real 
time disaster information and the progress of rescue 
operations, so that people can safely leave danger 
areas or find a safe place to stay. AERS will provide 
on-scene commanders with dynamic information 
relating to victims, such as their identities, spatial 
locations and physiological status, as well as 
the current status of the disaster. Visualization 
technology will be used to highlight severely 
affected areas and the status of both victims and 
responders. Intelligent decision making services will 
also be applied to support rescue operations and 
health care resource management. In addition, for 
first responders, AERS will provide not only victim 
information, but also indoor navigation capability and 
real time disaster information. 
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2.2 Crowdsourcing supported disaster 
information system 
With the advance of social networks, research efforts 
are also focusing on using social media for disaster 
management. The key reason is that social networks could 
provide not only rich information but also near real time 
response. Taking the New Zealand Kaikōura Earthquake in 
2016 as an example, social media provided a large number 
of photos with geographic information in a short period of 
time. This assisted official agencies in efficient focusing of 
their rescue actions. In the future, social networks will play 
a more important role in disaster management. Advanced 
technology, such as machine learning, big data analysis 
and image processing will be further investigated and 
developed so as to accurately classify disaster information. 
Data fusion is necessary to have a comprehensive view 
of threatened areas. The disaster information system 
should be able to classify the huge information collected 
from both social media and sensor networks to provide 
corresponding personnel with classification results.

The results of the classification would be filtered based on 
the user’s role and responsibility. Taking a typhoon disaster 
as an example, the fire department may require detailed 
information of injured people, while other service providers 
may require different information sets. In addition, it could 
also provide useful information for people near disaster 
areas to take appropriate responses. 

2.3 Disaster data quality assurance 
and control 
Active Emergency Response Systems (AERS) are designed 
to perform a range of safety related tasks. Liu and Chu 
(2015) [1] explained that AERS are made feasible due to 
the advancement of four major technology domains; 
(1) advances in sensor and analysis technologies (2) 
emergence of Common Alerting Protocol (CAP), an XML-
based data format for exchanging public warnings 
(3) development of platforms that integrate multiple 
communication channels enabled to receive CAP messages 
like Integrated Public Alert and Warning System (IPAWS)-
OPEN (FEMA, 2017) [2]   and (4) development of building 
information models and associated digital data exchange 
standards. Therefore, it is evident that an AERS is primarily 
a gigantic network of data models designed to perform 
real time data collection transmission and processing for 
decision making. Hence the success of an AERS heavily 
depends on its quality of data and information. 

The quality of information provided by sensor data is 
therefore a critical concern in an emergency situation. 
For example, let us consider a medical sensing scenario.  
Medical sensors can be deployed on a patient’s body 
to monitor health related parameters. This data is 
collected via wireless personal area network so that 
doctors can monitor the patient’s health status in real 
time. The environmental sensors at a crisis site, such 
as smoke sensors, can detect fire in a building and also 

work with camera sensors to help determine a route 
so that patients can be rescued in a timely manner. 
The examples above show that the usefulness of 
sensors in case of emergency response are extremely 
diverse in practice and require timeliness, prioritization 
and sensing defect tolerance.  Sachidananda et al. 
(2010) [3] argue that currently the quality of sensor 
data is usually addressed in isolation, by focusing 
on discrete data processing operations such as raw 
data collection, in-network processing (compression 
aggregation), information transport and sink operations 
for decision making. Furthermore, Qin et al. (2013) [4] 
argue that current research has primarily considered 
the functional aspects of distributed sensor systems, 
focusing on techniques to sense, capture, communicate, 
and compute over sensor networks, whereas in more 
complex and diverse sensor applications, non-functional 
application needs (such as timeliness, reliability, accuracy 
and privacy) become important. Thus, it is necessary 
to perform quality-aware sensor data management to 
make AERS an effective reality in the future.

AERS are heavily reliant on the quality of XML-based 
messages sent to various smart devices for automated 
processing of disaster management tasks. Efforts 
have been made throughout the last decade or so to 
standardize emergency-related data formats and use 
them to effect in emergency situations. For example, 
XML-based EDXL (Emergency Data Exchange Language) 
(OASIS, 2006) [5] messaging standards, including CAP 
(Common Alerting Protocol) (OASIS, 2010) [6], enable 
information exchanges between emergency information 
systems and public safety organizations, automatic 
reports by sensor systems to analysis centers, and 
aggregation and correlation of warnings from multiple 
sources. In the early stages, users have reported 
problems when implementing CAP messaging over 
multiple systems that include commercial satellite and 
terrestrial network technologies, such as C/L/X-Band, 
GSM, and CDMA in modes of voice and text (Waidyanatha 
et al, 2007) [7]. However, recent developments have 
enabled CAP to be used as the standard of emergency 
alerts. In recent years, CAP has been deployed in the U.S., 
Canada, Australia and parts of the Asia/Pacific region, 
including Taiwan and Japan. In the case of AERS, it is 
necessary that all smart devices used in the system are 
compatible with data standards and produce error free, 
quality messages in emergency situations.
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2.3 Disaster data quality assurance 
and control cont...
Recent developments in building information models, 
smart/intelligent homes and the concept of smart cities 
will become important aspects in deploying AERS. A 
building information model illustrates the geometry, 
spatial relationships, geographic information, quantities 
and properties of building elements such as facility 
equipment that can be used for lifecycle management of 
buildings (Bazjanac, 2006) [8]. On the other hand, smart and 
intelligent homes and environments now offer us devices, 
applications and services for our comfort, convenience, 
and social connectivity, while also providing services 
such as monitoring elderly people and for healthcare 
(Chan, 2008) [9]. The concept of smart cities uses the 
availability of the ICT infrastructure, human capital and 
the plethora of generated information in the process of 
urban development and management (Caragliu et al, 2011) 
[10]. All the above-mentioned concepts are based on smart 
devices operating in networks to collect, store and process 
data online and offline. So far, few attempts have been 
made to extend these concepts to support emergency 
management. Therefore, the future challenge is to utilize 
the data and information from the emerging gigantic 
network of smart devices known as the internet of things 
(IoT) for the benefit of emergency response. However, 
the concern is the quality of data and information from 
the gigantic network of smart devices which is still in its 
infancy in the context of emergency management.

2.4 Disaster data standards and format
Disaster data response requires large amounts of data. 
However, data is produced by different organisations and 
stored in different formats, which leads to difficulties for 
agencies in terms of data sharing and interoperability. 
Inconsistent standards and disaster data formats are key 
challenges to collecting and using disaster data efficiently. 
The sharing of data resources in networked cooperation 
has become standard practice in some fields, particularly in 
the more economically developed countries. In many cases, 
researchers and their institutions experience considerable 
difficulty in data sharing, which acts as a barrier to 
developing and using shared data in new ways [11]. 

 Disaster databases around the world play important roles 
in disaster reduction, such as the global historical disaster 
database DesInventar [12] (http://www.desinventar.
org/), global level emergency disaster database EM-DAT 
(http://www.emdat.be/), space disaster events and loss 
database in the United States [13] (http://sheldus.org), the 
reinsurance company database, NatCatService  and Sigma 
(http://www.swissre.com/sigma/). 

Within both international and national projects, a range of 
earthquake impact databases have been created and are 
constantly being updated to calibrate seismic intensity 
attenuation models and vulnerability functions of elements 
at risk, in order to increase forecast estimates of losses 

in the emergency mode. The need for systematic data 
for disaster mitigation and prevention has been an 
increasing concern of both development and response 
agencies [14].

Different databases have different standards 
for disaster data management and storage. The 
organization that serves the corresponding database 
usually follows its own specific processes and 
protocols to collect and manage disaster data. For 
example, when criteria are set for entry on the EM-
DAT disaster database, the data should meet at least 
one of the following three conditions: 1) 10 or more 
people deaths 2) 100 or more people affected/injured/
homeless 3) declaring a state of emergency and/or 
an appeal for international assistance [15]. The EMA 
(Emergency Management Australia) disaster database 
requires that the disaster must cause more than 
three deaths, more than 20 injuries or at least AUD10 
million in total losses. Although these databases have 
different disaster data standards, the data standards 
have a clear and concise definition which is important 
for the use of the disaster data. In addition, disaster 
data standards need to meet demand for disaster 
reduction activities. Many key components such as 
regional scale, time scale, accuracy of information, 
timeliness of information, and the comprehensiveness 
of a disaster should be considered in the standards. 
Different disaster databases comply with their 
respective standards, therefore cause difficulty in data 
sharing and interoperability. The Disaster Loss Data 
(DATA) project, under the umbrella of the Integrated 
Research on Disaster Risk (IRDR) programme, proposed 
a standard data collection system (Figure 2) which 
has been adopted by many countries since 2017 
(Fakhruddin et al., 2019 [35]).

¹ NatCatService (http://www.munichre.com)

https://www.munichre.com/en/homepage/index.html
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To be effi  ciently shared during the disaster mitigation, 
the data should follow agreed standards and be stored 
in standardized formats. The categories of disaster data 
can be divided by three ways as follows: 

1.  From a performance point of view, disaster data 
includes graphical data (e.g. topographic maps, 
plan, layout drawings, point notes, structure 
charts and images), text data (e.g. descriptive text, 
various statistical reports, attribute data related to 
geographical entities, sound).

2.  From a data carrier point of view, disaster data 
includes traditional paper graphics, tables and 
documents. In addition, a variety of graphics, charts, 
and documents which are stored in a computer, and 
recordings and videos which are stored in cassettes 
or CD-ROMs. 

3.  From a data sources point of view, disaster data 
includes basic geographic data, ground observation 
data, ground survey data, model simulation data, 
historical data, census data, disaster report and 
integration. According to diff erent data categories and 
data collecting processes, there are many regional 
or global standards due to the diversity and multi-
disciplinary form of disaster data. 

According to the diff erent stages of disaster data 
acquisition, management, analysis and application, 
there are a range of standards and guidelines as 
shown in Table 1. For disaster classifi cation, there 
are various types of disaster events such as fl ood, 
earthquake, drought, and hurricanes. Defi ning and 
classifying a disaster event is the most important 
aspect for disaster mitigation around the world. The 
standard such as Peril disaster classifi cation proposed 
by IRDR (Integrated Research on Disaster Risk) provides 
a specifi ed classifi cation of disasters. Due to the 
variation in methods, the UN Sendai Framework defi ned 
a Data Collection Protocol to standardize disaster 
data collection. Impact database formats used for 
earthquake loss models calibration are based on the 
requirements of individual systems, such as PAGER, 
EXTREMUM, GDACS and others. For disaster data access 
and interoperability, the international organizations 
for standardization such ISO and OGC (Open Geospatial 
Consortium) have defi ned many standards on 
geographical data sharing and interoperability. This can 
be used for disaster data access and data exchange.

Damage and 
loss data 
recording

Disaster 
forensic

Risk 
assessment

Risk 
Interpretation

Cost-benefit 
analysis

Compensation G

E

DRR

DRR

DRR

DRR
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DRR
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Insurance agents

Figure 2 - Disaster loss and damage data collection system (Fakhruddin, et al., 2019 [35])
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Standards category Name Organization Scope URL

Disasters 
classification 

Peril Classification [16] IRDR global http://www.
irdrinternational.
org/2014/03/28/irdr-
peril-classification-
and-hazard-
glossary/

Data Collection 
Protocol

Data Collection Protocol 
presented in the 5th GP-
DRR, 2017

UN Sendai 
Framework 
(UNISDR)

global https://www.unisdr.
org/we/coordinate/
sendai-framework

Framework National Disaster 
Recovery Framework

FEMA regional https://www.
fema.gov/media-
library/assets/
documents/117794

OGC data services WMS, WFS, WCS, 
Sensorweb, 
Opensearch-geo

OGC global http://www.
opengeospatial.org/

Flood FEMA Policy Standards 
for Flood Risk Analysis 
and Mapping

FEMA regional https://www.
fema.gov/media-
library/assets/
documents/35313

WHO standards on 
disaster

Classification and 
minimum standards 
for foreign medical 
teams in sudden onset 
disasters

WHO global http://www.who.
int/hac/global_
health_cluster/
fmt_guidelines_
september2013.pdf

Disaster loss data 
sharing

Guidance for Recording 
and Sharing Disaster 
Damage and Loss Data

JRC EU http://publications.
jrc.ec.europa.
eu/repository/
bitstream/JRC95505/
lbna27192enn.pdf

ISO /TC211 Geographic information/
geomatics

ISO global http://www.isotc211.
org/

GEO GEOSS framework GEO global https://www.
earthobservations.
org

FAIR Guidelines to improve the 
findability, accessibility, 
interoperability, and 
reuse of digital assets

global https://www.go-fair.
org/

CoreTrustSeal Universal catalogue 
of core requirements 
for trustworthy data 
repositories

WDS global https://www.
coretrustseal.org/

Table1. Examples of disaster related standards and guidelines
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short message service (SMS) and other communication 
channels (e.g. voice and social media channels, such as 
Facebook Messenger, Telegram, WhatsApp) to enable 
real time data collection and mass-communication with 
target end-users, including beneficiaries and frontline 
workers. Rapid Pro was developed by UNICEF, allowing 
users to gather accurate real time information on vital 
areas such as health, nutrition, education, water and 
sanitation, and child protection—even in remote and 
hard-to-reach places—and allowing that data to reach 
those most in need . Rapid Pro also has the potential 
to link information with the KoBo Toolbox under the 
upgraded system Rapid Pro+. Rapid Pro however cannot 
view data geospatially.

3.2 Available data rate 
Data requires collection and there is significant 
potential in developing big disaster data collection and 
transmission for remote monitoring. The objective of big 
disaster data collection and transmission is to develop 
an effective mechanism for data transmission between 
a monitoring device, which acquires data using DRR 
parameters, and a remote receiver, which allows storage 
of, and access to, the data - for instance, by a rescuer 
geographically distant from victims. 

Smartphones with wireless communication are an 
excellent and readily available technology for data 
collection and transmission. One in every two people has 
one and the commonly used Android, iOS and Bluetooth 
applications can be easily used to facilitate big disaster 
data collection and transmission.

Along with the abovementioned, there are other 
operating systems such as Kindle. Android and other 
iOS devices are becoming increasingly useful and 
are a symbol of technological progress whereby the 
compilation of big data and transmission can be done 
in no time. Android/other iOS is already being used 
in providing solutions to its users, including weather 
conditions, hazard information, maps, routes, places, and 
early warning systems, therefore helping to analyze real 
and correct information. There are some developments 
focused on acquisition and visualization of risk and 
hazard parameters on smartphones. At a commercial 
level, there are Android/other iOS  applications for 
various purposes and the big disaster data collection and 
transmission is clearly an area with plenty of promise. 

Bluetooth uses short wavelength radio transmission 
for exchanging data wirelessly and without internet 
connectivity. A low cost, low power, technology for 
exchange of data information over short distances, it can 
be useful in big disaster data collection and transmission 
of information sharing to tablets and smartphones. 

Well-built transmission technology ensures data is kept 
safe and can be used effectively, efficiently and quickly 
for taking the DRR measures required in big disaster 
data collection and transmission. Therefore, to network 
devices that have Bluetooth technology, Android and 
a transmission technology will provide an effective 
platform to collect big disaster data and transmit it 
as required. 

Both rapid urbanization and continuous changes in 
climate have resulted in increased disaster risk. Whenever 
disasters occur, various incidents happen simultaneously 
(i.e. traffic congestion or a road block due to a landslide) 
which leads to a rescue and response mechanism. 
An essential part of the process is the collection and 
transmission of an accurate situation report collected by 
the right person or officials so that the time of response 
can start without wasting a single second. The role of data 
collection and transmission options is therefore essential 
in mitigating and managing the effects of disaster.

3.1 Available communications infrastructure
Disaster communications are largely dependent on existing 
Land Mobile Radios (LMR) and Mobile Cellular network 
infrastructure. Most of the access points associated 
with these are vulnerable to damage in disasters (i.e. 
cyclonic storms, earthquake). Tower collapses, antenna 
misalignments, power outages, cable damages are just a 
few of the examples of how the network can fail during 
disasters. Disasters like Hurricane Katrina destroyed 
essential infrastructure, rendering most wireless base 
stations, land line cables, central offices and data centers 
unusable. The non-availability of network severely 
hampers tactical operations. At the strategic level, the non-
availability of relevant data from the disaster sites would 
be a great disadvantage. 

Telecommunications holds the key to exchange of 
information and invariably is the most vulnerable link in the 
chain. Big data can be of assistance in this particular field 
as it can bring in disaster resilience in network planning. 
This is a fundamental component of disaster planning 
in order for information exchange to continue through 
a disaster situation, enabling operations to continue. 
Device-to-device communications or Proximity Services 
are required to create an ad-hoc mesh network from 
available working devices and terminals. This allows 
information exchange to continue, even during a network 
failure. A mobile-to-mobile mesh network can be created 
using the 3GPP ProSe standards (3GPP LTE Release 12) 
and mesh networking standards used by B.A.T.M.A.N or 
by Serval Mesh, which uses existing device-to-device 
communications to set up off-grid communication 
networks. This enables mobile devices to create a network 
using device-to-device communication such as ProSe, 
WiFi, Bluetooth etc. It is therefore feasible for the mesh 
network to function even during grid failure, allowing data 
and information to be transferred through optimal nodes. 

The KoBo tool box is a free and open source tool for mobile 
data collection used by many developing countries. The 
toolbox was a joint initiative between UNOCHA, Harvard 
Humanitarian Institute and the International Rescue 
Committee. Emergency responders are able to develop 
forms quickly to collect needs information post event. Data 
can then be analysed and viewed in summary reports, 
graphs, tables and on maps, as data can be georeferenced 
and is able to be exported . KoBo toolbox is effective in 
gathering needs data in an emergency response situation 
however, it is not as useful for capturing past impact 
information. Rapid Pro, another tool, collects data via 

3. Big disaster data collection and transmission
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Big disaster data is processed and analyzed to develop 
perception, comprehension and projection of the 
emergency event as explained in section 3. Generally, 
data analytics are classified into four categories 
depending on their goal and purpose: descriptive 
analytics, diagnostic analytics, predictive analytics, 
and prescriptive analytics. In the emergency response 
phase, perception of the emergency related incident 
can be developed through descriptive analytics. To 
develop comprehension, both diagnostic analytics and 
prescriptive analytics can be used, whereas diagnostic 
analytics recognize the cause(s) for the incident and 
prescriptive analytics determine which actions need to 
be taken to manage the situation. Projection into the 
future can be developed through predictive analytics.     

A primary disaster is the triggering event and a 
secondary disaster is the consequence of disaster. 
An example of this is an earthquake which causes a 
building to collapse. Authorities dealing with disaster 
risk reduction (DRR) must make decisions that range 
from one-off strategic decisions, to monthly and 
weekly tactical decisions and high-volume, high-speed 
front-line operational decisions. The requirement of 
time constrained decision support is an important 
parameter in order to mitigate the effects generated 
by the primary disaster. When the emergency alarm 
starts, the time-based mitigating measures can only be 
effective if the authorities are able to read data provided 
by the database and time-based mitigating measures 
implementation policy works.

4.1 Competence & hypothesis for disaster 
risk reduction data processing
Geographic Information Systems (GIS), mobile devices, 
cloud computing, social media, sensors, and cameras 
are now found everywhere and produce massive 
amounts of data. To extract the maximum value from 
dynamic and perishable disaster risk reduction data, 
authorities need to process data much faster and 
take timely action to save thousands of lives and 
livelihoods. Whether communicating to first responders 
and officials, offering proactive support, detecting and 
preventing risk, or managing the Internet of Things, real 
time decision making is essential. Responding in real 
time requires systems to make operational decisions 
automatically. 

Currently, for example, there are three global systems 
for modeling damage and losses due to earthquakes in 
near real time. GDACS has additional options to both to 
facilitate and stimulate response. Extreme, in addition to 
assessing possible damage and loss, provides estimates 
of the first response resources required for response. 
Acute, Systematic and Robust Decision Management 
Systems combine proper rules and predictive analytics 

to render tailored recommendations. Event processing 
brings large-scale correlation and pattern detection to 
risk events, along with big disaster risk reduction data 
streams which are transferred in microseconds.

Event-based decision management systems enrich 
event-based disaster risk reduction data with traditional 
and big data sources to determine when, and why, 
a real time response might be required. Through 
leveraging decision engines based on DRR rules and 
analytics, decision management systems can determine 
what the best and most effective response is. For 
authorities to respond to early predictions or warnings 
in real time, they need to acquire or develop decision 
management systems to capture, filter and analyze 
data, and make decisions in real time. Such systems 
need to be able to rapidly determine that a response 
is required and intelligently determine both what, and 
when, the relevant and appropriate response should be. 
Authorities need to ensure that response mechanisms 
are delivered in real time, so more event-centric DRR 
decision management systems are required.

In a disaster event, the combination of DRR real time 
decisions and risk event processing delivers the core 
capabilities for building a real time, hazard or risk-
based Decision Management System - correlating 
events, managing decision logic, embedding predictive 
analytics, optimizing results, and monitoring and 
improving decision making. Key features of the solution 
include certain competencies and hypothesis as shown 
in Table 2.

4. Big disaster data processing
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Competence Hypothesis
Event correlation, Disaster 
Risk Reduction rules, and 
predictive analytics in 
combination

Some real time response solutions focus on event correlation, on DRR measures, or 
on predictive analytics. With DRR Event Processing and Real time Decisions working 
together, the solution balances these capabilities, maximizing the flexibility and power 
of the decision making systems that can be built with it.

Scalability and flexible 
distribution

Extreme scalability and deployment ability for disaster risk reduction measures is 
required. The architecture, event detection and correlation are widely distributed and 
close to the event source. Therefore, monitoring is needed for structuring disaster risk 
reduction strategies. This improves responsiveness and contextual awareness while 
lowering latency. At any point, the Real time Decisions can be invoked or used to learn 
from the patterns detected due to their flexibility of deployment and suitability for a 
mutually shared approach.

Broad support for 
divergent environments

Externally managed DRR data, content, response and mitigation rules, and predictive 
analytic models must be supported. A wide range of complex and interpretable data 
can be handled. 

Adaptability and 
robustness in the face 
of change

The overall solution is robust in the face of ongoing change. Event Processing allows 
new patterns and queries to be deployed to a live instance, while Real time Decisions 
allows similar changes to DRR rules and analytic models. Real time Decisions for 
Disaster Risk Reduction provides support for analytic models that are based on risk 
finding and hazard mapping, while automation of the full analytic lifecycle allows 
professionals to use hundreds of regularly updated DRR based analytic models in 
mitigating disaster affects.

Extensibility DRR event processing provides new functions and capabilities that can be made 
available for pattern-matching analysis for disasters. The support of Real Time 
Decisions for external DRR rules and analytic models allows decision makers to 
achieve extensible prospects in DRR planning.

Table 2: Competence & Hypothesis for Disaster Risk Reduction Data Processing

The first step in developing a DRR real-time response 
solution is to configure the event processing engine. 
This involves identifying the message streams in the 
environment, i.e., disaster locations. These message 
streams are fed into the optimization engine and are 
correlated with different disaster situations. Where 
a DRR event processing network is in place, various 
disaster related practices are defined to process these 
events. After the event processing engine is configured, 
it can be connected to the decision engine. This involves 
defining the options to be selected between the hazard 
and vulnerability measures that will allow the decision 
engine to choose the best option. Any DRR rules that 
constrain the choices are specified and analytic models 
are built to predict behavior and segment risk.  

In case of any hazard increment, or risk enhancement, 
the DRR decision engine is invoked to determine the 
eligible choices and identify the best choice for taking 
mitigation steps, given the performance measures and 
analytics. These recommendations can be fed back to 
the disaster event processing engine or passed out as 
a response. The DRR decision engine then closes the 
loop by recording decision performance information. 
The decision engine automatically divides activity into 
test and control groups, and the competent authority 

of the decision decides how the activity will be split 
between the test and the control groups. This logic can 
be adjusted over time as necessary. Outcomes from 
DRR decision making are fed back into adaptive analytic 
models and used to monitor the overall performance of 
the system for taking DRR measures.

Social media has become a fast and efficient mechanism 
for disaster data collection. For example, if an 
earthquake were to occur, the reporting mechanism 
would be immediately activated as soon as any 
information was transmitted from any user who was 
not part of the disaster risk reduction system. 
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An important use of crowd-sourced data is event detection, 
where significant incidents are recognized (Saran et. 
al., 2017) [18]. In emergency response systems real time 
event detection should be performed quickly without 
compromising for precession. The rating of Seismological 
Surveys providing real time earthquake parameters in 
different earthquake-prone regions should be estimated in 
advance. Near real time global loss assessment systems 
should be calibrated taking into account using a 
Surveys rating. 

The advancements in location inference techniques using 
geo-tagged social media data would provide useful tools 
for precise identification of locations (Laylavi, F., 2017) 
[19]. The information regarding events and their locations 
should be used to develop crisis maps for orchestrating 
rescue operations and planing recovery strategies. This 
geo-referenced information, plotted on maps, should be 
updated continuously as new information is received and 
events unfold (Beatson et al., 2014) [20]. 

The effective management of disaster events also 
requires the collaboration and coordination of a range 
of government decision makers, emergency response 
stakeholders and community-based non-government 
organizations. The availability of real time location-aware 
information, as well as the capability to effectively integrate 
and utilize available information with different autonomous 
agencies, is key to effective decision making and resource 
deployment to respond to crises (Fosso Wamba et al., 
2012) [21]. In most situations, response teams have to make 
decisions based on incomplete and inaccurate information. 
This may be due to limited availability of data network 
resources. In the case of Japan’s Tohoku earthquake, it was 
reported that the number of outages of communication 
facilities such as access lines and cellular base stations 
increased during the first 24 to 48 hours after the strike 
(ref). Therefore, mechanisms should be deployed to achieve 
high availability of the networks and systems. When 
developing emergency management systems, essential 
aspects to consider are: re-configurability of the network, 
network virtualization, and cloud-based systems that are 
not affected by the damaged infrastructure.

Predictive data analytics can play a wider role in disaster 
readiness and reduction phases. Natural hazards are 
extreme and unexpected phenomena resulting from 
natural processes of the earth and atmosphere. Therefore, 
the prediction of natural hazards is a major aspect in 
improving readiness. Though a massive amount of data is 
available across almost all disciplines related to disasters 
- such as geosciences, weather and medical insurance 
- the knowledge extraction from such massive data 
cannot always be performed by using standard statistical 
techniques. It is necessary to use new approaches such as 
recognizing relevant patterns of natural hazards through 
automated machine learning techniques to 
make predictions. 

The features of social media used for disaster data 
collection and transmission are as follows:  

•  The most up to date data: The general public who 
are at the location of a risk or hazard can often 
provide a completely new set of information for 
data researchers. With every post, conversation 
and site or app visit, a user leaves behind pieces of 
information about themselves. The data transmitted 
is comprehensive - from simple demographic 
information through to robust details such as 
coping capacity, damage assessment, impact, risk 
information and early warning systems.

•  Instant data: Every organization has historical data 
upon which data transmission is based, e.g., census 
data for establishing male to female ratios, or how 
many children live in an area. However, in the case 
of a disaster, instant data is required to understand 
the actual situation. Therefore, the social media data 
generated by people located in the disaster-affected 
area plays a vital role in situation analysis and data 
transmission, which is in turn critical to an effective 
disaster response and operation mechanism.

•  Fine-grained data: Social media best represents 
people due to its ability to capture people’s beliefs, 
attitudes and actions. No other source of data 
provides the same kind of granular detail of a 
person’s life in terms of disaster reduction measures. 
Authorities can use social media to obtain personal 
information in an emergency which can save lives. 

4.2 Big data processing for disaster 
management
Response and recovery phases of disaster situations 
require effective processing of historically collected 
information (government data, open data, linked data 
etc.), as well as big data from various channels such 
as sensors, satellites, crowd sourced information 
(social media feeds, photos, video) and cell phone GPS 
signals. Therefore, the challenge is real time integration 
of the archived information and big data streams 
through seamless interaction and collaboration with 
different platforms. Furthermore, it is necessary to 
have data integration and data fusion capabilities 
to integrate multiple distributed and heterogeneous 
data sources to produce more consistent, accurate, 
and useful information to support rescue operations 
(Haghighat et. al., 2016) [17]. The necessity of handling 
larger data volumes with different data formats such 
as structured, unstructured, and semi-structured 
data with high velocity constraints and limitation of 
human interpretation can overwhelm decision-makers. 
Therefore, advanced data querying and analytics 
such as machine learning techniques and in-memory 
computing will be required.   
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5. Big disaster data quality control 

quality criteria is required to assess them. Another 
aspect in using crowd-sourced data is the translation and 
interpretation of meaning in multilingual environments. 
The quality of data depends on how well the translations 
and interpretations match with the real-world disaster 
context to help save lives and assist relief operations 
effectively and efficiently. The presence of a wide variety of 
data and their sources requires joint efforts to assess the 
rating of sources for certain types of hazards.

Tapia et al. (2013) [24] argues that in a disaster context, 
crowd-sourced data may never meet the standards of 
quality required in situations such as search and rescue 
operations, while in others, such as resource and supply 
management, they may be useful as long as appropriately 
verified and classified. Goodchild and Glennon (2010) 
[25] reveal that many aspects of data quality problems 
surrounding disaster response require further research.

Identifying both the purpose of, and who will use, big 
disaster data is the most important component of 
big disaster data quality control and assurance. The 
methods of examining should be precise, directed by the 
purpose of the monitoring programme and the quality 
of disaster data that users need. The level of disaster 
data quality assurance will depend on its end users at 
the time of a crisis, and measures taken to check the 
reliability of disaster data for its intended purpose. For 
some monitoring groups, the main objective is identifying 
earthquake risk for the local community or school, 
where the focus is on earthquake awareness, rather 
than producing high quality disaster data on other types 
of disaster. However, groups that collect data to inform 
decision makers, or as part of an integrated monitoring 
programme with authorities, research organizations, 
regional bodies and state agencies must take measures to 
ensure the data is credible and reliable. When appropriate 
quality assurance and quality control measures are 
implemented, we can be confident that authorities’ 
decisions are based on sound and reliable data.

Parameters for consideration in big disaster data quality 
control and assurance includes disaster data from 
contamination, illegal data filters, outlier detection, 
checking test assumptions with normal probability plots, 
diagnostic measures and GRUBBs testing. All these 
parameters should be taken into consideration for quality 
control and assurance for big disaster data. Data used for 
DRR projects for visualization, analysis, compilation, and 
sharing should meet a defined standard for quality. Data 
quality requirements vary from project to project and are 
determined by how accurate or complete a dataset needs 
to be, which in turn is based on how the data will be used. 
Further to this, data quality is influenced by technical, 
product, and location requirements. 

Big data is a new concept both to expert and the general 
public.  Therefore general quality concepts related to Big 
data are still in their infancy. Hence the quality criteria (di-
mensions), the data quality management principles and 
methodologies are yet to be developed (Cai and Zhu, 2015) 
[22]. Big data has three main characteristics - volume, ve-
locity and variety, where specific challenges are faced 
when assuring the quality of data. In this case, traditional 
data quality dimensions and frameworks become obsolete 
and new challenges emerge.

5.1 Challenges of disaster data
quality control
The large volume and high velocity of crowd-sourced
data requires an instant quality assurance process. Data
from social media such as Facebook, Twitter, Instagram
and various other communication channels such as Viber,
WhatsApp multimedia messages and text messages are
huge (The Harvard Humanitarian Initiative (2011) [23]).
To use the collected data for decision making, information
should pass quality checks pertaining to dimensions such
as accuracy, currency and completeness. Therefore, the
disaster response systems should have the capability
to validate the data and information prior to its use for
decision making. Sources such as GIS data and extra
information pertaining to the device and the timestamp
of the message can be used to perform validations. In
addition, verification services can be designed to send
collected data back to members of the public and request
their feedback.

Due to the rapid changes happening in the environment
during disaster situations, some big data remains valid
only for a very short time (e.g., readings of thermal sensors
and flood levels). If such data is not collected and used
in real time, then people (including first responders) may
receive outdated and invalid information as processing
and analysis could produce misleading conclusions. Hence
special capabilities should be built to handle the quality of
time sensitive data. Further, due to multiple sources and
the rapid changes, the necessity for entity resolution and
record linkage will grow where matching of entities relies
on good reference information for similarity scoring and
linkage. Therefore, it is necessary to develop common
reference domains and provide an environment for
capturing and sharing disaster related terms, data element
definitions and logical semantics.

The diversity of data sources brings verity of data types
and complex data structures, therefore increasing the
difficulty of data integration. Examples of data types
are: Unstructured data (e.g. documents, video, audio)
semi-structured data (e.g. software packages/modules,
spreadsheets), financial reports and structured data from
various databases. Semi-structured and instructed data
play major roles in disaster situations and hence innovative
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5.1 Challenges of disaster data 
quality control cont...

Quality control and quality assurance is required in order 
to work through the issues identified, after which a quality 
control related report can be generated. All these issues 
can be implemented as tools for assessing big disaster 
data quality control and assurance.

GIS can be a useful platform in big disaster data 
management. GIS provides a platform for the management 
of geographic data and disparate documents (e.g. 
plans and photographs) necessary to meet emergency 

management requirements. GIS provides the capability 
to access information based on the geographic location 
to which it pertains, allowing users access to various 
types of information from the map display. GIS will be an 
efficient tool in data quality control and assurance and will 
help to build a real time picture for disaster risk mitigation 
exercises. Furthermore, the graphs and pictograms help 
analyze big disaster data quality. Dynamic data (e.g. camera 
feeds, weather, traffic, hospital status, automated vehicle 
location (AVL), incidents and sensors) provides situational 
awareness for decision support. Some points used in GIS 
provide better quality disaster data, therefore assurance of 
data can be gained up to a certain level.

Figure 3a: Total damage cost from global disasters
Source: EMDAT: OFDA/CRED International Disaster Database, Universite Catholique 

De Louvain-Brussels- Belgium

Figure 3b: Number of deaths from natural disaster
Source: EMDAT: OFDA/CRED International Disaster Database, Universite Catholique 

De Louvain-Brussels- Belgium
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Figure 3a and 3b, wherein the first figure shows the 
damage assessment and next figure shows mortality 
data, can be used to analyse disaster data quality. These 
parameters can be integrated to obtain better quality and 
assurance of disaster data.

The user and system design requirements from the aspect 
of big disaster data quality control and assurance needs 
an interface to control big disaster data documentation. 
The interface document describes the internet capabilities 
of two separate platforms in information dissemination 
and big disaster data quality control and assurance. The 
interface document in disaster risk reduction and big 
disaster data also describes the interaction between 
two different sources and how to gather the correct 
information in one place. This interface is also similar to 
other communication interfaces, wherein the role of a 
user and the system, software component – or two 
software components - and a hardware device are 
interrelated. This class of document is typically used 
where complex interfaces exist between components for 
disaster risk reduction and are being developed by different 
people in different locations. It is jointly prepared by the 
interfacing groups.

The big disaster data requirements describe what the 
interface is to achieve, together with any hindrance to its 
design as follows:

•  Identification of the disaster interfacing systems/ 
sub-systems

•  The reason for the disaster interface’s existence, including 
that the user requirement is satisfied

•  A description of what the interface does for disaster 
risk reduction

•  Specification of the information to be exchanged for 
mitigating disaster risk

•  Timing and sequencing constraints pre-disaster as well 
as post-disaster

•  Capacity and performance requirements for disaster 
risk reduction

•  Requirements for communications protocol standards 
compliance to mitigate effects of disaster

•  Identification of any safety requirements discovered in a 
Disaster Interface Hazard Analysis.

Data cleansing is a useful method for quality assurance 
in disaster data. Data profiling techniques can be used to 
identify the problems in historically collected disaster-
related data sets such as weather data, loss data etc. Data 
profiling is the process of examining the data available 
in an existing data source and discovering statistics 
and information about that data. Profiling can unveil 
basic data quality problems (the number of null values, 
duplicate records, outliers etc.), data types and the most 
frequent patterns of data values. These discoveries can be 
translated into constraints or rules that are then enforced 
in the data cleansing phase. Data profiling methods 

can also be used to uncover heterogeneities (syntactic, 
structural, and semantic) in multiple data sources and 
provide guidance on how to integrate data sets (Naumann 
2013) [39].

Disaster data quality is still in its infancy and not many 
attempts have been made to develop a data quality 
management framework for disaster management 
systems. However, in the context of business information 
systems, and in many other disciplines such as medical 
and healthcare, data quality is a well matured area with 
prominent frameworks and methodologies (Batini, 2009) 
[38]. Therefore, more research should focus on disaster 
data quality requirements, specifically focusing on the 
Active Emergency Response Systems (AERS) scenarios that 
will be the future of disaster management. As explained in 
section 4.2, some of the data used in disaster management 
are big data and new and innovative approaches are 
required to develop data quality management strategies. 
But traditional quality management approaches are 
useful for other data such as previously collected data 
(demographic data, geographical data, data from various 
government departments etc.) and real time data (sensor 
data, GPS data, alerts, instructions etc.)  

5.2 Disaster data interface between 
different entities
The design of a big disaster database describes how the 
interface will be implemented for disaster risk reduction. 
For example, in the case of a control room interface, the 
following technical details are provided. A description of 
the control room communications protocol may include:

•  Message format for hazards, risk, vulnerability and 
description including user error messages, user 
information messages and inter-process messages

•  Message component names (like earthquake, 
tsunami etc.)

• Message initiation (heat wave or cold wave started)

•  The processing of message interruptions. Fragmentation 
and reassembly of messages

• Error detection, control and recovery procedures

•  Disaster data synchronization, including connection 
establishment, maintenance, termination and timing and 
sequencing for the disaster risk reduction mechanism

• Disaster risk reduction data transfer rate

• Data transmission services including priority and grade

•  Disaster data security including encryption, user 
authentication and auditing

• Error codes in disaster data
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Figure 4: Interrelation of disaster data quality
Figure 4 above shows the impact of transmission, errors, security and synchronization in maintaining big disaster 
data quality which can be processed in terms of other parameters. Data quality is a perception or an assessment of 
whether the data is able to serve its purpose in a given context. Various aspects of big disaster data quality include other 
parameters of consideration: Accuracy, completeness, update status, relevance, consistency (across data sources), 
reliability, appropriate presentation and accessibility. In the following section, disaster data visualization and its 
applications and limitations are discussed. 

Big Disaster Data visualization technologies can be both 
powerful and easy to use, thus allowing decision makers to 
quickly and easily understand, articulate and share insights 
across the organization to others. The main objective is 
easy sharing of information and to channelize the response 
mechanism as rapidly as possible.

More often than not, dealing with disasters has historically 
focused on emergency response. However, from the 
beginning of the 21st century it has become increasingly 
recognized that disasters are not natural (even if the 
associated hazard is). Only by reducing and managing 
conditions of hazard, exposure and vulnerability can 
losses be prevented and the impacts of disasters 
alleviated. As it is not possible to minimize the severity 
of natural hazards, the main task for reducing risk lies in 
mitigating vulnerability and exposure. Reducing these two 
components of risk requires identifying and reducing the 
underlying drivers of risk, which are particularly related 

to poor economic and urban development choices and 
practice, degradation of the environment, poverty and 
inequality and climate change. These drivers create 
and exacerbate conditions of hazard, exposure and 
vulnerability. Addressing these underlying risk drivers 
will reduce disaster risk, lessen the impacts of climate 
change and consequently, maintain the sustainability of 
development. DRR is a part of sustainable development, 
so it must involve every part of society, as well as 
government and non-governmental organizations 
and the professional and private sectors. Big disaster 
data visualization creates a culture of prevention and 
resilience for implementing disaster risk reduction 
mechanism. Moreover, big disaster data visualization will 
also allow decision makers to build strategy for multiple, 
cascading and interacting hazards.

6. Big disaster data visualization

Figure 4
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6.1 Data visualization for disaster 
management
Trying to discover relationships and understand risks 
and hazards can be diffi  cult, as data can be comprised 
by thousands to millions of variables. Big disaster data 
visualization has become the de facto standard for DRR. 
Data visualization tools in DRR have been important 
in democratizing data and analytics and making data-
driven insights available to disaster professionals 
throughout an organization. Data visualization tools are 
typically easier to operate than traditional statistical 
analysis, which is not software-based and based on 
partially incorrect data. This has led to an increase in 
hazard mapping, vulnerability analysis and risk reduction 
implementing data visualization in isolation, without 
IT support. Data visualization software also plays an 
important role in big data disaster visualization and 
advanced analytics projects. Big disaster risk reduction 
measures resulted in massive accumulations of data 
in relation to various hazards and related risks and 
disasters during the early years of big data advancement. 
However, by utilizing visualization tools, it was a way to 
quickly and easily get an overview of the data. 

The greater the quantity and type of disaster data 
collected, the more we need to experiment with how 
to better present the data in formats which can be 
understood. The requirement in mitigating disaster risk is 
to start with a plain sheet of paper and then experiment 
with custom visualization. Even minute details can 
enhance basic charts to reveal further disaster risk 
reduction measures.

The ideal process in creating big disaster data 
visualization is to amass all the disaster related data 
in a specifi c tool, pick it from unconventional sources 
and frame it so that the entire task can be completed 
within a couple of clicks. Simplifi ed solutions are 
required to solve big disaster data collection and 
transmission methodologies. In order to achieve clarity, 
big disaster data needs to be compared, synthesized 
and concluded, then transmitted to users as a single 
piece of information. Big disaster data-driven doesn’t 
mean that it is absolutely correct, because data and 
the tools that collect it are man made. DRR data is not 
completely factual, but can be viewed as evidence that 
fi lters reality in a very subjective way. The intention is not 
to get a black and white result, but rather visualized data 
in a satisfactory form that delivers meaning to people 
reading that information.

Mobile
Application

Maps

Vulnerability Hazards

Population

Big Disaster
Data

Risk

Figure 5: List that is required to 
fetch big disaster data
As shown in Figure 5, the data visualization 
approach is to analyze, compile and combine 
parameters such as the use of Android/other 
iOS, population data, hazard analysis, exposure 
mapping, vulnerability studies and maps to form 
a visualized big disaster data. This is the same 
approach used in preparing traffi  c congestion 
data if the number of vehicles on roads, the 
travelling population and nearby residential 
population is known, as shown in Figure 4. 
The important parameters always start with a 
hazard analysis and exposure mapping, along 
with a vulnerability study.

Big disaster data visualization is central to advanced analytics for similar reasons. When a data scientist is writing 
advanced predictive analytics or machine learning algorithms on hazards, vulnerability, risks and disasters as shown 
in Figure 7, it becomes important to visualize the outputs to monitor results and ensure that models are performing as 
intended. Visualizations are generally easier to interpret than numerical outputs. Most of today’s data visualization tools 
come with connectors to popular data sources, including the most common relational databases, such as Hadoop and a 
variety of cloud storage platforms. The visualization software pulls in data from these sources in the case of normal data 
management and applies a graphic type to the data or in broader disaster data.

Figure 5
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Figure 6: Data visualization for
traffi  c congestion

Figure 7: Big disaster data visualization
cycle (HEVC*– Hazard, Exposure, 
Vulnerability and Capacity)
Big disaster data visualization will provide the best of both 
worlds; specifi c, precise, uniform analytics that can be 
relied upon, along with ease-of-use and speed if changes 
are needed. Disaster data visualization will explore 
parameters including:

•  Search for response, recovery and rehabilitation points 
and the ability to access data quickly due to guided 
navigation

• Analyze disaster data, anywhere with instant mobile

•  Highlight one visual to automatically see disaster risk-
related information in the others

• Add new data and deliver, on-the-go, intelligent updates

•  Use pre-built data connections to load and integrate data 
from a wide variety of sources

• Combine information to uncover new insights

•  Capture insights and add comments to create
visual stories

•  Collaborate with research teams by sharing calibration 
parameters of loss models

Big disaster data visualization is an important step in 
mitigating disaster risk because of the way the human 
brain processes information. Using charts or graphs to 
visualize large amounts of complex data is easier than 
sorting through spreadsheets or reports. Big disaster data 
visualization will be a fast, feasible, easy way to deliver 
concepts in a universal manner – and we can experiment 
with diff erent disaster-related scenarios, either natural or 
man-made by making slight adjustments.

Sense-making (also called data analysis) and 
communication is the graphical display of abstract 
information for two purposes in data visualization and 
understanding. Important stories live in the collected data 
and data visualization is a powerful means to discover 
and understand these stories and present them to others. 
Whether data incorporates hazards fi ndings, vulnerability, 
risks or gap analysis, capacity building, or anything else, 
and even though it does not pertain to the physical world, 
it can still be displayed visually. However, to generate 
such outcomes we must fi nd a new way to give form 
to that which has none. This translation of the abstract 
into physical attributes of vision (length, position, size, 
shape, and color, to name a few) can only succeed if we 
understand a bit about visual perception and cognition. 
In other words, to visualize disaster data eff ectively, 
we must follow design principles that are derived from 
an understanding of human perception in disaster risk 
reduction.

Generally, data visualization features key relationships 
between quantitative values. It can also display certain 
relationships that are not quantitative in nature and can 
derive some unique features. For instance, the connections 
between people near a natural disaster site or aff ected 
by suspected terrorists on social networking sites such 
as Facebook or WhatsApp can be displayed using a node 
and link visualization. The mobile technology provides 
a gateway to get instant disaster data by using the 
application which is inside that mobile device. Therefore 
big disaster data visualization can create an effi  cient and 
eff ective platform in helping to preserve the lives and 
property of people by using readily available technology.

The bigger challenge of big disaster data collection is that 
we rely on grass-roots workers for data sharing, who are 
never sensitized to, or trained in, that particular hazard or 
risk data. Intellectuals want to analyze disaster risk data 
and simulate models, but have no control over policies and 
mechanisms that exists to collect them. United Nations 
Offi  ce for Disaster Risk Reduction (UNISDR), KoboToolbox 
(A suite of tools for fi eld data collection for use in 
challenging environments), EM-DAT (Platform for maintain 
international disaster database) and several country-
specifi c mechanisms currently exist for post-disaster 
needs assessments by estimating several parameters. 
All these platforms are used for short and long term loss 
estimation but have a limited scope in terms of future 
prediction and recovery.

Figure 6

Figure 7
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6.2 Information systems design for 
disaster management
All four phases of disaster management; readiness, 
response, recovery and reduction (MCDEM, 2007) [26] 
involve heavy use of data and information that belongs 
to all three categories of data; structured data, semi-
structured data and unstructured data (Batini and 
Scannapieco 2006) [27]. The data used during disaster 
situations can be classifi ed as big data. One of the 
world’s leading research and advisory companies, big 
data is defi ned when the volume velocity and verity of 
data is in high scale (Kailser et al, 2013) [28]. For instance, 
data supporting the response phase of a disaster 
generates signifi cantly large volumes of data from 
sensor networks, satellites, social media, (Prasanna and 
Huggins, 2016) [29]photos, videos, GPS signals from cell 
phones and other multimedia devices, as well as results 
of near real time loss simulation. The generation of such 
data occurs in shorter period of time (Yang, Prasanna 
and King, 2009) [30]. Furthermore, the data focuses on 
multiple variables such as weather, medical related, 
supplies, relief, warnings, traffi  c, transport. 

Creating situational awareness (SA) is the foremost task 
in an emergency response phase. Situational awareness 
is defi ned as “The perception of the elements in the 
environment within a volume of time and space, the 
comprehension of their meaning and the projection of their 
status in the near future”(Ref). In order to develop SA, data 
should be visualised in an eff ective and effi  cient manner so 
that it supports three levels of knowledge: (1) perception (2) 
comprehension and (3) projection of the incident, so that 
the incident commanders can plan and carry out the rescue 
operations. In order to develop each level of knowledge, 
system interfaces are required for data visualization.

• Interfaces for Level 1 SA – Perception

The fi rst step in achieving SA is to perceive the status, 
attributes and dynamics of relevant elements in the 
environment. Lack of basic perception on important 
information can easily lead to an inaccurate picture of 
the situation. These interfaces will support an end user 
to maintain a global picture relevant to a particular role at 
any given time during the incident (Yang et al, 2009) [30]. 
Thus, as shown in Figure 8, with these types of interfaces 
incident commanders will be able to have a high-level, 
summarized overview of the situation.  

Figure 8: Interface supporting Level 1 SA of a IC: ‘Dash Board’. [30]
• Interfaces for Level 2 SA – Comprehension

At this level, information obtained through observation is combined and interpreted. 
Rather than presenting a set of isolated information, mostly via numbers and text as 
in the perception level, as shown in the Figure 9, with this type of interface dynamic 
information is meaningfully integrated with static information using graphical 
presentations. It provides an appropriate level of comprehension of the situation at any 
given moment in time to further improve the SA. 

Figure 8
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Figure 9: Interface supporting Level 2 SA of an IC. [30]
• Interfaces for Level 3 SA – Projection

By developing these interfaces, projection of future events is supported by providing the incident commanders with 
information on current and past trends on various situational parameters. Together with Level 1 – Perception, and Level 
2 – Comprehension interfaces, Level 3 – Projection interfaces, as shown in Figure 10, can provide a higher level of SA for 
incident commanders in making diffi  cult predictions with confi dence at any given moment during the emergency. 

Figure10: Interface supporting Level 3
SA of a IC. [30]
The system design requirements for data visualization in 
each level explained above will diff er, depending on the 
nature of the emergency or disaster. For example, in case 
of a fi re-fi ghting scenario, nearly 350 diff erent information 
interfaces have been proposed for the use of four fi re-
fi ghter roles (Prasanna et al. 2013) [31]. Thus, depending on 
the nature of the disaster, ground level data visualization 
requirements may change. 

Visualization of disaster related data positioned on 
geographical data (area maps, building maps etc.) 
is an important aspect for all phases of emergency 
management. GIS technology provides the capability to 
map and analyze hazards of all types and visualize their 
potential impacts. Therefore, emergency management 
systems should be capable of producing interactive 
maps such as vulnerability, operations, logistics, tactical, 
air deployment, transportation and incident prediction 
maps which can be used in all areas of emergency 
management phases. An example of where visualizations 

in maps can be applied is when there is a need to identify 
information about trapped persons, medical resources, 
damaged buildings, closed roads, and the availability and 
whereabouts of specifi c needs such as food, water and 
shelter (Beatson, et al., 2014) [20].

Visualization of crowd-sourced information is another 
important aspect that should be considered in the disaster 
response phase. With the emergence of web 2.0 tools like 
Twitter, Facebook and YouTube, a massive amount of data 
is exchanged during disasters (Bruns and Burgess 2012) 
[32]. The majority of such crowd-sourced information is 
generated by the general public (Harvard Humanitarian 
Initiative 2011) [23] and is vital to developing real time 
live maps to produce and visualize an overall perspective 
of what usually is a complex and often rapidly changing 
environment (Beatson, et al., 2014) [20]. Organizations such 
as Volunteer & Technology Communities (V&TCs) need to 
visualize hot-spots of activity within a short timeframe 
in order to mobilize large numbers of internationally-
dispersed volunteers, so they are able to collaboratively 
solve informational and logistical management issues.

Figure 9

Figure 10
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7. Policy Recommendations 

7.1. Future Scenarios 
a.  Hazard warning and emergency response system: It 

is recommended that those involved in developing and 
managing EWS, whether international organizations 
or national and local organizations, develop a coherent 
data/digital strategy, a digital roadmap of how to include 
big data into the different MHEWS components and into 
their internal processes. A major challenge is to help 
developing countries to better take advantage of the 
standard framework for an end to end multi-hazard 
early warning system. 

•    Crowd-sourcing information: Data fusion is necessary 
to develop a comprehensive view of threatened areas. 
The disaster information system should be able to 
classify the extensive amount of information collected 
from both social media and sensor networks to provide 
corresponding personnel with classification results. 

•   Data quality assurance and control: IoT is creating 
vastly more data at much lower cost.  This does result 
in significant amounts of good quality data, but also an 
amount of poor quality data.  Process can be developed 
to ignore the erroneous data and utilize the good quality 
data.  As more and more sensors are deployed this 
process gets easier.

•   Disaster data standards and format: Standardization 
of disaster loss data quantification can identify gaps in 
risk assessment, simultaneously improving disaster risk 
information which could provide common guidelines 
on methods of hazard, exposure and vulnerability 
assessments. It is vital to improve partnerships between 
intra-government agencies, academic, private sector, 
NGOs and insurance authorities at the global, national 
and local levels for data sharing and monitoring the 
Sendai Framework and its Global Targets.

7.2  Big disaster data collection and 
transmission

b.  Communications infrastructure: Device-to-device 
communications or Proximity Services will be required to 
create an ad hoc mesh network out of available working 
devices and terminals so that information exchange can 
continue even during a network failure.

c.  Data transmission: A well-built transmission technology 
is required in big disaster data and transmission to 
ensure data is kept safe and can be used effectively, 
efficiently and quickly for information dissemination 
during disaster periods. Thus, devices such as Bluetooth 
technology, Android/others and a transmission 
technology will provide everything to collect big disaster 
data and transmit it accordingly when it is required.

7.3 Big disaster data processing
d.  Data processing: In the emergency response phase, 

perception of the emergency related incident can be 
developed through descriptive analytics. To develop 
comprehension, both diagnostic analytics and 
prescriptive analytics can be used where diagnostic 
analytics recognizes the cause of the incident and 
prescriptive analytics determine which actions need 
to be taken to manage the situation.  Future projection 
can be developed through predictive analytics.    

e.  Big data processing for disaster management: It is 
necessary to use new approaches such as recognizing 
relevant patterns of natural disasters through 
automated machine learning techniques to make 
predictions. 

7.4 Big disaster data quality control
f.  Data interface between different entities: Data from 

social media such as Facebook, Twitter Instagram 
and various other communication channels such 
as Viber, WhatsApp multimedia messages and text 
messages are huge. In order to use them for decision 
making, the information should pass the quality checks 
pertaining to dimensions such as accuracy, currency, 
completeness etc. Therefore, the disaster response 
systems should have the capability to validate the data 
and information before it is used for decision making. 
Since big data has three specific characteristics - 
volume, velocity and variety - specific challenges are 
faced when assuring the quality of data. Advanced 
data querying and analytics such as machine learning 
techniques will be required to process the vast amount 
of available data and highlight what is significant.

7.5 Big disaster data visualization
g.  Data visualization: In order to develop situational 

awareness data should be visualized in an effective 
and efficient manner so that it supports three levels of 
knowledge: (1) perception (2) comprehension and (3) 
projection of the incident so that incident commanders 
can plan and carry out the rescue operations. In 
order to develop each level of the knowledge system, 
interfaces are required for data visualization.
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8. Conclusion 

This white paper discusses the next generation disaster 
data infrastructure from four different aspects: Disaster 
data collection, disaster data processing, disaster data 
quality control and disaster data visualization. In disaster 
data collection, sensor data and crowd-sourced data, as 
well as results of near real time loss simulation, should be 
considered together to deliver a comprehensive view of 
threatened areas. In addition, the availability of real time 
location-aware information, as well as the capabilities to 
effectively integrate and utilize available information with 
different autonomous agencies, is key to effective decision 
making and resource deployment in crisis response. 
Predictive data analytics, including the results of near 
real time loss simulation, can also play a wider role in the 
disaster readiness and reduction phases. It is necessary to 
use new approaches, such as recognizing relevant patterns 
of natural hazards through automated machine learning 
techniques etc., to make predictions. Governments should 
also consider a cross reference platform for capturing 

and sharing disaster related terms, data element 
definitions and semantics. Further, when appropriate 
quality assurance and quality control measures are 
implemented for big disaster data, we can be confident 
that competent authorities decisions are based on sound 
and reliable data. Visualization of disaster related data 
positioned on geographical data is important in all phases 
of emergency management. GIS technology provides 
the capability to map and analyze hazards of all types, 
simulate loss estimations in near real time and visualize 
their potential impacts. Thus, emergency management 
systems should be capable of producing interactive 
maps such as vulnerability, operations, logistics, tactical, 
air deployment, transportation and incident prediction 
maps to be used in all areas of emergency management 
phases. Finally, governments should consider all the 
above-mentioned aspects and the needs of different 
categories of users and data dissemination in order to 
reduce the impact of natural hazards.
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