
Decentralizing Inner-Product Functional Encryption

Michel Abdalla1,2, Fabrice Benhamouda3,
Markulf Kohlweiss4, and Hendrik Waldner4

1 DIENS, École normale supérieure, CNRS, PSL University, Paris, France
michel.abdalla@ens.fr

2 INRIA, Paris, France
3 IBM Research, Yorktown Heights, NY, US

fabrice.benhamouda@normalesup.org
4 University of Edinburgh, Edinburgh, UK

{mkohlwei,hendrik.waldner}@ed.ac.uk

Abstract. Multi-client functional encryption (MCFE) is a more flexible variant of functional encryp-
tion whose functional decryption involves multiple ciphertexts from different parties. Each party holds
a different secret key and can independently and adaptively be corrupted by the adversary. We present
two compilers for MCFE schemes for the inner-product functionality, both of which support encryption
labels. Our first compiler transforms any scheme with a special key-derivation property into a decentral-
ized scheme, as defined by Chotard et al. (ASIACRYPT 2018), thus allowing for a simple distributed
way of generating functional decryption keys without a trusted party. Our second compiler allows to
lift an unnatural restriction present in existing (decentralized) MCFE schemes, which requires the ad-
versary to ask for a ciphertext from each party. We apply our compilers to the works of Abdalla et al.
(CRYPTO 2018) and Chotard et al. (ASIACRYPT 2018) to obtain schemes with hitherto unachieved
properties. From Abdalla et al., we obtain instantiations of DMCFE schemes in the standard model
(from DDH, Paillier, or LWE) but without labels. From Chotard et al., we obtain a DMCFE scheme
with labels still in the random oracle model, but without pairings.

1 Introduction . 1
1.1 Contributions . 2
1.2 Technical Overview . 2
1.3 Additional Related Work . 4
1.4 Concurrent Work . 4
1.5 Organization . 5

2 Definitions and Security Models . 5
3 From MCFE to DMCFE . 8

3.1 Special Key Derivation Property . 9
3.2 Instantiations . 9
3.3 Compiler for Prime Moduli . 9
3.4 Extension to Hard-to-Factor Moduli . 11

4 From xx-pos-IND to xx-any-IND Security . 11
4.1 Compiler for DMCFE Schemes without Labels . 11
4.2 Compiler for Labeled DMCFE Schemes . 14

5 Security of the MCFE from Abdalla et al. against Adaptive Corruptions . 15
5.1 Inner-Product FE with Two-Step Decryption and Linear Encryption . 15
5.2 One-Time Inner-Product MCFE over ZL . 16
5.3 Inner-Product MCFE over Z . 17

Acknowledgments . 21
A Postponed Proofs for the Compiler from MCFE to DMCFE (Section 3) . 23
B Proof for the Compiler from pos-IND to any-IND for Labeled DMCFE Schemes (Section 4.2) 28

mailto:michel.abdalla@ens.fr
mailto:fabrice.benhamouda@normalesup.org
mailto:mkohlwei@ed.ac.uk,hendrik.waldner@ed.ac.uk

1 Introduction

Functional encryption (FE) [BSW11,O’N10, SW05] is a form of encryption that allows fine-grained access
control over encrypted data. Besides the classical encryption and decryption procedures, functional encryp-
tion schemes consists of a key derivation algorithm, which allows the owner of a master secret key to derive
keys with more restricted capabilities. These derived keys skf are called functional decryption keys and are
associated with a function f . Using the key skf for the decryption of a ciphertext Enc(x) generates the output
f(x). During this decryption procedure no more information is revealed about the underlying plaintext than
f(x).

In the case of classical functional encryption, the (functional) decryption procedure takes as input a single
ciphertext Enc(x). A natural extension is the multi-input setting, where the decryption procedure takes as
input n different ciphertexts and outputs a function applied on the n corresponding plaintexts. Such a scheme
is called multi-input functional encryption (MIFE) scheme [GGG+14]. In a MIFE scheme, each ciphertext
can be generated independently (i.e., with completely independent randomness).

An important use case of MIFE considers multiple parties or clients, where each party Pi generates a single
ciphertext of the tuple. The ciphertext generated by party Pi is often said to correspond to position or slot
i. In the multi-client setting, it becomes natural to assume that each party has a different secret/encryption
key ski that can be corrupted by the adversary. We call such a scheme a multi-client functional encryption
(MCFE) scheme [CDG+18a,GGG+14].

We remark that the exact terminology varies from paper to paper. Here, a MCFE scheme is always
supposed to be secure against corruption of the parties encrypting messages. In a MIFE scheme, on the
other hand, all the parties may use the same encryption key and there is no security against corruption.

The multi-input and multi-client settings still require a trusted third party that sets up the encryption
keys and holds the master secret key used to derive the functional decryption keys. As a result, the central
authority is able to recover every client’s private data. This raises the question if it is possible to decentralize
the concept of functional encryption and get rid of this trusted entity. In this work, we focus on the notion
of decentralized multi-client functional encryption (DMCFE) introduced by Chotard et al. [CDG+18a]. In
DMCFE, the key derivation procedure KeyDer is divided into two procedures KeyDerShare and KeyDerComb.
The KeyDer procedure allows each party Pi to generate a share ski,f of the functional key skf from its
secret key ski. The KeyDerComb procedure is then used to combine these n different shares sk1,f , . . . , skn,f to
generate the functional key skf . Assuming that the secret key ski can also be generated in a distributed way,
this makes it possible to get rid of the trusted party and to ensure that every party has complete control
over their individual data.

An important property of MIFE and (D)MCFE schemes is whether they are labeled or not. The labeled
setting is similar to vanilla multi-input/multi-client functional encryption, but the encryption procedure
takes as input a second parameter, a so-called label `. The decryption procedure is restricted in such a way
that it is only possible to decrypt ciphertexts that are encrypted under the same label Enc(sk1, x1, `), . . . ,
Enc(skn, xn, `). This setting is sometimes desirable in practice as it allows repeated computations over en-
crypted data that comes from different sources (for example data mining over encrypted data or multi-client
delegation of computation [CDG+18a]).

In the last few years, many multi-input or multi-client functional encryption schemes have been con-
structed. As noted in [AGRW17], these schemes can be split into two main categories: (1) feasibility for
general functionalities, and (2) concrete and efficient realizations for more restricted functionalities. Con-
structions of the first category [GGG+14,BGJS15,AJ15,BKS18] are based on more unstable assumptions,
such as indistinguishable obfuscation or multilinear maps, and tackle the problem of creating schemes
for more general functionalities. A few constructions of the second category are provided in the work of
Abdalla et al. in [AGRW17, ACF+18] and Chotard et al. in [CDG+18a], which consider different types
of secret-key constructions for the inner-product functionality. In these schemes, each function is speci-
fied by a collection y of n vectors y1, . . . ,yn and takes a collection x of n vectors x1, . . . ,xn as input.
Their output is fy(x) =

∑n
i=1〈xi,yi〉 = 〈x,y〉. As the original single-input inner-product functionality

[ABDP15, BJK15, DDM16, ALS16] and their quadratic extensions [BCFG17], multi-input or multi-client

1

inner-product functionalities can be quite useful for computing statistics or performing data mining on
encrypted databases [AGRW17,CDG+18a].

Currently, the work of Chotard et al. provides the only known DMCFE to our knowledge. However,
while their MCFE uses any cyclic group where the Decisional Diffie-Hellman (DDH) assumption holds, their
DMCFE scheme requires pairings. Furthermore, the security notion they achieve only guarantees security
against an adversary that queries the encryption/challenge oracle for every position i. At first glance, it
might seem that more encryption queries would help the adversary, but this does not allow trivial attacks
and the adversary is restricted as follows: all functions f for which the adversary has a functional decryption
key must evaluate to the same value on all the plaintext tuples queried to the encryption oracle. However,
when a position i is not queried, this condition is always satisfied since the function f in principle can never
be really evaluated due to a missing input. Hence, requiring the adversary to query the encryption/challenge
oracle for every position i actually weakens the achieved security notion.

This leaves open the following problems that we tackle in this paper:

1. Constructing DMCFE schemes without pairings, and even from more general assumptions than discrete-
logarithm-based ones.

2. Removing the restriction that the adversary has to query the encryption oracle for every position i.

1.1 Contributions

Our first main contribution is to provide a generic compiler from any MCFE scheme satisfying an extra
property called special key derivation into an DMCFE scheme. The transformation is purely information-
theoretic and does not require any additional assumptions. As the MCFE from Chotard et al. [CDG+18a]
satisfies this extra property, we obtain a labeled DMCFE scheme secure under the plain DDH assumption
without pairings (in the random oracle model). As in [CDG+18a], the version of the scheme without labels
is secure in the standard model (i.e., without random oracles).

Furthermore, we show as an additional contribution that the MIFE schemes from Abdalla et al. [ACF+18]
are actually MCFE secure against adaptive corruptions (but without labels). This directly yields the first
DMCFE scheme without labels from the LWE assumptions and the Paillier assumptions in the standard
model.

Our second main contribution is to provide generic compilers to transform any scheme in the weaker model
where the adversary is required to query the encryption oracle at every position i, into a scheme without
this restriction. We propose two versions of the compiler: one without labels (in the standard model) which
only requires an IND-CPA symmetric encryption scheme, and one with labels in the random oracle model.

These two compilers can be used to lift the security of the previously mentioned constructions of DMCFE
to the stronger model. The resulting instantiations from DDH, LWE, and Paillier described above rely on
the same assumptions.

1.2 Technical Overview

Contribution 1: A MCFE to DMCFE compiler. The DMCFE construction introduced by Chotard et al.
[CDG+18a] is based on pairings and proven in the random oracle model.

Our first compiler transforms an MCFE scheme into a DMCFE scheme and does not require pairings.
It operates on schemes with the special key derivation property, namely whose master secret key can be
split into separate secret keys, one for each input, i.e. msk = {ski}i∈[n], and whose functional decryption
keys are derived through a combination of local and linear inner-product computations on i, f, ski and
pp. That is, the functional decryption key skf for the function f : x 7→

∑n
i=1〈xi,yi〉 can be written as

skf = ({s(ski,y)}i∈[n],
∑n
i=1〈u(ski),yi〉), where f is defined by the collection y of the vectors y1, . . . ,yn and

2

takes as input a collection x of n vectors x1, . . . ,xn, and where s and u are two public functions.5 Sums and
inner products are computed modulo some integer L which is either prime or hard to factor.

For instance, the MCFE scheme of [CDG+18a], without pairings but supporting labels, has functional
decryption keys of the form skf = (y,

∑
i ski · yi).

Consider first the following straw man compiler. It splits KeyDer into two procedures KeyDerShare and
KeyDerComb. The first procedure assumes that each party Pi has access to the i-th share ti,y of a fresh
secret sharing of zero {ti,y}i∈[n]. It then computes si,y = s(ski,y) (which is a local computation) and
dki,y = 〈u(ski),yi〉 + ti,y. The output key share is ski,y = (si,y, dki,y). In the KeyDerComb procedure, the
dki,y values get summed up to cancel out the ti,y values and to obtain

∑
i〈u(ski),yi〉. The output gets then

extended with the values s(ski,y) to obtain the complete functional decryption key skf . This works but the
question on the generation of the fresh secret sharing of zero {ti,y}i∈[n] is left out.

One solution consists in generating it as follows: ti,y =
∑
j 6=i(−1)j<iFKi,j (y), where FKi,j is a pseudo-

random function with key Ki,j = Kj,i shared between parties Pi and Pj . This yields an DMCFE scheme
secure against static corruption. Unfortunately, we do not know how to prove such a scheme secure against
adaptive corruptions.

Our full compiler improves this construction in two ways: it allows adaptive corruptions and does not
require any pseudorandom function. The procedure KeyDerShare of our full compiler uses masking values
{vi}i∈[n], vi ∈ Zm·nL , such that vn = −

∑n−1
i=1 vi, to derive the key shares ski,f = 〈u(ski),yi〉+ 〈vi,y〉. Here,

〈vi,y〉 acts as a kind of information theoretic pseudorandom function with key vi. To make this work, the
queried values need to be linearly independent. This allows us to construct an information-theoretic compiler
that provides security against adaptive corruptions (see Section 3 for details).

The masking of values prevents the combination of key shares for different functions y. If one computes
shares on different y’s, then the sum of these shares will not sum up to 0 and the resulting key will be invalid.
The encryption and decryption procedures proceed in the same way as in the MCFE setting.

Contribution 2: A compiler enforcing a single ciphertext query for each position. The standard security
property of MIFE/MCFE schemes guarantees that an adversary can only learn a function of the inputs when
it is in possession of a ciphertext for every input position i. This property is not satisfied by the schemes
of [AGRW17,ACF+18,CDG+18a]. Their basic definitions guarantee security only when the adversary queries
every position at least once. We call a scheme satisfying this property pos-IND secure (for positive) while
we call the standard property any-IND secure.

To overcome this deficiency, Abdalla et al. [AGRW17] constructed a compiler that turns any pos-IND
secure MIFE scheme into an any-IND secure MIFE scheme. The compiler uses a symmetric encryption
scheme in addition to their MIFE encryption scheme. In more detail, the setup procedure of the compiler
samples a key K for the symmetric encryption scheme and splits it into n shares k1, . . . , kn, such that
k1 ⊕ · · · ⊕ kn = K. Each party Pi receives its MIFE key ski, the symmetric encryption key K, as well as its
share of the encryption key ki. To encrypt, every party first runs the encryption procedure of the MIFE scheme
to generate cti ← Enc(ski,xi) and then encrypts the output cti using the symmetric encryption scheme to
get ct′i ← EncSE(K, cti). The output of the encryption procedure is (ct′i, ki). This compiler obviously does
not work when we allow corruptions as this would allow the adversary to learn K after corrupting any single
party and use it to recover cti from ct′i for all positions i. Consequently, the compiler does not work for
(D)MCFE schemes.

In this work, we construct an extension of the compiler described above that works in the multi-client
setting by individually having a separate symmetric encryption key for each position. Hence, we increase the
number of symmetric encryption keys from 1 to n and the number of the corresponding shares from n to n2.
This allows us to ensure that if the adversary does not ask encryption queries in every uncorrupted position,
it does not learn any information about the underlying (D)MCFE ciphertexts.

We describe in more detail how the compiler handles the additional keys. In the setup procedure, every
party (or a trusted party) generates its own key Ki and corresponding shares ki,j , such that ki,1⊕· · ·⊕ki,n =

5 We note that our compiler actually is not restricted to the inner-product functionality. The only requirement is
the special key derivation property.

3

Ki. The share ki,j gets exchanged with Party Pj afterwards. In the encryption procedure every party encrypts
its plaintext in the same way as in the MIFE setting, but using its own key Ki instead of the single symmetric
encryption key K. The ciphertext corresponding to slot i of Party Pi is (ct′i, {kj,i}j∈[n]).

If the adversary does not know all of the shares {ki,j}i,j∈[n], then security relies on the security of
the symmetric encryption scheme. If the adversary knows all of the different symmetric encryption keys
Ki, i ∈ [n], it relies on the security of the multi-client scheme. All of the key shares are only released if an
encryption query has been made in every uncorrupted position.

This first compiler is, however, restricted to (D)MCFE schemes without labels. To add support for labels,
the first idea is to use fresh keys ki,j,` for each label `. These keys can be locally derived from ki,j using a
pseudorandom function. Unfortunately, we do not know how to prove the security of such a scheme except
in a very restricted setting (selective and static corruptions), where the adversary needs to output all its
corruption and encryption queries at the beginning of the security experiment. We show how to achieve
the standard (adaptive) security notion when the above pseudorandom function as well as the symmetric
encryption scheme is implemented using hash functions that can be modeled as random oracles. The use of
random oracles allows us to show that the adversary learns absolutely nothing about the inner ciphertexts
cti until it has queried all the positions (for each given label) and we can then program the random oracles
to properly “explain” the previously generated ciphertexts ct′i.

1.3 Additional Related Work

In [FT18], Fan and Tang proposed a new notion of distributed public key functional encryption, in which
the key generation procedure generates n different shares {skfi }i∈[n] instead of a single functional decryption
key skf . The decryption of a ciphertext ct (a encryption of a message m) under a function f requires first the
decryption under the functional key shares si ← Dec(skfi , ct) for all i ∈ [n]. These shares {si}i∈[n] are then
used to reconstruct f(m). In this setting, a trusted third party is still needed to set up the public parameters
and to generate the functional keys, which makes it not really decentralized.

In Private Stream Aggregation (PSA), a weighted sum f(x) 7→
∑n
i xi gets computed. This is similar

to DMCFE for the inner-product functionality f(x) 7→ 〈x,y〉. PSA was introduced by Shi et al. [SCR+11]
and allows a set of users to compute the sum of their encrypted data for different time periods. Compared
to DMCFE, PSA is more restricted. It only allows computation of simple sums, whereas in principle DM-
CFE allows the computation of different functions on the input data. Furthermore, research on PSA has
mainly focused on achieving new properties or better efficiency [BJL16,CSS12,Emu17,JL13,LC12], instead
of providing new functionalities.

1.4 Concurrent Work

Concurrently and independently of our work, Chotard et al. [CDG+18b] proposed new constructions of
MCFE schemes for inner products both in the centralized and decentralized settings. Their paper contains
three main contributions: (1) A pairing-based compiler that turns any pos-IND secure MCFE scheme into an
any-IND secure MCFE scheme, secure under the decisional Bilinear Diffie-Hellman problem in the random
oracle model; (2) A second compiler that turns a one-IND secure MCFE scheme into a pos-IND secure
MCFE scheme; and (3) A compiler that transforms a class of MCFE schemes for inner products into a
corresponding DMCFE scheme, based on either the CDH assumption in the random-oracle model or the
DDH assumption in the standard model.

While contribution (2) is unrelated and complementary to our work, contributions (1) and (3) are related
to our contributions in Section 4 and Section 3, respectively. Regarding (1), their compiler from pos-IND
to any-IND security produces constant-size ciphertexts, but it requires pairings and random oracles. Our
compiler in Section 4, on the other hand, avoids pairings, requiring either symmetric encryption when applied
to schemes without labels or random oracles for schemes with labels, but ciphertext sizes are linear in the
number of inputs. Regarding (3), their compiler is similar to the straw man compiler described above. It

4

is based on the DDH assumption and proven secure with respect to static corruptions. Our compiler in
Section 3, on the other hand, is information-theoretic and achieves adaptive security.

1.5 Organization

The paper is organized as follows. In Section 2, we recall classical definitions as well as the definition of
MCFE and DMCFE. Section 3 presents our first main contribution: the compiler from MCFE to DMCFE.
Our second main contribution, namely our compilers from pos-IND security to any-IND security, is shown in
Section 4. We conclude our paper by the proof that the MIFE scheme of Abdalla et al. [ACF+18] is actually
an MCFE scheme that is secure under adaptive corruptions.

2 Definitions and Security Models

Notation. We use [n] to denote the set {1, . . . , n}. We write x for vectors and xi for the i-th element. For
security parameter λ and additional parameters n, we denote the winning probability of an adversary A in a
game or experiment G as WinGA(λ, n), which is Pr[G(λ, n,A) = 1]. The probability is taken over the random
coins of G and A. We define the distinguishing advantage between games G0 and G1 of an adversary A in
the following way: AdvGA(λ, n) =

∣∣WinG0

A (λ, n)−WinG1

A (λ, n)
∣∣.

2.1 Multi-Client Functional Encryption

In this section, we define the notion of MCFE [GGG+14].

Definition 2.1. (Multi-Client Functional Encryption) Let F = {Fρ}ρ be a family (indexed by ρ) of
sets Fρ of functions f : Xρ,1×· · ·×Xρ,nρ → Yρ.6 Let Labels = {0, 1}∗ or {⊥} be a set of labels. A multi-client
functional encryption scheme (MCFE) for the function family F and the label set Labels is a tuple of five
algorithms MCFE = (Setup,KeyGen,KeyDer,Enc,Dec):

Setup(1λ, 1n): Takes as input a security parameter λ and the number of parties n, and generates public
parameters pp. The public parameters implicitly define an index ρ corresponding to a set Fρ of n-ary
functions (i.e., n = nρ).

KeyGen(pp): Takes as input the public parameters pp and outputs n secret keys {ski}i∈[n] and a master secret
key msk.

KeyDer(pp,msk, f): Takes as input the public parameters pp, the master secret key msk and a function
f ∈ Fρ, and outputs a functional decryption key skf .

Enc(pp, ski, xi, `): Takes as input the public parameters pp, a secret key ski, a message xi ∈ Xρ,i to encrypt,
a label ` ∈ Labels, and outputs ciphertext cti,`.

Dec(pp, skf , ct1,`, . . . , ctn,`): Takes as input the public parameters pp, a functional key skf and n ciphertexts
under the same label ` and outputs a value y ∈ Yρ.

A scheme MCFE is correct, if for all λ, n ∈ N, pp ← Setup(1λ, 1n), f ∈ Fρ, ` ∈ Labels, xi ∈ Xρ,i, when
({ski}i∈[n],msk)← KeyGen(pp) and skf ← KeyDer(pp,msk, f), we have

Pr [Dec(pp, skf ,Enc(pp, sk1, x1, `), . . . ,Enc(pp, skn, xn, `)) = f(x1, . . . , xn)] = 1 .

When ρ is clear from context, the index ρ is omitted. When Labels = {0, 1}∗, we say that the scheme is
labeled or with labels. When Labels = {⊥}, we say that the scheme is without labels, and we often omit `.

6 All the functions inside the same set Fρ have the same domain and the same range.

5

Remark 2.2. We note that contrary to most definitions, the algorithm Setup only generates public parameters
that determine the set of functions for which functional decryption keys can be created. The secret/encryption
keys and the master secret keys are generated by another algorithm KeyGen, while the functional decryption
keys are generated by KeyDer. This separation between Setup and KeyGen is especially useful when combining
multiple MCFE/MIFE schemes as in [ACF+18] to ensure that all the MCFE/MIFE instances are using the
same modulus. Note that this separation prevents for example the functionality to consist of inner products
modulo some RSA modulus N = pq and the master secret key to contain the factorization of N (except if
the factorization of the modulus N is public).

As noted in [CDG+18a,GGG+14], the security model of multi-client functional encryption is similar to
the security model of standard multi-input functional encryption, except that instead of a single master
secret key msk for encryption, each slot i has a different secret key ski and the keys ski can be individually
corrupted. In addition, one also needs to consider corruptions to handle possible collusions between different
parties. In the following, we define security as adaptive left-or-right indistinguishability under both static
(sta), and adaptive (adt) corruption. We also consider three variants of these notions (one, any, pos) related
to the number of encryption queries asked by the adversary for each slot.

Definition 2.3. (Security of MCFE) Let MCFE be an MCFE scheme, F = {Fρ}ρ a function family
indexed by ρ and Labels a label set. For xx ∈ {sta, adt}, yy ∈ {one, any, pos}, and β ∈ {0, 1}, we define the
experiment xx-yy-INDMCFE

β in Fig. 1, where the oracles are defined as:

Corruption oracle QCor(i): Outputs the encryption key ski of slot i. We denote by CS the set of corrupted
slots at the end of the experiment.

Encryption oracle QEnc(i, x0i , x
1
i , `): Outputs cti,` = Enc(pp, ski, x

β
i , `) on a query (i, x0i , x

1
i , `). We denote

by Qi,` the number of queries of the form QEnc(i, ·, ·, `).
Key derivation oracle QKeyD(f): Outputs skf = KeyDer(pp,msk, f).

and where Condition (*) holds if all the following conditions hold:

– If i ∈ CS (i.e., slot i is corrupted): for any query QEnc(i, x0i , x
1
i , `), x0i = x1i .

– For any label ` ∈ Labels, for any family of queries {QEnc(i, x0i , x1i , `)}i∈[n]\CS , for any family of inputs
{xi ∈ Xρ,i}i∈CS , for any query QKeyD(f), we define x0i = x1i = xi for any slot i ∈ CS, xb = (xb1, . . . , x

b
n)

for b ∈ {0, 1}, and we require that:
f(x0) = f(x1) .

We insist that if one index i /∈ CS is not queried for the label `, there is no restriction.
– When yy = one: for any slot i ∈ [n] and ` ∈ Labels, Qi,` ∈ {0, 1}, and if Qi,` = 1, then for any slot
j ∈ [n] \ CS, Qj,` = 1. In other words, for any label, either the adversary makes no encryption query or
makes exactly one encryption query for each i ∈ [n] \ CS.

– When yy = pos: for any slot i ∈ [n] and ` ∈ Labels, if Qi,` > 0, then for any slot j ∈ [n] \ CS, Qj,` > 0.
In other words, for any label, either the adversary makes no encryption query or makes at least one
encryption query for each slot i ∈ [n] \ CS.

We define the advantage of an adversary A in the following way:

Advxx-yy-IND
MCFE,A (λ, n) =

∣∣Pr[xx-yy-INDMCFE
0 (λ, n,A) = 1]

− Pr[xx-yy-INDMCFE
1 (λ, n,A) = 1]

∣∣ .
A multi-client functional encryption scheme MCFE is xx-yy-IND secure, if for any n, for any polynomial-time
adversary A, there exists a negligible function negl such that: Advxx-yy-IND

MCFE,A (λ, n) ≤ negl(λ).

We omit n when it is clear from the context. We also often omit A from the parameter of experiments
or games when it is clear from context.

6

sta-yy-INDMCFE
β (λ, n,A)

CS ← A(1λ, 1n)

pp← Setup(1λ, 1n)

({ski}i∈[n],msk)← KeyGen(pp)

α← AQEnc(·,·,·,·),QKeyD(·)(pp, {ski}i∈CS)
Output: α if Condition (*) is satisfied,

or a uniform bit otherwise

adt-yy-INDMCFE
β (λ, n,A)

pp← Setup(1λ, 1n)

({ski}i∈[n],msk)← KeyGen(pp)

α← AQCor(·),QEnc(·,·,·,·),QKeyD(·)(pp)

Output: α if Condition (*) is satisfied,
or a uniform bit otherwise

Fig. 1. Security games for MCFE

sta-one-IND sta-pos-IND sta-any-IND

adt-one-IND adt-pos-IND adt-any-IND

Fig. 2. Relations between the MCFE security notions (arrows indicate implication or being “a stronger security notion
than”)

We summarize the relations between the six security notions in Fig. 2. Multi-input functional encryption
(MIFE) and functional encryption (FE) are special cases of MCFE. MIFE is MCFE without corruption,
and FE is the special case of n = 1 (in which case, MIFE and MCFE coincide as there is no non-trivial
corruption). Therefore, for single-input FE schemes, sta-any-IND = adt-any-IND = any-IND corresponds
to the secret-key version of the standard adaptive indistinguishability notion used in [ALS16]. The security
notions considered in [CDG+18a] are actually xx-pos-IND and so are the MIFE notions of [ACF+18]. An
xx-one-IND MCFE is also called a one-time secure scheme.

2.2 Decentralized Multi-Client Functional Encryption

Now, we introduce the definition of decentralized multi-client functional encryption (DMCFE) [CDG+18a].
As for our definition of MCFE, we separate the algorithm Setup which generates public parameters defining
in particular the set of functions, from the algorithm KeyGen (see Remark 2.2).

Definition 2.4. (Decentralized Multi-Client Functional Encryption) Let F = {Fρ}ρ be a family
(indexed by ρ) of sets Fρ of functions f : Xρ,1 × · · · × Xρ,nρ → Yρ.Let Labels = {0, 1}∗ or {⊥} be a set of
labels. A decentralized multi-client functional encryption scheme (DMCFE) for the function family F and the
label set Labels is a tuple of six algorithms DMCFE = (Setup,KeyGen,KeyDerShare,KeyDerComb,Enc,Dec):

Setup(1λ, 1n) is defined as for MCFE in Definition 2.1.
KeyGen(pp): Takes as input the public parameters pp and outputs n secret keys {ski}i∈[n].
KeyDerShare(pp, ski, f): Takes as input the public parameters pp, a secret key ski from position i and a

function f ∈ Fρ, and outputs a partial functional decryption key ski,f .
KeyDerComb(pp, sk1,f , . . . , skn,f): Takes as input the public parameters pp, n partial functional decryption

keys sk1,f , . . . , skn,f and outputs the functional decryption key skf .
Enc(pp, ski, xi, `) is defined as for MCFE in Definition 2.1.
Dec(pp, skf , ct1,`, . . . , ctn,`) is defined as for MCFE in Definition 2.1.

A scheme DMCFE is correct, if for all λ, n ∈ N, pp ← Setup(1λ, 1n), f ∈ Fρ, ` ∈ Labels, xi ∈ Xρ,i, when
{ski}i∈[n] ← KeyGen(pp), ski,f ← KeyDerShare(ski, f) for i ∈ [n], and skf ← KeyDerComb(pp, sk1,f , . . . ,

skn,f), we have

Pr [Dec(pp, skf ,Enc(pp, sk1, x1, `), . . . ,Enc(pp, skn, xn, `)) = f(x1, . . . , xn)] = 1 .

7

We remark that there is no master secret key msk. Furthermore, similarly to [CDG+18a], our definition
does not explicitly ask the setup to be decentralized. However, all our constructions allow for the setup to
be easily decentralized, at least assuming that the original schemes have such a property in the case of our
compilers.

We consider a similar security definition for the decentralized multi-client scheme. We point out that
contrary to [CDG+18a], we do not differentiate encryption keys from secret keys. This is without loss of
generality, as corruptions in [CDG+18a] only allow to corrupt both keys at the same time.

Definition 2.5. (Security of DMCFE) The xx-yy-IND security notion of an DMCFE scheme (xx ∈
{sta, adt} and yy ∈ {one, any, pos}) is similar to the one of an MCFE (Definition 2.3), except that there is
no master secret key msk and the key derivation oracle is now defined as:

Key derivation oracle QKeyD(f): Computes ski,f := KeyDerShare(pp, ski, f) for i ∈ [n] and outputs
{ski,f}i∈[n].

2.3 Inner-Product Functionality

We describe the functionalities supported by the constructions in this paper, by considering the index ρ of
F in more detail.

The index of the family is defined as ρ = (R, n,m,X, Y) where R is either Z or ZL for some integer L,
and n,m,X, Y are positive integers. If X,Y are omitted, then X = Y = L is used (i.e., no constraint).

This defines Fρ = {fy1,...,yn : (Rm)
n → R} where

fy1,...,yn(x1, . . . ,xn) =

n∑
i=1

〈xi,yi〉 = 〈x,y〉 ,

where the vectors satisfy the following bounds: ‖xi‖∞ < X, ‖yi‖∞ < Y for i ∈ [n], and where x ∈ Rmn
and y ∈ Rmn are the vectors corresponding to the concatenation of the n vectors x1, . . . ,xn and y1, . . . ,yn
respectively.

2.4 Symmetric Encryption

For our second compiler (Section 4.1), we make use of a symmetric encryption scheme SE = (EncSE,DecSE)
that is indistinguishable secure under chosen plaintext attacks (IND-CPA) and whose keys are uniform
strings in {0, 1}λ as defined by [BDJR97].

EncSE(K, x): Takes as input a key K ∈ {0, 1}λ and a message x to encrypt, and outputs the ciphertext ct.
DecSE(K, ct): Takes as input a key K and a ciphertext ct to decrypt, and outputs a message x.

We denote with AdvIND-CPA
SE,A (λ) the advantage of an adversary guessing β in the following game: the challenger

picks K ← {0, 1}λ and gives A access to an encryption oracle QEnc(x0i , x
1
i) that outputs ct = EncSE(K, x

β
i)

on a query (x0, x1).

3 From MCFE to DMCFE

In this section, we describe our first compiler which allows the decentralization of MCFE schemes that satisfy
an additional property, called special key derivation. We start by defining this property and showing that
existing schemes from [ACF+18,CDG+18a] satisfy it. Next, we describe the compiler and prove its security
when the underlying modulus of the special key derivation property is prime. Finally, we extend the proof
to the case where this modulus is a hard-to-factor composite number.

8

3.1 Special Key Derivation Property

Definition 3.1 (MCFE with Special Key Derivation). An MCFE scheme MCFE = (Setup,KeyGen,
KeyDer,Enc,Dec) for a family of functions F and a set of labels Labels has the special key derivation property
modulo L if:7

– Secret keys ski generated by KeyGen have the following form: ski = (i, si, {uki }k∈[κ]), where si ∈ {0, 1}
∗,

and uki ∈ ZmL , and κ and m are positive integers implicitly depending on the public parameters pp.
– skf ← KeyDer(pp,msk, f) outputs skf = ({si,f}i∈[n], {dk

k
f}k∈[κ]), where si,f is a (polynomial-time) func-

tion of pp, i, si, and f , while:

dkkf =

n∑
i=1

〈uki ,yki,f 〉 = 〈uk,ykf 〉 ,

where yki,f ∈ ZmL is a (polynomial-time) function of pp, i, and f , and uk and ykf are the vectors in ZmnL
corresponding to the concatenation of the vectors {uki }i∈[n] and {yki,f}i∈[n] respectively.

Without loss of generality for MCFE with the special key derivation property, we can suppose that
msk = {ski}i∈[n]. We also remark that we do not require any property of the family of functions F and that
our compiler could be applicable to more general MCFE than inner-product ones.

3.2 Instantiations

The MCFE construction of Chotard et al. [CDG+18a, Section 4] satisfies the special key derivation property
modulo L = p (the order of the cyclic group), with κ = 2 and ykf = y, when f : x 7→ 〈x,y〉.

The generic constructions of Abdalla et al. [ACF+18, Section 3] (both over Z and ZL, see also Section 5)
satisfy the special key derivation property modulo L (where L is the modulo used for the information-
theoretic MIFE/MCFE with one-time security) with ykf = y. The instantiations from MDDH, LWE, and
Paillier ([ACF+18, Section 4]) use L = p the prime order of the cyclic group, L = q the prime modulo for
LWE (we need L = q to be prime for our compiler), L = N = pq the modulus used for Paillier respectively.

3.3 Compiler for Prime Moduli

We start by presenting our compiler from MCFE schemes with the special key derivation property modulo
a prime L in Fig. 3. Correctness follows directly from the fact that:

n∑
i=1

dkki,f =

n∑
i=1

〈uki ,yki,f 〉+
n∑
i=1

〈vki ,ykf 〉

= dkkf + 〈
n∑
i=1

vki ,y
k
f 〉 = dkkf + 〈0,ykf 〉 = dkkf .

We insist on the fact that while vectors uki and yki,f are m-dimensional, vectors vki and ykf are (mn)-
dimensional.

We have the following security theorem.

Theorem 3.2. Let MCFE = (Setup,KeyGen,KeyDer,Enc,Dec) be an MCFE construction for a family of
functions F and a set of labels Labels. We suppose that MCFE has the special key derivation property modulo
a prime L. For any xx ∈ {sta, adt} and any yy ∈ {one, pos, any}, if MCFE is an xx-yy-IND-secure MCFE
scheme, then the scheme DMCFE′ depicted in Fig. 3 is an xx-yy-IND-secure DMCFE scheme. Namely, for
any PPT adversary A, there exist a PPT adversary B such that:

Advxx-yy-IND
DMCFE′,A(λ, n) ≤ Advxx-yy-IND

MCFE,B (λ, n) .
7 The integer L can depend on the public parameters pp.

9

Setup′(1λ, 1n) :

Return Setup(1λ, 1n)

KeyGen′(pp) :

({ski}i∈[n],msk)← KeyGen(pp)

Recall that ski = (i, si, {uki }k∈[κ])

For k ∈ [κ]:

For i ∈ [n− 1], vki ← ZML

vkn := −
n−1∑
i=1

vki mod L

Return {sk′i = (ski, {vki }k∈[κ])}i∈[n]

Enc′(pp, sk′i, xi, `) :

Parse sk′i = (ski, {vki }k∈[κ])

Return cti,` ← Enc(pp, ski, xi, `)

KeyDerShare′(pp, sk′i, f) :

Parse sk′i = (ski, {vki }k∈[κ])

For k ∈ [κ], dkki,f := 〈uki ,yki,f 〉+ 〈vki ,ykf 〉

Return sk′i,f := (si,f , {dkki,f}k∈[κ])

KeyDerComb′(pp, {sk′i,f}i∈[n]) :

Parse {sk′i,f = (si,f , {dkki,f}k∈[κ])}i∈[n]

For k ∈ [κ], dkkf :=

n∑
i=1

dkki,f

Return sk′f = ({si,f}i∈[n], {dk
k
f}k∈[κ])

Dec′(pp, sk′f , {cti,`}i∈[n]) :

Return Dec(pp, sk′f , {cti,`}i∈[n])

Fig. 3. Compiler from MCFE to DMCFE′: si,f is a function of pp, i, si, f and yki,f is a function of pp, i, f , and k.
M = mn.

Below, we provide a proof sketch of the theorem. The formal proof is in Appendix A.1.

Proof (Theorem 3.2 — sketch). In this sketch, we focus on a setting without corruption and where L is a
prime number. For the sake of simplicity, we also suppose that κ = 1 and si,f is an empty string, so that we
can omit the superscript k and we have sk′i,f = dki,f = 〈ui,yi,f 〉+ 〈vi,yf 〉. We can define u′i ∈ ZL to be ui
“padded with 0” so that we can write: 〈ui,yi,f 〉 = 〈u′i,yf 〉 (recall that yf is just the concatenation of the
vectors yi,f for i ∈ [n]). Thus we have:

sk′i,f = dki,f = 〈u′i,yf 〉+ 〈vi,yf 〉 = 〈u′i + vi,yf 〉 .

Now, we remark that from keys dki,g for g ∈ {f1, . . . , fq}, one can compute the key dki,f for any f such that
yf is in the subspace generated by yf1 , . . . ,yfq . Indeed, if y =

∑q
j=1 µj ·yfj , for some µ1, . . . , µq ∈ ZL, then:

dki,f =
∑q
j=1 µj · dki,fj .

Let S be the set of functions f queried to QKeyD such that the family of vector {yf}f∈S is linearly
independent. We compute the dki,f of linearly dependent functions as outlined above. We now look at linearly
independent functions. As the vectors vi are uniformly distributed under the constraints

∑n
i=1 vi = 0 (by

definition of Setup′), linear algebra ensures that the values {〈vi,yf 〉}i∈[n],f∈S are distributed uniformly under
the constraints

∑n
i=1〈vi,yf 〉 = 0 for f ∈ S. Thus, from Section 3.3, we get that for any f ∈ S, {dki,f}i∈[n]

is a fresh additive secret sharing of

n∑
i=1

dki,f =

n∑
i=1

〈u′i,yf 〉 =
n∑
i=1

〈ui,yi,f 〉 = dkf ,

and hence can be simulated knowing only dkf = KeyDer(msk, f) (but not the vectors ui themselves, which are
parts of the secret keys ski). In other words queries to the oracle QKeyD(f) in the security game of DMCFE′

can be simulated just from KeyDer(pp,msk, f) (or equivalently just from queries to the oracle QKeyD(f) in
the security game of MCFE).

Thus, we have a perfect reduction from the security of DMCFE′ to the security of MCFE. ut

10

3.4 Extension to Hard-to-Factor Moduli

We can extend the previous scheme to moduli L which are hard to factor. This is required for the Paillier
instantiation from [ACF+18, Section 4.3].

Let us provide formal details.

Definition 3.3 (Factorization). Let GenL be a PPT algorithm taking as input the security parameter 1λ

and outputing a number L ≥ 2. We define the experiment FactorGenL(λ,A) for an adversary A as follows: it
outputs 1 if on input L ← GenL(1λ), the adversary outputs two integers L1, L2 ≥ 2, such that L1 · L2 = L.
The advantage of A is AdvFactorGenL,A(λ) = Pr[FactorGenL(λ,A)]. Factorization is hard for GenL if the advantage
of any PPT adversary A is negligible in λ.

We have the following security theorem proven in Appendix A.2.

Theorem 3.4. Let MCFE = (Setup,KeyGen,KeyDer,Enc,Dec) be an MCFE construction for an ensemble of
functions F and a set of labels Labels. We suppose that MCFE has the special key derivation property modulo
an integer L, which is part of the public parameter pp and generated as L← GenL(1λ) in the setup, for some
polynomial-time algorithm. We assume that factorization is hard for GenL. For any xx ∈ {sta, adt} and any
yy ∈ {one,pos, any}, if MCFE is an xx-yy-IND-secure MCFE scheme, then the scheme DMCFE′ depicted in
Fig. 3 is an xx-yy-IND-secure DMCFE scheme. Namely, for any PPT adversary A, there exist two PPT
adversaries B and B′ such that:

Advxx-yy-IND
DMCFE′,A(λ, n) ≤ Advxx-yy-IND

MCFE,B (λ, n) + 2 · AdvFactorGenL,B′(λ) .

4 From xx-pos-IND to xx-any-IND Security

We present two compilers transforming pos-IND-secure MIFE, MCFE, and DMCFE schemes into any-IND
schemes. These compilers essentially force the adversary to ask for at least one ciphertext per position i (and
per label, for labeled schemes).

The first compiler works for sta-pos-IND and adt-pos-IND-secure schemes without labels (Labels = {⊥})
and only requires an IND-CPA symmetric encryption scheme to work. We prove it for the adt-pos-IND case
as the proof for sta-pos-IND is simpler. The second compiler supports labeled schemes, but is in the random
oracle model. Although our presentation is for DMCFE, the compilers can be adapted to work for MCFE
schemes in a straightforward way.

Regarding efficiency, both compilers add 2n−1 symmetric keys (i.e., λ-bit strings) to each secret key ski,
and n symmetric keys to each ciphertext cti (plus the overhead due to symmetric encryption, which can be as
low as λ bits using stream ciphers for example). (Partial) functional decryption keys and public parameters
are unchanged. For the first compiler, the computational complexity overhead essentially consists in one
symmetric encryption of the original ciphertext for functional encryption, and n symmetric decryptions
for functional decryption. The second compiler uses a specific encryption scheme based on hash functions
(modeled as random oracles) which requires 2n− 1 hash function evaluations in addition to the encryption
algorithm.

4.1 Compiler for DMCFE Schemes without Labels

The compiler without labels is described in Fig. 4. where SE is an IND-CPA symmetric-key encryption
scheme. We show the following security theorem.

Theorem 4.1. Let DMCFE = (Setup,KeyGen,KeyDerShare,KeyDerComb,Enc,Dec) be an adt-pos-IND-se-
cure DMCFE scheme without labels (Labels = {⊥}) for a family of functions F . Let SE = (EncSE,DecSE)
be an IND-CPA symmetric-key encryption scheme. Then the DMCFE scheme DMCFE′ = (Setup′,KeyGen′,
KeyDerShare′,KeyDerComb′,Enc′,Dec′) described in Fig. 4 is an adt-any-IND-secure DMCFE scheme. Name-
ly, for any PPT adversary A, there exist PPT adversaries B and B′ such that:

Advadt-any-IND
DMCFE′,A (λ, n) ≤ Advadt-pos-IND

DMCFE,B (λ, n) + n · AdvIND-CPA
SE,B′ (λ) .

11

Setup′(1λ, 1n) :

Return pp← Setup(1λ, 1n)

KeyGen′(pp) :

{ski}i∈[n] ← KeyGen(pp)

For i ∈ [n] :

ki,1, . . . , ki,n ← {0, 1}λ

Ki = ⊕j∈[n]ki,j
Return {sk′i = (ski,Ki, {ki,j , kj,i}j∈[n])}i∈[n]

Enc′(pp, sk′i, xi) :

Parse sk′i = (ski,Ki, {ki,j , kj,i}j∈[n])

cti ← Enc(pp, ski, xi)

ct′i ← EncSE(Ki, cti)

Return (ct′i, {kj,i}j∈[n])

KeyDerShare′(pp, sk′i, f) :

Parse sk′i = (ski,Ki, {ki,j , kj,i}j∈[n])

Return sk′i,f ← KeyDerShare(ski, f)

KeyDerComb′(pp, {sk′i,f}i∈[n]) :

skf := KeyDerComb(pp, {sk′i,f}i∈[n])

Return skf

Dec′(pp, skf , ct
′′
1 , . . . , ct

′′
n) :

Parse {ct′′i = (ct′i, {kj,i}j∈[n])}i∈[n]
For i ∈ [n] :

Ki = ⊕j∈[n]ki,j
cti ← DecSE(Ki, ct

′
i)

Return Dec(pp, skf , ct1, . . . , ctn).

Fig. 4. Compiler from an xx-pos-IND DMCFE DMCFE without labels into an xx-any-IND DMCFE DMCFE′ using
an IND-CPA symmetric-key encryption scheme SE

Proof. An encryption query on the i-th slot is denoted as (x0i , x1i).
In the proof we need to consider two different cases:

1. In all uncorrupted positions i /∈ CS, at least one query has been made, Qi ≥ 1.
2. In an uncorrupted position i /∈ CS, zero queries have been made, Qi = 0.

We begin our proof by considering the first point.

Lemma 4.2. Let DMCFE = (Setup, KeyGen, KeyDerShare, KeyDerComb, Enc, Dec) be an adt-pos-IND-se-
cure DMCFE construction without labels (Labels = {⊥}) for a family of functions F . Let SE = (EncSE,DecSE)
be a symmetric-key encryption scheme. Then the DMCFE scheme DMCFE′ = (Setup′,KeyGen′,KeyDerShare′,
KeyDerComb′,Enc′,Dec′) described in Fig. 4 is adt-any-IND secure. Namely, for any PPT adversary A
restricted to make Qi ≥ 1 for all i /∈ CS there exist a PPT adversary B such that:

Advadt-any-IND
DMCFE′,A (λ, n) ≤ Advadt-pos-IND

DMCFE,B (λ, n) .

Proof. We construct an adversary B against the adt-any-IND security of the scheme DMCFE′. B generates
ki,1, . . . , ki,n and Ki for every i ∈ [n].

If A aks a query QCor′(i), B asks a query QCor(i) to its own corruption oracle to obtain the key ski and
uses it to create sk′i, which gets forwarded to A.

When the adversary A asks a query QEnc′(i, x0i , x
1
i), B directly forwards it to its own encryption oracle.

It receives cti ← Enc(pp, ski, x
β
i) as a result and uses Ki to generate ct′i ← EncSE(Ki, cti). This ciphertext

gets concatenated with the key shares of the symmetric encryption scheme {kj,i}j∈[n] and sent to A as an
answer to the encryption query.

If A asks a query QKeyD′(f), B forwards it to its own oracle to receive ski,f , which gets forwarded to A.
It is straightforward to see that the adversary B perfectly simulates the security game for DMCFE′ to A.

Hence, we have:
Advadt-any-IND

DMCFE′,A (λ, n) ≤ Advadt-pos-IND
DMCFE,B (λ, n) .

ut

12

We continue with the consideration of the second point.

Lemma 4.3. Let DMCFE = (Setup, KeyGen, KeyDerShare, KeyDerComb, Enc, Dec) be a DMCFE construc-
tion without labels (Labels = {⊥}) for a family of functions F . Let SE = (EncSE,DecSE) be an IND-CPA
symmetric-key encryption scheme and let Qi = 0 for at least one i /∈ CS. Then the DMCFE scheme
DMCFE′ = (Setup′,KeyGen′,KeyDerShare′,KeyDerComb′,Enc′,Dec′) described in Fig. 4 is adt-any-IND-
secure. Namely, for any PPT adversary A, there exists an adversary B′ such that:

Advadt-any-IND
DMCFE′,A (λ, n) ≤ n · AdvIND-CPA

SE,B′ (λ) .

Proof. We prove this part by using a hybrid argument. We define the games G1, . . . ,Gn in Fig. 5.

Gt(λ, n,A) :

ES = {}

pp← Setup(1λ, 1n)

(ski,Ki, {ki,j , kj,i}j∈[n])i∈[n] ← KeyGen′(pp)

α← AQEnc′(·,·,·),QKeyD′(·),QCor′(·)(pp)

Output: α

QEnc′(i, x0i , x
1
i)

Add i to ES

If i /∈ (CS ∪ ES), kj,i ←R {0, 1}λ for all j ∈ [n] \ CS

If i ≤ t, return(EncSE(Ki,Enc(pp, sk′i, x0i)), {kj,i}j∈[n])

If i > t, return(EncSE(Ki,Enc(pp, sk′i, x
1
i)), {kj,i}j∈[n])

QKeyD′(y)

Return {sk′i,f ← KeyDerShare(pp, ski, f)}i∈[n]

QCor′(i)

If i /∈ CS

ki,j ←R {0, 1}λ for all j ∈ [n] \ (CS ∪ ES), s.t. Ki = ⊕j∈[n]ki,j
If i /∈ ES

kj,i ←R {0, 1}λ for all j ∈ [n] \ (CS ∪ {i})
Return (ski,Ki, {ki,j , kj,i}j∈[n])

Fig. 5. The description of the hybrid used for the reduction to the symmetric-key encryption scheme in Lemma 4.3.

Due to the definition of the game it holds that: Game G0 corresponds to the experiment adt-any-
INDDMCFE′

β for β = 1 and Gn to the experiment adt-any-INDDMCFE′

β for β = 1 therefore using the triangular
inequality, we get:

Advadt-any-IND
DMCFE′,A (λ, n) ≤

n∑
t=1

|Win
Gt−1

A (λ, n)−WinGtA (λ, n)|.

We then conclude by showing that for any t, there exists an adversary Bt such that

|Win
Gt−1

A (λ, n)−WinGtA (λ, n)| ≤ AdvIND-CPA
SE,Bt (λ).

13

The adversary B′ of the statement then just picks t ∈ [n] and simulates Bt. The standard details are omitted
here. The adversary Bt against the IND-CPA security of the symmetric encryption scheme behaves in the
following way:

In the first step, Bt generates the keys Ki and also samples ski for all i ∈ [n] \ {t} by running the key
generation algorithm of DMCFE.

We denote by ES the set of positions i in which encryption queries have been made.
If A corrupts a position i 6= t, the adversary Bt samples random values ki,j for all j ∈ [n]\ (CS ∪ES) such

that Ki = ⊕j∈[n]ki,j . If the position i has not been corrupted before and if no encryption query has been
asked in this position (i.e. i /∈ CS ∪ES), then Bt samples random values kj,i for all j ∈ [n] \ (CS ∪{i}). If the
adversary A asks a corruption query QCor′(t), the adversary Bt directly outputs a random value r ← {0, 1}.
This is due to the fact that, if party t is corrupted the games Gt−1 and Gt are the same. This results in an
advantage equal to 0.

Whenever A asks a query QEnc′(i, x0i , x
1
i) we consider three different cases. In the first case, A queries the

encryption oracle for i < t, then Bt generates EncSE(Ki,Enc(pp, ski, x0i)) using the key Ki. The same happens
for queries with i > t, but with x1i instead of x0i , i.e. EncSE(Ki,Enc(pp, ski, x1i)). In the case that A asks
a query QEnc′(t, x0t , x

1
t), Bt generates (Enc(pp, skt, x

0
t),Enc(pp, skt, x

1
t)) and sends it to its own encryption

oracle to receive EncSE(Enc(pp, skt, x
β
t)). If no encryption has been asked in the position i before and if i

is not corrupted (i.e., i /∈ (CS ∪ ES)) then we sample kj,i for all j ∈ [n] \ CS. If i ∈ (CS ∪ ES) then the
values kj,i have already been sampled for all j ∈ [n]. The ciphertext EncSE(Ki,Enc(pp, ski, x

β
i)) together with

kj,i,∀j ∈ [n] are then sent to A in the last step.
If A asks a key derivation query QKeyD′(f), Bt uses the public parameters pp and the keys {ski, f}i∈[n]

to generate {sk′i,f ← KeyDerShare(pp, ski, f)}i∈[n] as a response for A.
The reduction shows that for all t ∈ [n]:

|Win
Gt−1

A (λ, n)−WinGtA (λ, n)| ≤ AdvIND-CPA
SE,Bt (λ) .

This results in:
n∑
t=1

|Win
Gt−1

A (λ, n)−WinGtA (λ, n)| ≤
n∑
t=1

AdvIND-CPA
SE,Bt (λ) .

ut

Theorem 4.1 follow from the two above lemmas. ut

4.2 Compiler for Labeled DMCFE Schemes

We now present the compiler supporting labels in Fig. 6, where H1 : {0, 1}∗ → {0, 1}λ and H2 : {0, 1}∗ →
{0, 1}|cti| are two hash functions modeled as random oracles in the security proof. We formally prove the
following security theorem in Appendix B.

Theorem 4.4. Let DMCFE = (Setup,KeyGen,KeyDerShare,KeyDerComb,Enc,
Dec) be an adt-pos-IND-secure DMCFE scheme for an ensemble of functions F and set of labels Labels.
Then the DMCFE scheme DMCFE′ = (Setup′,KeyGen′,KeyDerShare′,KeyDerComb′,Enc′,Dec′) described in
Fig. 6 is an adt-any-IND-secure scheme. Namely, when the hash functions H1 and H2 are modeled as random
oracles, for any PPT adversary A there exist a PPT adversary B such that:

Advadt-any-IND
DMCFE′,A (λ, n) ≤ Advadt-pos-IND

DMCFE,B (λ, n)

+
2qH1

+ (2n+ 1) · (qH2
qQEnc + q2QEnc)

2λ
,

where qH1
, qH2

, and qQEnc are the numbers of queries to the oracles H1, H2, and QEnc respectively.

A high-level overview of the proof of this theorem can be found in Section 1.2.

14

Setup′(1λ, 1n) :

Return pp← Setup(1λ, 1n)

KeyGen′(pp) :

{ski}i∈[n] ← KeyGen(pp)

For i ∈ [n] :

ki,1, . . . , ki,n ← {0, 1}λ

Return {sk′i = (ski, {ki,j , kj,i}j∈[n])}i∈[n]

Enc′(pp, sk′i, xi, `) :

Parse sk′i = (ski, {ki,j , kj,i}j∈[n])

cti ← Enc(pp, ski, xi)

For j ∈ [n] :

ki,j,` := H1(ki,j‖i‖j‖`)
kj,i,` := H1(kj,i‖j‖i‖`)

Ki,` := ⊕j∈[n]ki,j,`
ri ← {0, 1}λ; ct′i := cti ⊕ H2(Ki,`‖ri)
Return (ct′i, ri, {kj,i,`}j∈[n])

KeyDerShare′(pp, sk′i, f) :

Parse sk′i = (ski, {ki,j , kj,i}j∈[n])

Return sk′i,f ← KeyDerShare(pp, sk′i, f)

KeyDerComb′(pp, {sk′i,f}i∈[n]) :

skf := KeyDerComb(pp, {ski,f}i∈[n])

Return skf

Dec′(pp, skf , ct
′′
1 , . . . , ct

′′
n) :

Parse {ct′′i = (ct′i, ri, {kj,i,`}j∈[n])}i∈[n]
For i ∈ [n] :

Ki,` = ⊕j∈[n]ki,j,`
cti = ct′i ⊕ H2(Ki,`‖ri)

Return Dec(pp, skf , ct1, . . . , ctn).

Fig. 6. Compiler from an xx-pos-IND DMCFE DMCFE with labels into an xx-any-IND DMCFE DMCFE′ with labels,
where H1 : {0, 1}∗ → {0, 1}λ and H2 : {0, 1}∗ → {0, 1}|cti| are two hash functions modeled as random oracles in the
security proof.

5 Security of the MCFE from Abdalla et al. against Adaptive Corruptions

In this section, we prove that the MIFE scheme by Abdalla et al. [ACF+18] is also secure against adaptive
corruptions, when their unique encryption and secret key is split into individual secret keys for each party
in a natural way8, as described in Fig. 7 and Fig. 9.

For simplicity, we focus here on the bounded-norm MIFE case since the construction over ZL can be easily
adapted from it. Towards this goal, Section 5.1 first recalls the definition of FE with two-step decryption and
linear encryption. Next, Section 5.2 recalls the other building block, an sta-one-IND-secure MCFE scheme
for Fρ, ρ = (ZL, n,m,L, L). Finally, Section 5.3 recalls the MCFE construction from [ACF+18].

5.1 Inner-Product FE with Two-Step Decryption and Linear Encryption

The [ACF+18] construction extends a one-time secure MIFE scheme over ZL to a many-time secure MIFE
scheme over Z. This extension relies on a single-input FE scheme for Fρ, ρ = (Z, 1,m,X, Y) satisfying two
properties, called two-step decryption and linear encryption [ACF+18]. As indicated in [ACF+18], the two-
step decryption property informally says that the FE decryption algorithm can be broken in two steps: one
step that uses the secret key to return an encoding of the result and the other step that returns the actual
result 〈x,y〉 as long as the bounds ||x||∞ < X, ||y||∞ < Y hold. The linear encryption property, on the other
hand, informally states that the FE encryption algorithm is additively homomorphic. We now recall these
definitions more formally.

8 Note that the schemes in [ACF+18] were presented as a MIFE scheme with a unique encryption and secret key. It
is however straightforward to split the encryption key and secret key into a key ski for each party.

15

Definition 5.1 (Two-step decryption [ACF+18]). A secret-key FE scheme FE = (Setup,KeyGen,
KeyDer,Enc,Dec) for the function ensemble Fρ, ρ = (Z, 1,m,X, Y) satisfies the two-step decryption property
if it admits PPT algorithms Setup?, Dec1,Dec2 and an encoding function E such that:

1. For all λ ∈ N,Setup?(1λ, 1n) outputs pp where pp includes ρ = (Z, 1,m,X, Y) and a bound B ∈ N, as
well as the description of a group G (with group law ◦) of order L > 2 · n ·m ·X · Y , which defines the
encoding function E : ZL × Z→ G.

2. For all msk← KeyGen(pp),x ∈ Zm, ct← Enc(pp,msk,x),y ∈ Zm, and sk← KeyDer(msk,y), we have

Dec1(pp, sk, ct) = E(〈x,y〉 mod L, noise) ,

for some noise ∈ N that depends on ct and sk. Furthermore, it holds that Pr[noise < B] = 1 − negl(λ),
where the probability is taken over the random coins of KeyGen and KeyDer. Note that there is no
restriction on the norm of 〈x,y〉 here.

3. Given any γ ∈ ZL, and pp, one can efficiently compute E(γ, 0).
4. The encoding E is linear, that is: for all γ, γ′ ∈ ZL, noise, noise′ ∈ Z, we have

E(γ, noise) ◦ E(γ′, noise′) = E(γ + γ′ mod L, noise+ noise′) .

5. For all γ < 2 · n ·m ·X · Y , and noise < n ·B,Dec2(pp, E(γ, noise)) = γ.

Definition 5.2 (Linear encryption [ACF+18]). A secret-key FE scheme FE = (Setup,KeyGen,KeyDer,
Enc,Dec) is said to satisfy the linear encryption property if there exists a deterministic algorithm Add that
takes as input a ciphertext and a message, such that for all x,x′ ∈ Zm, the following are identically dis-
tributed:

Add(Enc(pp,msk,x),x′), and Enc
(
pp,msk, (x+ x′ mod L)

)
.

Recall that the value L ∈ N is defined as part of the output of the algorithm Setup? (see the two-step decryption
property above).

5.2 One-Time Inner-Product MCFE over ZL

We recap the one-time secure scheme provided by Abdalla et al. [ACF+18] in Fig. 7, to which we made the
following modifications. First, our description does not need a setup procedure Setupot, which now simply
defines (n,m,L). Second, the steps of the original Setupot in Abdalla et al. [ACF+18] are now defined in
the KeyGenot procedure. When doing so, we also split their unique secret key into individual secret keys for
each party. Since these modifications do not impact the correctness of the scheme, we refer to [ACF+18] for
a proof of correctness. As for its security with respect to adaptive corruptions, we need to modify the proof
of Abdalla et al. [ACF+18] to account for corruption queries.

Theorem 5.3. The MCFEot scheme in Fig. 7 is adt-one-IND secure. Namely, for any adversary A,
Advadt-one-IND

MCFEot,A (λ) = 0

Proof. Let A be an adversary against the adt-one-IND security of the MCFEot scheme with advantage
Advadt-one-IND

MCFEot,A (λ). Let sta-one-sel-INDMCFEot

β (λ, n,B) be a variant of the sta-one-INDMCFEot

β (λ, n,B) exper-
iment in which the selective adversary B additionally specifies the encryption challenges {xbi}i∈[n],b∈{0,1}
together with the corrupted set at the beginning of the experiment. (Recall that there is a single challenge
per slot.)

We use complexity leveraging to transform A into a selective adversary B such that:

Advadt-one-IND
MCFEot,A (λ) ≤ 2−n · (2X)

−2nm · Advsta-one-sel-IND
MCFEot,B (λ) .

After adversary B made its guesses {xbi}i∈[n],b∈{0,1} and determined the set of corrupted parties, it simulates
A’s experiment using its own static and selective experiment. When B receives a challenge or corruption query

16

Define ppot = (n,m,L)

KeyGenot(ppot) :

{ui}i∈[n] ← (ZmL)n

Return msk := {mski}i∈[n] = {ui}i∈[n]

Encot(ppot,mski,xi) :

Parse mski = ui

Return cti := ui + xi mod L

KeyDerot(ppot,msk,y) :

Parse msk = {ui}i∈[n],y = (y1, . . . ,yn)

Return dky :=
∑
i∈[n]

〈ui,yi〉

Decot(ppot, dky,y, {cti}i∈[n]) :

Parse y = (y1, . . . ,yn)

Return
∑
i∈[n]

〈cti,yi〉 − dky mod L

Fig. 7. One-Time Inner-Product MCFE over ZL (for FmL,n)

Hβ(1λ,B)

(CS, {xbi}i∈[n],b∈{0,1})← B(1
λ, 1n)

For i ∈ [n],

ui ← ZmL ; cti ← ui

α← BOK(·)({ui}i∈CS , {cti}i∈[n])

Output α

OK(i,y)

Parse y = (y1, . . . ,yn)

sky =
∑
i∈[n]

〈ui − xβi ,yi〉

Return sky

Fig. 8. Hybrid experiments for the proof of Theorem 5.3.

from A, it checks if the guess was successful: if it was, it continues simulating A’s experiment, otherwise, it
returns 0. When the guess is successful, B perfectly simulates A’s view.

Hence, to prove that MCFEot satisfies perfect adt-one-IND security, we just need to prove that it satisfies
perfect sta-one-sel-IND security. In order to prove MCFEot satisfies perfect sta-one-sel-IND security (i.e.,
Advsta-one-sel-IND

MCFEot,B (λ) = 0), we introduce hybrid games Hβ(1λ,B), described in Fig. 8.
We prove that for all β ∈ {0, 1}, the hybrid Hβ(1λ,B) is identical to the experiment

sta-one-sel-INDMCFEot

β (λ, n,B). This can be seen by using the fact that, in the selective security game, all
{xβi ∈ Zm}i∈[n] have identical distributions: {ui mod L}i∈[n] and {ui − xβi mod L}, with ui ←R ZmL . This
also holds for the corrupted positions i ∈ CS, because in this case it holds that x0

i = x1
i .

Finally, we show that B’s view in Hβ(1λ,B) is independent of β. Indeed, the only information about β
that leaks in the experiment is 〈xβi ,yi〉, which is independent of β by the definition of the security game.

ut

5.3 Inner-Product MCFE over Z

In Fig. 9, we recall the construction of [ACF+18] of a pos-IND-secure scheme MCFE = (Setup,KeyGen,
KeyDer,Enc,Dec) from the (one-IND-secure) MCFE scheme MCFEot = (KeyGenot,KeyDerot,Encot,Decot)
described in Section 5.2 and from any any-IND-secure scheme FE = (Setupsi,KeyGensi,KeyDersi,Encsi,Decsi)
for a single input. As for the one-time scheme in Section 5.2, we also modified the KeyGen procedure in
[ACF+18] in order to split their unique secret key into individual secret keys for each party. Since these
modifications do not impact the correctness of the scheme, we refer to [ACF+18] for a proof of the latter. In
the following, we show that this construction allows for adaptive corruption.

Lemma 5.4. Assume that the single-input scheme FE is any-IND-secure and that the multi-client scheme
MCFEot is adt-one-IND-secure. Then the multi-client scheme MCFE is adt-pos-IND-secure. Namely, for any

17

Setup(1λ, 1n) :

ppsi ← Setupsi(1λ, 1n)

Set ppot := (n,m,L), with ρsi = (Z, 1,m, 3X,Y) and L implicitly defined from ppsi

Return pp = (ppsi, ppot)

KeyGen(pp) :

{ui}i∈[n] ← KeyGenot(ppot)

For i ∈ [n], msksii ← KeyGensi(ppsi), ski := (msksii ,ui)

Return {ski}i∈[n]

Enc(pp, ski,xi) :

Parse ski = (msksii ,ui) and return cti := Encsi(ppsi,msksii ,Enc
ot(ppot,ui,xi))

KeyDer(pp,msk,y) :

Parse msk = {msksii ,ui}i∈[n],y = (y1, . . . ,yn)

For i ∈ [n], ski,y ← KeyDersi(ppsi,msksii ,yi)

dky := KeyDerot(ppot, {ui}i∈[n],y)

Return sky := ({ski,y}i∈[n], dky)

Dec(pp, sky, {cti}i∈[n]) :

Parse sky = ({ski,y}i∈[n], dky)

For i ∈ [n], E(〈ui + xi,yi〉 mod L, noisei)← Decsi1(ppsi, ski,y, cti)

Return Decsi2(ppsi, E(〈u1 + x1,y1〉 mod L, noise1)) ◦ . . .
◦ E(〈un + xn,yn〉 mod L, noisen) ◦ E(−dky, 0))

Fig. 9. Inner-Product for Fρ, ρ = (Z, n,m,X, Y) built from MCFEot for Fρot , ρot = (ZL, n,m,L, L) and FE for
Fρsi , ρsi = (Z, 1,m, 3X,Y)

18

Game ctji justification/remark

G0 Enc(pp, ski,x
0,j
i − x0,1

i + x0,1
i)

G1 Enc(pp, ski,x
0,j
i − x0,1

i + x1,1
i) adt-one-IND of MCFEot

G1.k
Enc(pp, ski, x1,j

i − x1,1
i + x1,1

i), for i ≤ k

Enc(pp, ski,x
0,j
i − x0,1

i + x1,1
i), for i > k

any-IND of FE

G2 Enc(pp′, ski, x1,j
i) G2 = G1,n

Fig. 10. Overview of the games to prove the security of the MCFE scheme.

PPT adversary A, there exist PPT adversaries B and B′ such that

Advadt-pos-IND
MCFE,A (λ, n) ≤ Advadt-one-IND

MCFEot,B (λ, n) + n · Advany-IND
FE,B′ (λ, n).

Proof. To prove the security of the multi-client inner-product functional encryption scheme, we define a
sequence of games, where G0 is the adt-pos-INDMCFE

0 (λ, n,A) game and G2 the adt-pos-INDMCFE
1 (λ, n,A)

game. A description of all the different games can be found in Fig. 10. We denote the winning probability of
an adversary A in a game Gi as WinGiA (λ, n), which is Pr[Gi(λ, n,A) = 1]. The probability is taken over the
random coins of Gi and A. The encryption query j on the i-th slot is denoted as (x0,j

i ,x1,j
i).

We start our proof by considering the games G0 and G1

Lemma 5.5. For any PPT A, there exists a PPT adversary B such that

|WinG0

A (λ, n)−WinG1

A (λ, n)| ≤ Advadt-one-IND
MCFEot,B (λ, n) .

Proof. Compared to G0, G1 replaces the encryptions of x0,j
i −x0,1

i +x0,1
i with the encryptions of x0,j

i −x0,1
i +

x1,1
i for all of the slots i under adaptive corruptions. This mirrors directly the distribution of the challenge

ciphertexts in Gβ .
The adversary B simulates Gβ to A using the adt-one-INDMCFE

β experiment. In the beginning B generates
the parameters pp = (ppsi, ppot) ← Setup(1λ, 1n) and the keys msksii ← KeyGen(ppsi) for all the positions
i ∈ [n]. Whenever A asks a query QKeyD′(y = (y1, . . . ,yn)), B uses its own key derivation oracle to get
dky =

∑
i∈[n]〈ui,yi〉 and computes the keys ski,y ← KeyDersi(ppsi,msksii ,yi) for all the positions i ∈ [n] on

its own and sends them to A.
For each position i ∈ [n], the first encryption query QEnc′(i,x0,1

i ,x1,1
i) by A gets forwarded to the

challenger. B receives cti,ot = ui+xβ,1i as an answer, computes ct1i = Encsi(ppsi,msksii ,ui+xβ,1i), and returns
it to A. For all further queries (j > 1), B produces ctji by encrypting (x0,j

i − x0,1
i + cti,ot) mod L.

When A asks a query QCor′(i), it is necessary that x0,j
i = x1,j

i holds for all the corruption queries that
A has asked before. In this case, B computes ui = cti,ot − x0,1

i and sends (msksii ,mpksii ,ui) to A.
Finally, B outputs 1, if and only if A outputs 1. By the reasoning above, we can conclude that:

|WinG0

A (λ, n)−WinG1

A (λ, n)| ≤ Advadt-one-IND
MCFEot,B (λ, n) .

ut

In the next step we consider game G2. In this game, we change the encryption from Encsi(ppsi,msksii ,x
0,j
i −

x0,1
i + ui + x1,1

i) to Encsi(ppsi,msksii ,x
1,j
i − x1,1

i + ui + x1,1
i) for all slots i and all queries j.

To prove that G1 is indistinguishable from G2 we need to apply a hybrid argument over the n slots, using
the security of the single input FE scheme.

Using the definition of the games in Fig. 11, we can see that

|WinG1

A (λ, n)−WinG2

A (λ, n)| =
n∑
k=1

|Win
G1.k−1

A (λ, n)−WinG1.k

A (λ, n)| ,

19

where G1 corresponds to game G1.0 and whereas G2 is identical to game G1.n.
Now, we can bound the difference between each consecutive pair of games for every k:

Lemma 5.6. For every k ∈ [n], there exists a PPT adversary Bk against the any-IND security of the
single-input scheme FE such that

|Win
G1.k−1

A (λ, n)−WinG1.k

A (λ, n)| ≤ Advany-IND
FE,Bk (λ, n) .

Proof. G1.k replaces the encryption of x0,j
i − x0,1

i + x1,1
i with encryptions of x1,j

i − x1,1
i + x1,1

i in all slots,
for i ≤ k. As already described in the preliminaries, it must hold that 〈x0,j

i −x0,1
i ,yi〉 = 〈x1,j

i −x1,1
i ,yi〉 for

all queries. Hence 〈x0,j
i − x0,1

i + x1,1
i ,yi〉 = 〈x1,j

i − x1,1
i + x1,1

i ,yi〉, and since ‖x0,j
i − x0,1

i + x1,1
i ‖∞ < 3X

and ‖x1,j
i − x1,1

i + x1,1
i ‖∞ < 3X, using the linear encryption property, we can reduce the difference in the

winning probability of an adversary A in games G1.k−1 and G1.k to the any-IND security of the single-input
scheme FE.

More precisely, we build an adversary Bk that simulates G1.k−1+β to A when interacting with the un-
derlying any-INDFE

β experiment. In the beginning of the reduction, Bk receives the public parameters from
the experiment. The received key from the challenge is set to be mpksik , corresponding to the k-th encryption
instance. In the next step, Bk randomly chooses ui ∈ ZmL for all i ∈ [n] and runs the KeyGen procedure to
get msksii for all i 6= k.

Whenever A asks a query QKeyD′(y), Bk computes dky =
∑
i∈[n]〈ui,yi〉 on its own and generates

ski,y ← KeyGensi(ppsi,msksii ,yi) for all i 6= k. To get the functional key skk,y, Bk queries its own key
derivation oracle on yi and outputs ({ski,y}i∈[n], dky) to A.

For the encryption queries QEnc(i,x0,j
i ,x1,j

i), Bk proceeds in the following way:

– If i < k it computes Encsi(ppsi,msksii ,ui + x1,j
i).

– If i > k it computes Encsi(ppsi,msksii ,x
0,j
i − x0,1

i + ui + x1,1
i).

– If i = k, Bk queries the encryption oracle on input (x0,j
k − x0,1

k + x1,1
k ,x1,j

k − x1,1
k + x1,1

k) to get back
the ciphertext ctj∗ := Encsi(ppsi,msksik ,x

β,j
k − xβ,1k + x1,1

k) from the any-INDFE
β experiment.9 Then, Bk

computes the ciphertext ctjk := Add(ctj∗,uk) and forwards it to A.

As in the security proof of the MIFE scheme in [ACF+18], we remark that by the two-step property Def-
inition 5.2, ctjk is identically distributed to Encsi

(
ppsi,msksik ,x

j,β
k − x1,β

k + x1,1
k + uk mod L

)
, which is itself

equal to Encsi
(
ppsi,msksik ,Enc

ot(xj,βk − x1,β
k + x1,1

k)
)
.

In the case that the adversaryA asks a corruption query QCor′(k) for position k at any time, the adversary
Bk directly outputs a random value α← {0, 1}. This is due to the fact that, if position k is corrupted, then
the games G1.k−1 and G1.k are identical given that x1,0

k = x1,1
k . This results in an advantage equal to 0 and

Lemma 5.6 trivially holds in this case.
In the case that the adversary A asks a corruption query QCor′(i) for i 6= k, Bk simply returns (msksii ,ui)

to A.
This covers the simulation of the game G1.k−1+β . Finally, Bk outputs the same bit β′ returned by A:

|Win
G1.k−1

A (λ, n)−WinG1.k

A (λ, n)| ≤ Advany-IND
FE,Bk (λ, n).

ut

The proof of theorem follows by combining the statements in Lemma 5.5 and Lemma 5.6 and noticing that
the adversary B′ in the theorem statement can be obtained by picking i ∈ [n] and running Bi. The standard
details are omitted here. ut
9 As in [ACF+18], note that these vectors have norm less than 3X, and as such, are a valid input to the encryption
oracle. Furthermore, these queries are allowed, since as explained at the beginning of the proof: it holds that
〈x0,j
i − x0,1

i ,yi〉 = 〈x1,j
i − x1,1

i ,yi〉.

20

G0(1
λ,A), G1(1

λ,A) , G2(1
λ,A) :

pp← Setup(1λ, 1n)

{ski}i∈[n] ← KeyGen(pp)

α← AQEnc′(·,·,·),QKeyD′(·),QCor′(·)(pp)

Output: α

QEnc′(i,x0,x1)

Return Enc(pp, ski,x
0,j
i − x0,1

i + x0,1
i)

Return Enc(pp, ski,x
0,j
i − x0,1

i + x1,1
i)

Return Enc(pp, ski,x
1,j
i − x1,1

i + x1,1
i)

QKeyD′(y)

dky =
∑
i∈[n]

〈ui,yi〉,

For i ∈ [n],

ski,y ← KeyDersi(pp,msksii ,yi)

Return ({ski,y}i∈[n], dky)

G1.k(1
λ,A) :

pp← Setup(1λ, 1n)

{ski}i∈[n] ← KeyGen(pp)

α← AQEnc′(·,·,·),QKeyD′(·),QCor′(·)(pp)

Output: α

QEnc′(i,x0,x1)

If i ≤ k return

Enc(pp, ski,x
1,j
i − x1,1

i + x1,1
i)

If i > k return

Enc(pp, ski,x
0,j
i − x0,1

i + x1,1
i)

QKeyD′(y)

dky =
∑
i∈[n]

〈ui,yi〉,

For i ∈ [n],

ski,y ← KeyDersi(pp,msksii ,yi)

Return ({ski,y}i∈[n], dky)

Fig. 11. A more detailed description of how the games work.

Acknowledgments. This work was supported in part by the European Union’s Horizon 2020 Research and
Innovation Programme under grant agreement 780108 (FENTEC), by the ERC Project aSCEND (H2020
639554), by the French Programme d’Investissement d’Avenir under national project RISQ P141580, and
by the French FUI project ANBLIC.

References

ABDP15. M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval. Simple functional encryption schemes for inner
products. In PKC 2015, LNCS 9020, pages 733–751. Springer, Heidelberg, March / April 2015.

ACF+18. M. Abdalla, D. Catalano, D. Fiore, R. Gay, and B. Ursu. Multi-input functional encryption for inner
products: Function-hiding realizations and constructions without pairings. In CRYPTO 2018, Part I,
LNCS 10991, pages 597–627. Springer, Heidelberg, August 2018.

AGRW17. M. Abdalla, R. Gay, M. Raykova, and H. Wee. Multi-input inner-product functional encryption from
pairings. In EUROCRYPT 2017, Part I, LNCS 10210, pages 601–626. Springer, Heidelberg, April / May
2017.

AJ15. P. Ananth and A. Jain. Indistinguishability obfuscation from compact functional encryption. In
CRYPTO 2015, Part I, LNCS 9215, pages 308–326. Springer, Heidelberg, August 2015.

ALS16. S. Agrawal, B. Libert, and D. Stehlé. Fully secure functional encryption for inner products, from standard
assumptions. In CRYPTO 2016, Part III, LNCS 9816, pages 333–362. Springer, Heidelberg, August 2016.

BCFG17. C. E. Z. Baltico, D. Catalano, D. Fiore, and R. Gay. Practical functional encryption for quadratic
functions with applications to predicate encryption. In CRYPTO 2017, Part I, LNCS 10401, pages
67–98. Springer, Heidelberg, August 2017.

BDJR97. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric encryption.
In 38th FOCS, pages 394–403. IEEE Computer Society Press, October 1997.

21

BGJS15. S. Badrinarayanan, D. Gupta, A. Jain, and A. Sahai. Multi-input functional encryption for unbounded
arity functions. In ASIACRYPT 2015, Part I, LNCS 9452, pages 27–51. Springer, Heidelberg, Novem-
ber / December 2015.

BJK15. A. Bishop, A. Jain, and L. Kowalczyk. Function-hiding inner product encryption. In ASIACRYPT 2015,
Part I, LNCS 9452, pages 470–491. Springer, Heidelberg, November / December 2015.

BJL16. F. Benhamouda, M. Joye, and B. Libert. A new framework for privacy-preserving aggregation of time-
series data. ACM Trans. Inf. Syst. Secur., 18(3):10:1–10:21, 2016.

BKS18. Z. Brakerski, I. Komargodski, and G. Segev. Multi-input functional encryption in the private-key setting:
Stronger security from weaker assumptions. Journal of Cryptology, 31(2):434–520, April 2018.

BSW11. D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and challenges. In TCC 2011,
LNCS 6597, pages 253–273. Springer, Heidelberg, March 2011.

CDG+18a. J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval. Decentralized multi-client functional
encryption for inner product. In ASIACRYPT 2018, Part II, LNCS 11273, pages 703–732. Springer,
Heidelberg, December 2018.

CDG+18b. J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval. Multi-client functional encryption
with repetition for inner product. Cryptology ePrint Archive, Report 2018/1021, 2018. http://eprint.
iacr.org/2018/1021.

CSS12. T.-H. H. Chan, E. Shi, and D. Song. Privacy-preserving stream aggregation with fault tolerance. In FC
2012, LNCS 7397, pages 200–214. Springer, Heidelberg, February / March 2012.

DDM16. P. Datta, R. Dutta, and S. Mukhopadhyay. Functional encryption for inner product with full function
privacy. In PKC 2016, Part I, LNCS 9614, pages 164–195. Springer, Heidelberg, March 2016.

Emu17. K. Emura. Privacy-preserving aggregation of time-series data with public verifiability from simple as-
sumptions. In ACISP 17, Part II, LNCS 10343, pages 193–213. Springer, Heidelberg, July 2017.

FT18. X. Fan and Q. Tang. Making public key functional encryption function private, distributively. In
PKC 2018, Part II, LNCS 10770, pages 218–244. Springer, Heidelberg, March 2018.

GGG+14. S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F.-H. Liu, A. Sahai, E. Shi, and H.-S. Zhou.
Multi-input functional encryption. In EUROCRYPT 2014, LNCS 8441, pages 578–602. Springer, Heidel-
berg, May 2014.

JL13. M. Joye and B. Libert. A scalable scheme for privacy-preserving aggregation of time-series data. In FC
2013, LNCS 7859, pages 111–125. Springer, Heidelberg, April 2013.

LC12. Q. Li and G. Cao. Efficient and privacy-preserving data aggregation in mobile sensing. In 20th IEEE
International Conference on Network Protocols, ICNP, pages 1–10, Austin, TX, USA, 2012. IEEE Com-
puter Society.

O’N10. A. O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive, Report 2010/556,
2010. http://eprint.iacr.org/2010/556.

SCR+11. E. Shi, T.-H. H. Chan, E. G. Rieffel, R. Chow, and D. Song. Privacy-preserving aggregation of time-series
data. In NDSS 2011. The Internet Society, February 2011.

SW05. A. Sahai and B. R. Waters. Fuzzy identity-based encryption. In EUROCRYPT 2005, LNCS 3494, pages
457–473. Springer, Heidelberg, May 2005.

22

http://eprint.iacr.org/2018/1021
http://eprint.iacr.org/2018/1021
http://eprint.iacr.org/2010/556

A Postponed Proofs for the Compiler from MCFE to DMCFE (Section 3)

A.1 Proof of Theorem 3.2

Before stating the formal proof of this theorem, we need some intermediate results. For any prime L, any
positive integer M , any set of vectors S ⊆ ZML , we define Vect({y}y∈S) to be the subspace generated by the
vectors y in S.

Lemma A.1. For any prime L, any positive integer M , and any vector u ∈ ZML , the games IP0(L,M,u)
and IP1(L,M,u) depicted in Fig. 12 are perfectly indistinguishable.

Proof (Lemma A.1). The proof in the “selective case” where the adversary outputs all its queries at the
beginning of the game follows from classical linear algebra. Since the two games are perfectly indistinguish-
able in this “selective case,” we get perfect indistinguishability by a “complexity-leveraging-like” argument,
similarly to what is done in the proof of Theorem 5.3. ut

Lemma A.2. For any prime L, any positive integer M , and any vector u ∈ ZML , the games IPCor0(L,M,
u) and IPCor1(L,M,u) depicted in Fig. 14 are perfectly indistinguishable.

Remark A.3. We have the following straightforward claim.

Claim. At any point in time in IPCor1(L,M,u) from Fig. 14, S is actually a basis of the vector space V
(i.e., vectors in S are linearly independent).

Thus, a way to pick v uniformly under the constraint:

∀y ∈ S, dky = 〈u,y〉+ 〈v,y〉

is to

1. Choose a set S′ ⊆ ZML such that S′ ∩ S = ∅ and S′ ∪ S is a basis of ZML (it is possible since S is a base
of the subspace V and hence vectors in S are linearly independent).

2. Choose random values for dky ∈ ZL for y ∈ S′.
3. Solve the linear system with indeterminate v:

∀y ∈ S ∪ S′, dky = 〈u,y〉+ 〈v,y〉 .

Since S ∪ S′ is a basis of ZML , this system has a unique solution.

IP0(L,M,u)

v ← ZML
Output: AQIP(·)(L,M,u)

QIP(y)

Set dky := 〈u,y〉+ 〈v,y〉
Return dky

IP1(L,M,u)

S := ∅. At any time: V := Vect({y}y∈S)

Output: AQIP(·)(L,M,u)

QIP(y)

If y /∈ V
Add y to S

Set and return dky ← ZML

Else, find {µy′ ∈ ZL}y′∈S s.t. y =
∑
y′∈S

µy′ · y′,

Set and return dky :=
∑
y′∈S

µy′ · dky′

Fig. 12. Games for Lemma A.1

23

IPCor0.1(L,M,u)

v ← ZML
Output: AQCor(),QIP(·)(L,M,u)

QCor()

Return ⊥ if called more than once.
For i ∈ [M], dkei ← QIP(ei)

w := (dke1 , . . . , dkeM) ∈ ZML
Return w − u

QIP(y)

Return ⊥ if called after QCor.
Set dky := 〈u,y〉+ 〈v,y〉
Return dky

IPCor0.9(L,M,u)

S := ∅. At any time: V := Vect({y}y∈S)

Output: AQCor(),QIP(·)(L,M,u)

QCor()

Return ⊥ if called more than once.
For i ∈ [M], dkei ← QIP(ei)

w := (dke1 , . . . , dkeM) ∈ ZML
Return w − u

QIP(y)

Return ⊥ if called after QCor.
If y /∈ V

Add y to S

Set and return dky ← ZML
Else

Find {µy′ ∈ ZL}y′∈S
s.t. y =

∑
y′∈S

µy′ · y′

Set and return dky :=
∑
y′∈S

µy′ · dky′

Fig. 13. Games for the proof of Lemma A.2

Proof (Lemma A.2). Let ei be the i-th vector in the canonical basis of ZML . We introduce two additional
games IPCor0.1(L,M,u) and IPCor0.9(L,M,u) defined in Fig. 13, where QCor is essentially implemented
using calls to the QIP oracle.

The result follows from the three claims below.

Claim. IPCor0(L,M,u) and IPCor0.1(L,M,u) are perfectly indistinguishable.

Proof. This follows from the fact that since dkei = 〈u, ei〉+ 〈v, ei〉 = ui + vi, we have w = u+ v. ut

Claim. IPCor0.1(L,M,u) and IPCor0.9(L,M,u) are perfectly indistinguishable.

Proof. We can indeed perfectly simulate the QIP oracle of IPCor0.1(L,M,u) and IPCor0.9(L,M,u) respec-
tively from the QIP′ oracle of IP0(L,M,u) and IP1(L,M,u) respectively as follows: QIP(y)

– Return ⊥ if called after QCor.
– Set and return dky := 〈u,y〉+ QIP′(y).

The fact that when QIP′ is from IP0(L,M,u), the result perfectly simulates QIP from IPCor0.1(L,M,u)
is straightforward. The fact that when QIP′ is from IP1(L,M,u), the result perfectly simulates QIP from
IPCor0.9(L,M,u) comes from the fact that if for all y′ ∈ S: dky′ = 〈u,y′〉+QIP′(y′) and if y =

∑
y′∈S µy′ ·y′

then: ∑
y′∈S

µy′ · dky′ = 〈u,y〉+
∑
y′∈S

µy′ · QIP′(y′) .

We conclude the proof using Lemma A.1. ut

24

IPCor0(L,M,u)

v ← ZML
Output: AQCor(),QIP(·)(L,M,u)

QCor()

Return ⊥ if called before
Return v

QIP(y)

Return ⊥ if called after QCor

Set dky := 〈u,y〉+ 〈v,y〉
Return dky

IPCor1(L,M,u)

S := ∅. At any time: V := Vect({y}y∈S)

Output: AQCor(),QIP(·)(L,M,u)

QCor()

Return ⊥ called before
Pick v uniformly under the constraint:
∀y ∈ S, dky = 〈u,y〉+ 〈v,y〉

Return v

QIP(y)

Return ⊥ if called after QCor

If y /∈ V

Add y to S. Set and return dky ← ZML
Else

Find {µy′ ∈ ZL}y′∈S s.t. y =
∑
y′∈S

µy′ · y′,

Set and return dky :=
∑
y′∈S

µy′ · dky′

Fig. 14. Games for Lemma A.2

Claim. IPCor0.9(L,M,u) and IPCor1(L,M,u) are perfectly indistinguishable.

Proof. The proof is essentially a combination of Remark A.3 and the first claim. ut

This concludes the proof of Lemma A.2.
ut

Proof (Theorem 3.2). We focus on the adaptive case (xx = adt). The static case (xx = sta) is simpler. We
can deal with any yy ∈ {one, pos, any}, as we are anyway forwarding the encryption queries directly to the
MCFE encryption oracle.

Case κ = 1. We start by proving the case κ = 1. This allows us to omit the superscript k. We define
M = mn.

We assume without loss of generality that the oracle QCor is only called once for each i (as its output is
deterministic).

Let G0 and G3 correspond to the experiments xx-yy-INDDMCFE
β for β = 0 and β = 1, respectively. We

prove the security by introducing two hybrid games G1 and G2 (see Fig. 15), for which the only difference
with G0 and G3 respectively is in the definition of the key derivation oracle and corruption oracle.

We abuse notation as the set S and the corresponding subspace V , as well as the set of corrupted parties
CS potentially change at each oracle query QCor and QKeyD. But we still write them as S, V , and CS.

The proof follows from Lemmas A.4 to A.6 below.

Lemma A.4. Games G0 and G1 are perfectly indistinguishable, i.e., for any adversary A, WinG0

A (λ, n) =

WinG1

A (λ, n).

25

G0,G3 :

QCor(i)

Return sk′i := (i, si,ui,vi)

QKeyD(f)

For any i ∈ [n],
dki,f := 〈ui,yi,f 〉+ 〈vi,yf 〉
sk′i,f := (si,f , dki,f)

Return {sk′i,f}i∈[n]

G1,G2 :

S := ∅. Vectors vi are not initialized.
At any point in time: V = Vect({yg}g∈S)

and CS is the set of corrupted parties.

QCor(i)

Pick vi uniformly under the constraint
∀g ∈ S, dki,g = 〈ui,yi,g〉+ 〈vi,yg〉

Return sk′i := (i, si,ui,vi)

QKeyD(f)

dkf := 〈u,yf 〉
For any i ∈ CS, dki,f := 〈ui,yi,f 〉+ 〈vi,yf 〉
If yf /∈ V ,

Pick {dki,f}i/∈CS uniformly under

the constraint
∑
i∈[n]

dki,f = dkf

Add yf to the set S
If yf ∈ V

Find {µg ∈ ZL}g∈S s.t. yf =
∑
g∈S

µg · yg

Set dki,f :=
∑
g∈S

µg · dki,g

Return {sk′i,f := (si,f , dki,f)}i∈[n]

Fig. 15. Key derivation and corruption oracles in the games for the proof of Theorem 3.2

Proof. Let us suppose that we know in advance a non-corrupted party Pi∗ , i.e., i∗ ∈ [n]\CS. We then remark
that both in G0 and G1, we could compute dki∗,f in QKeyD(f) as:

dki∗,f = dkf −
∑
i6=i∗

dki,f ,

where dkf = 〈u,yf 〉.
For any i ∈ [n], we define u′i ∈ ZML to be the vector corresponding to the concatenation of 0 ∈ ZmL , . . . ,

0 ∈ ZmL , ui, 0 ∈ ZmL , . . . , 0 ∈ ZmL . We have:

〈ui,yi,f 〉 = 〈u′i,yf 〉 .

We can perfectly simulate the oracles QCor and QKeyD of Games G0 and G1 respectively from the QCori

and QIPi oracles of n− 1 instances (for i ∈ [n] \ {i∗}) of IPCor0(L,M,u) and IPCor1(L,M,u) respectively
with u = u′i, as follows: QIP(y)
– QCor(i) generate vi ← QCori().
– QKeyD(f) generate dki,f ← QIPi(yf) for i ∈ [n] \ {i∗} add dki∗,f = dkf −

∑
i6=i∗ dki,f .

We conclude the proof by applying Lemma A.2. ut

Lemma A.5. For any PPT adversary A, there exists a PPT adversary B such that:

|WinG1

A (λ, n)−WinG2

A (λ, n)| ≤ Advxx-yy-IND
MCFE,B (λ, n) .

26

Proof. We remark that in Games G1 and G2, the values ui are not used directly by QKeyD(f) as long as
slot i is not corrupted. Only the value dkf is used, which is provided by the key derivation oracle for MCFE
(together with si,f), as skf = ({si,f}i∈[n], dkf). When the slot i is corrupted, we need to learn ui, but the
corruption oracle of MCFE will give us this value, as ui is part of ski. Thus, the reduction to xx-yy-IND
security of MCFE is straightforward. ut

Lemma A.6. G2 and G3 are perfectly indistinguishable, i.e., for any adversary A, WinG2

A (λ, n) = WinG3

A (λ, n).

Proof. The proof is similar to the one of Lemma A.4. ut

This concludes the proof of the case κ = 1.

General case (κ ≥ 1). The proof is similar, as we can see such a case as κ parallel and independent executions
of the case κ = 1, if we ignore the values which are independent of k, such as si,f . ut

A.2 Proof of Theorem 3.4

Before proving Theorem 3.4, let us state and prove the following extension of Lemma A.2:

Corollary A.7. Let IPCor′b(L,M,u) be defined as IPCorb(L,M,u) in Fig. 14 except that QIP(y) aborts if
the following condition is satisfied:

y is not in the subspace V = {y′}y′∈S generated by the previous queries but when performing the
Gaussian elimination over the matrix with rows {y′ᵀ}y′∈S∪{yᵀ}, some rows do not have an invertible
pivot (a.k.a., leading non-zero coefficient).

(We note that this condition is never satisfied when L is prime.) Then for integer L ≥ 2, any positive integer
M , and any vector u ∈ ZML , the games IPCor′0(L,M,u) and IPCor′1(L,M,u) are perfectly indistinguishable.

Proof. The main difference is that we are now working with modules over a ring ZL, rather than with vector
spaces over a field.

The proof is essentially the same as before, using a similarly modified Lemma A.1 (using similarly
modified games IP′b(L,M,u) where QIP aborts as in IPCor′b(L,M,u)). We remark that that the condition
of non-abort implies that, at any point in time, the pivots of Gaussian elimination over the set S of vectors
y queried to QIP (and not leading to an abort) are all invertible element of ZL. Thus, S is not only always a
basis of V = Vect(S), but S can also be extended into a basis S ∪ S′ of ZML . Furthermore, S′ can be chosen
as a subset of the canonical basis {ei}i∈[M] of ZML . This is essentially the only property we use in the proof
that is specific to vector spaces over fields, rather than modules over rings ZL.

We point out that S might not even be a basis of V = Vect(S) without the abort: if 2 divides M and
the first query to QIP is y1 = (2, . . . , 2), and the second query is y2 = (1, . . . , 1), then y2 /∈ Vect(y1). Thus
after the second query, S = {y1,y2}, which is not a basis as y1 and y2 are linearly dependent. ut

Proof (Theorem 3.4). The proof is similar to the one of Theorem 3.2. We directly consider the general case
κ ≥ 1. The main difference is the introduction of two games G0.5 and G2.5 which are similar to G0 and G3

respectively, except that QKeyD aborts when:

ykf is linearly dependent of the vectors ykf ′ for previous queries QKeyD(f
′) but when performing the

Gaussian elimination over the matrix with rows ykᵀf ′ corresponding to the previous queries QKeyD(f ′)
and to f ′ = f , some rows do not have an invertible pivot (a.k.a., leading non-zero coefficient).

Using a similar proof as before, just replacing Lemma A.2 by Corollary A.7, we get the following claim.

Claim. For any PPT adversary A, there exists a PPT adversary B such that:

|WinG0.5

A −WinG2.5

A | ≤ Advxx-yy-IND
MCFE,B (λ, n) .

27

Finally, we have the following claims.

Claim. For any PPT adversary A, there exists a PPT adversary B′ such that:

|WinG0

A −WinG0.5

A | ≤ AdvFactorGenL,B′(λ) .

Proof. The only difference between is when QKeyD(f) aborts. Let us consider the first aborting query.
Gaussian elimination as in the condition above yields a non-invertible non-zero element µ ∈ ZM . The
greatest common divisor (gcd) of µ and M yields a non-trivial factor of M . ut

Claim. For any PPT adversary A, there exists a PPT adversary B′′ such that:

|WinG2.5

A −WinG3

A | ≤ AdvFactorGenL,B′′(λ) .

Proof. The proof is similar to the one of the previous claim. ut

The theorem follows by combining B′ and B′′ into a single adversary flipping a coin b at the beginning
to decide whether it will behave as B′ or B′′. ut

B Proof for the Compiler from pos-IND to any-IND for Labeled DMCFE
Schemes (Section 4.2)

Proof (Theorem 4.4). For the sake of simplicity, we suppose that xx = adt. The proof for xx = sta is simpler.
Let G0 and G3 correspond to the experiments xx-yy-INDDMCFE

β for β = 0 and β = 1, respectively (see
Fig. 16 for the definition of the random oracles H1 and H2). We denote by νγ the output length of the oracle
Hγ . We prove the security by introducing two hybrid games G1 and G2 (see Figs. 16 and 17).

Essentially in G1 and G2, the keys ki,j,` and the ciphertexts cti are generated uniformly at random on the
fly. The random oracles are programmed to explain these values, when the adversary corrupts a new slot i
or calls the QEnc oracle for a label ` in such a way that for all the i, Qi,` > 0 after this call. In the latter
case, the programming of the random oracles is done by AdaptEnc.

We have the following claims which prove the result. The first claim is a straightforward reduction. The
last two claims come from bounding the probability of the event Abort, which comes from collisions.

Claim. For any PPT adversary A, there exists a PPT adversary B such that:

|WinG1

A (λ, n)−WinG2

A (λ, n)| ≤ Advxx-yy-IND
DMCFE,B (λ, n) .

Claim.

|WinG0

A (λ, n)−WinG1

A (λ, n)| ≤
2 · qH1

+ (2n+ 1) · (qH2
· qQEnc + q2QEnc)

2λ
.

Proof. Without loss of generality, we assume that the adversary only makes queries such that Condition (*)
(defined in Section 2 on page 6) is satisfied.

Let us consider the q-th query QCor(i) and bound the probability of the eventAbort(1). Let j /∈ CS\{i},
we start by bounding the probability that HT1 contains a key of the form ki,j‖i‖j‖? or kj,i‖j‖i‖?. Since ki,j
and kj,i are drawn uniformly random and independently from {0, 1}λ, for any key of HT1 of the form ?′‖i‖j‖?
or ?′‖j‖i‖?, the probability that ?′ = ki,j or ?′ = kj,i is exactly 1/2λ. Thus, by union bound, the probability
that HT1 contains a key of the form ki,j‖i‖j‖? or kj,i‖j‖i‖? is at most:

qH1,i,j + qH1,j,i

2λ
,

where qH1,i,j is the number of queries to H1 of the form ?′‖i‖j‖? and qH1,j,i the number of queries of the
form ?′‖j‖i‖?, respectively. (Even if keys of HT1 are also added by the challenger and not only when the

28

G0,G1,G2,G3 :

HT1 and HT2 are two empty arrays
Hγ(z) for γ ∈ {0, 1}
If HT[z] does not exist, HT[z]← {0, 1}νγ

Return HT[z]

G1+β for β ∈ {0, 1} :

pp← Setup(1λ, 1n)

{ski}i∈[n] ← KeyGen(pp)

α← AQCor(·),QEnc(·,·,·,·),QKeyD(·)(pp)

Output: α if Condition (*) is satisfied,
or a uniform bit otherwise

QCor(i)

If already called for the same i, return same answer
Add i to CS
For all j /∈ (CS \ {i}),

Define ki,j ← {0, 1}λ and kj,i ← {0, 1}λ

Abort(1) if HT1 contains a key of the form
ki,j‖i‖j‖? or kj,i‖j‖i‖? for j /∈ (CS \ {i})

For all previous queries QEnc(i, ?, ?, `) for some `,
If QEnc(j, ?, ?, `) has not been queried for all j /∈ CS

Let (ct′i, ri, {kj,i,`}j∈[n]) be the output of the QEnc(i, ?, ?, `) query

For all j /∈ CS where QEnc(j, ?, ?, `) has not been called,

Define ki,j,` ← {0, 1}λ

HT1[ki,j‖i‖j‖`] := ki,j,`

Ki,` := ⊕m∈[n]ki,m,`
Abort(2) if HT2 contains a key of the form Ki,`‖ri
cti ← Enc(i, xβi)

Set HT2[Ki,`‖ri] := ct′i ⊕ cti

For all j, ` if ki,j,` is defined, set HT1[ki,j‖i‖j‖`] := ki,j,`

For all j, ` if kj,i,` is defined, set HT1[kj,i‖j‖i‖`] := kj,i,`

For all labels ` such that QEnc(j, ?, ?, `) has been queried for all j /∈ CS,
Run AdaptEnc(`)

Return sk′i = (ski, {ki,j , kj,i}j∈[n])

Fig. 16. Corruption queries QCor of the games for the proof of Theorem 4.4

29

G1+β for β ∈ {0, 1} :

QEnc(i, x0i , x
1
i , `)

ri ← {0, 1}λ

ct′i ← {0, 1}|ct
′
i|

If i ∈ CS or if QEnc(j, ?, ?, `) has already been called for all j /∈ CS
If i ∈ CS for all m ∈ [n],

ki,m,` := H1[ki,m‖i‖m‖`]
Ki,` := ⊕m∈[n]ki,m,`
Abort(3) if HT2 contains a key of the form Ki,`‖ri
cti ← Enc(i, xβi)

Set HT2[Ki,`‖ri] := ct′i ⊕ cti

Return (ct′i, ri, {kj,i,`}j∈[n])

For all j /∈ CS, if kj,i,` not defined

Define kj,i,` ← {0, 1}λ

For all j ∈ CS,
kj,i,` := H1(kj,m‖j‖m‖`)

If after this call to QEnc, for all j /∈ CS, QEnc(j, ?, ?, `) has been called
Run AdaptEnc(`)

Return (ct′i, ri, {kj,i,`}j∈[n])

AdaptEnc(`)

Do nothing if it was already called on the same label `
Remark that when AdaptEnc(`) is called, for all j /∈ CS, for all i ∈ [n],

ki,j,` has been defined by a call QEnc(j, ?, ?, `)

For all j ∈ CS, for all i ∈ [n],
ki,j has been defined by QCor(j), and we set ki,j,` := H1(ki,j‖i‖j‖`)

For all i /∈ CS, Ki,` := ⊕m∈[n]ki,m,`
Abort(4) if HT2 contains a key of the form Ki,`‖? for i /∈ CS

For all previous queries QEnc(i, x0i , x
1
i , `) for some i /∈ CS, x0i , x1i , `,

Let (ct′i, ri, {kj,i,`}j∈[n]) be the output of the QEnc query

cti ← Enc(i, xβi)

Set HT2[Ki,`‖ri] := ct′i ⊕ cti

Fig. 17. Encryption queries QEnc of the games for the proof of Theorem 4.4

30

adversary queries H1, the keys added by the challenger can never create an abort, so we are ignoring them.)
By union bound over j /∈ CS \ {i}, we get that the probability that the q-th query aborts is at most:∑

j /∈CS\{i}

qH1,i,j + qH1,j,i

2λ
≤ qH1,i + qH1,i

2λ
=

2 · qH1,i

2λ
,

where qH1,i,j is the number of queries to H1 of the form ?′‖i‖ ?′′ ‖? and qH1,j,i the number of queries of the
form ?′‖ ?′′ ‖i‖?, respectively.

By remarking that only the first query QCor(i) for a given i might abort (if the query happens for an
already queried i, the same result gets returned) and by union bound, the probability for the execution of
Abort(1) is at most:

∑
i∈[n]

2 · qH1,i

2λ
=

2 · qH1

2λ
.

To determine the probability for Abort(2)-(4), we introduce q′H2
= qH2

+qQEnc, which is an upper bound
on the number of (table) keys set in the table HT2, either generated by the adversary directly querying the
oracle H2, or added by QCor, QEnc, and AdaptEnc. The number of the second kind of keys is bounded by the
number of queries to QEnc, because keys added by QCor and AdaptEnc correspond to queries QEnc(i, ?, ?, ?)
where i was not corrupted before and hence no key was added to HT1 at the time QEnc was called (furthermore
if AdaptEnc(`) is called on a label `, no more keys related to QEnc(?, ?, ?, `) can be added to HT2 by QEnc).
Recall that we did not need to introduce such quantity for H1 because there was no risk of collisions between
keys added by QCor and QEnc and keys that might produce Abort(1).

In the next step, we consider the probability of Abort(2) in the q-th query of QCor(i). Let i /∈ CS, we
start by bounding the probability that HT2 contains a key of the form Ki,`‖ri for a fixed ri. Since Ki,` is
constructed by taking the XOR of the sampled keys ki,m,`, because we sample at least one new random key
(namely, ki,i,`) in the corruption query, Ki,` is also a random value. This results in the probability of 1/2λ
for any key of HT2 to be of the form ?‖ri with ? = Ki,`. Thus, by union bound, the probability that HT2

contains a key of the form Ki,`‖ri is at most q′H2
/2λ. By remarking again that only the first query QCor(i)

for a given i might abort and by union bound, the probability of Abort(2) is at most:

n · qQEnc · q′H2

2λ
.

We consider the probability of the first abort in the encryption procedure QEnc, Abort(3). We start by
bounding the probability that HT2 contains a key of the form Ki,`‖ri. Because we sample a value ri uniformly
random and independently in every encryption query QEnc, we get a probability of 1/2λ for any key of HT2

to be of the form Ki,`‖? with ? = ri. Thus, by union bound, the probability that HT2 contains a key of the
form Ki,`‖ri is at most q′H2

/2λ. By taking the union bound over the encryption queries for all the different
labels, we get that the probability of the event Abort(3) is at most:

q′H2
· qQEnc

2λ
.

In the last step, we consider the q-th query of the AdaptEnc procedure and determine the abort probability
for Abort(4). Without loss of generality, we suppose that the q-th query of AdaptEnc is for a label `, such
that AdaptEnc(`) was never called before (as otherwise, AdaptEnc does nothing and in particular does not
abort). Let us also consider a slot i∗ /∈ CS. We start by bounding the probability that HT2 contains a key of
the form Ki∗,`, where Ki∗,` = ⊕m∈[n]ki∗,m,`. We will show that Ki∗,` is uniformly random and independent
of all previous keys in HT2, by showing that at least one share ki∗,m,` is uniformly random and independent
of everything else.

We consider two cases:

31

Case 1: AdaptEnc(`) was called by QEnc(i, ?, ?, `). In this case, necessarily i /∈ CS (otherwise AdaptEnc
would not have been called) and ki∗,i,` is freshly sampled during the execution of QEnc(i, ?, ?, `). This
implies that Ki∗,` is uniformly random and independent of all previous keys in HT2.

Case 2: AdaptEnc(`) was called by QCor(i). In this case, QEnc(i, ?, ?, `) was never called before (otherwise
AdaptEnc(`) would have been called before). This implies that no key shares kj,i,` for j /∈ CS under label `
have been defined so far, which also means that HT1[kj,i‖j‖i‖`] does not exist for all j /∈ CS (as otherwise
Abort(1) in the QCor(i) query would have been triggered). Thus, in the AdaptEnc(`) procedure, kj,i,`
gets set for all j /∈ CS, as kj,i′,` := H1(kj,i′‖j‖i′‖`), and hence is freshly sampled uniformly at random.
In particular, ki∗,i,` is uniformly random and independent of all previous keys in HT2, and so is Ki∗,`.

Hence in both case, the probability that HT2 contains a key of the form Ki∗,`‖? is at most 1/2λ. By
union bound over i∗ ∈ CS ⊆ [n], in each call AdaptEnc(`) for a label on which it was never called, Abort(4)
happens with probability at most n · q′H2

/2λ. By union bound over all the labels queried by the adversary,
since there are at most qQEnc such labels, the probability that Abort(4) happens is at most:

n · qQEnc · q′H2

2λ
.

This concludes the proof of the claim. ut

This concludes the proof of Theorem 4.4. ut

32

	Introduction
	Definitions and Security Models
	From MCFE to DMCFE
	From xx-pos-IND to xx-any-IND Security
	Security of the MCFE from Abdalla et al. against Adaptive Corruptions
	Acknowledgments
	Postponed Proofs for the Compiler from MCFE to DMCFE (Section 3)
	Proof for the Compiler from pos-IND to any-IND for Labeled DMCFE Schemes (Section 4.2)

