

Artificial Intelligence (AI) Solutions for Computational Chemistry & Organic Chemistry

@olexandr

Olexandr Isayev

University of North Carolina at Chapel Hill olexandr@olexandrisayev.com http://olexandrisayev.com Carnegie Mellon University

Artificial Intelligence (AI) Solutions for Computational Chemistry & Organic Chemistry

@olexandr

Olexandr Isayev

Department of Chemistry, Carnegie Mellon University olexandr@olexandrisayev.com http://olexandrisayev.com

January 2020 ---- Stay tuned for even more exciting science!--

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Funding:

Mariya Popova **Roman Zubatyuk**

Daniel Korn Kyle Bowler **Hatice Gockan** Adrian Roitberg Justin S. Smith Christian Devereux Kavindri Ranasinghe

Collaborators:

Nicholas Lubbers Ben Nebgen Andrew Sifain **Kipton Barros** Sergei Tretiak

HPC Computing:

Extreme Science and Engineering Discovery Environment

CHE-1802789

Open Science Grid

NVIDIA

INSTITUTE

FOR INNOVATION

Chem. Mater., 2015, 27, 735-742.

Quantum Mechanics 101

$$\widehat{H}\psi = E\psi$$

The Schrodinger equation was discovered in 1926 by Erwin Schrodinger, an Austrian theoretical physicist. It is an important equation that is fundamental to quantum mechanics.

Emergence of 'hybrid' ML/NN force field

We use mostly DFT as a reference QM!

ANI-1: E = E(NN) + E(vDW), vDW = D2, D3, D3(BJ)

Now we could predict dynamic charges, volumes, C6 coefficients, etc.

```
ANI-2: E = E(NN) + E(vDW) + E(LR)
```

vDW = D3, D4, TS, MBD LR = electrostatics, ...

AIMNet: E = E(NN)

Dispersion & LR are implicit

Neural Network molecular potential - training

Currently available: CHNOSFCI

P, Si, Br, I, Se, B ... in progress

2018:

ωB97x/DZ -> **ωB97x/TZVPP**

2019: ωB97M/Def2-TZVPP and CCSD(T)*/CBS

ANI Deep Neural Network

Chem. Sci., 2017, 8, 3192-3203

ANAKIN-ME

Accurate NeurAl networK engINe for Molecular Energies

We want to train a padawan network to become a DFT jedi master

Can we predict when the model is wrong?

JS Smith, O.Isayev, A. Roitberg; Journal of Chemical Physics, (2018), 148 (24), 241733

Active Learning - The Big Picture

An automated and self-consistent data generation framework

Journal of Chemical Physics, (**2018**), 148 (24), 241733

- ANI requires TONS of data
 - For ANI-1 we run ~20M DFT data points @ wB97x/DZ.
 - Available to anyone!
 - Molecules with 1 to 15 heavy atoms from various databases
 - Out-of-equilibrium geometry sampling with NMS, MD
- Train network on a fraction of available data, validate on independent data
- Test on 'known sizes' (Molecules with <= # max heavy atoms per molecule in training set)
 - Interpolation
- Test on 'unknown sizes' (Molecules larger than any in the training set)
 - Extrapolation

What do you need?

Datasets

- Original ANI-1 dataset (Soon to be Deprecated!!!)
 - Random sampling
 - 60K organic molecules, ~25M DFT datapoints
- ANI-1x (CHNO)
 - AL sampling
 - 5M DFT datapoints
 - 0.5M CCSD(T)/CBS
- ANI-1x (+SFCI)
 - AL sampling
 - 4M DFT datapoins
 - CCSD(T)/CBS is being computed now

ANI-1: Sci. Data, 2017, 4, 170193 DOI: 10.1038/sdata.2017.193

ANI Data set Python library Available at: <u>https://github.com/isayev/ANI1_dataset</u>

ANI-1x: To be released soon.

ANI-MD Benchmark // COMP6

- 12 drug molecules and 2 proteins
- Mean size 75 atoms (max 312 atoms)
- 1ns of molecular dynamics (MD)
- Dynamics at 300K
- MD ran on ANI-1x potential •
- 128 randomly sampled frames

Accuracy of Energy & PES Prediction

Relaxed 2D torsion scans for ANI-2x (left) and DFT (right).

A Scalable Molecular Force Field Parameterization Method Based on Density Functional Theory and Quantum-Level Machine Learning

Raimondas Galvelis, Stefan Doerr, João M. Damas, Matt J. Harvey and Gianni De Fabritiis*

Journal of Chemical Information and Modeling

Abstract

Fast and accurate molecular force field (FF) parameterization is still an unsolved problem. Accurate FF are not generally available for all molecules, like novel druglike molecules. While methods based on quantum mechanics (QM) exist to parameterize them with better accuracy, they are computationally expensive and slow, which limits applicability to a small number of molecules. Here, we present an automated FF parameterization method which can utilize either density functional theory (DFT) calculations or approximate QM energies produced by different neural network potentials (NNPs), to obtain improved parameters for molecules. We demonstrate that for the case of torchani-ANI-1x NNP, we can parameterize small molecules in a fraction of time compared with an equivalent parameterization using DFT QM calculations while producing more accurate parameters than FF (GAFF2). We expect our method to be of critical importance in computational structure-based drug discovery (SBDD). The current version is available at *PlauMolecule* (www.playmolecule.org) and implemented in HTMD, allowing to parameterize

Active-learning reactions : Cope rearrangement

Accuracy of Molecular Dynamics

ANI-1x predicted harmonic frequencies

Work in progress with Christian Devereux @ UF

Discovering a Transferable Charge Assignment Model Using Machine Learning

A.E. Sifain, N. Lubbers, B.T. Nebgen, J.S. Smith, A.Y. Lokhov, O. Isayev, A. E. Roitberg, K. Barros, S. Tretiak. *J. Phys. Chem. Lett.* 9, **2018**, 4495-4501

Accurate IR spectra simulation with time-domain ML

A.E. Sifain, N. Lubbers, B.T. Nebgen, J.S. Smith, A.Y. Lokhov, O. Isayev, A. E. Roitberg, K. Barros, S. Tretiak. *J. Phys. Chem. Lett.* **2018**. DOI: 10.1021/acs.jpclett.8b01939

```
In [2]: import numpy as np
import time
# ASE
import ase
from ase.io import read, write
from ase.optimize import BFGS, LBFGS
from ase.vibrations import Vibrations
from ase.thermochemistry import IdealGasThermo
#figure plotting
import matplotlib
import matplotlib as mpl
import matplotlib.pyplot as plt
#import seaborn as sns
%matplotlib inline
```

Read geometry from xyz file

```
In [3]: geometry = read('data/water.xyz')
```

Setup ANI and calculate single point energy

```
In [4]: geometry.set_calculator(ANI())
e = geometry.get_potential_energy()
print('Total energy', e, 'eV')
```

```
Total energy -2078.63121157 eV
```

In [5]:	<pre>geometry.get_forces()</pre>			
Out[5]:	array([[0.19142392, -0.2092285 , 0.00468441], [-0.0934471 , 0.23035382, -0.00543961], [-0.09797663, -0.02112528, 0.00075519]], dtype=float32)			
	Geometry optimization with BFGS			
In [6]:	<pre>start_time = time.time() dyn = LBFGS(geometry) dyn.run(fmax=0.001) print('[ANI Total time:', time.time() - start_time, 'seconds]')</pre>			
	Step Time Energy fmax			
	LBFGS: 0 16:21:56 -2078.631212 0.2836			
	LBFGS: 1 16:21:56 -2078.631610 0.1856			
	LBFGS: 2 16:21:56 -2078.631885 0.0167			
	LBFGS: 3 16:21:56 -2078.631890 0.0091			
	LBFGS: 4 10:21:50 -2078.031892 0.0035			
	$\begin{bmatrix} \Delta NI & Tota \end{bmatrix} + ime \cdot 0 0.17764806747436523 \text{ seconds} \end{bmatrix}$			
In [7]:	<pre>e = geometry.get_potential_energy() print('Total energy', e, 'eV')</pre>			
	Total energy -2078.63189359 eV			
In [8]:	<pre>geometry.get_forces()</pre>			
Out[8]:	array([[-2.30617457e-06, -2.97927356e-04, 7.32954868e-06], [-6.46489134e-05, 2.63106631e-04, -6.31980538e-06], [6.72085152e-05, 3.45736116e-05, -1.01132730e-06]], dtype=float32)			

<pre>thermo = IdealGasThermo(vib_energies=vib_energies,</pre>
<pre>potentialenergy=e,</pre>
atoms=geometry,
geometry='nonlinear',
symmetrynumber=1, spin=0)
<pre>G = thermo.get_gibbs_energy(temperature=298.15, pressure=101325.)</pre>

In [25]: ▶ vib.summary()

#	meV	cm^-1
0 1 2 3 4 5 6 7	2.0i 1.1i 0.1i 0.3 3.4 3.5 213.7 474.9	15.8i 9.1i 1.0i 2.6 27.0 28.5 1723.3 3830.1
8	477.9	3854.7

Zero-point energy: 0.587 eV

▶ vib.get_zero_point_energy() In [26]:

Out[26]: 0.5868330720915512

Enthalpy components at T = 298.15 K:

E_pot	-2078.504 eV			
E_ZPE	0.583 eV			
Cv_trans (0->T)	0.039 eV			
Cv_rot (0->T)	0.039 eV			
Cv_vib (0->T)	0.000 eV			
(C_v -> C_p)	0.026 eV			
Н	-2077.818 eV			

Entropy components at T = 298.15 K and P = 101325.0 Pa: _____

	S		T*S
S_trans (1 atm)	0.0015008	eV/K	0.447 eV
S_rot	0.0005130	eV/K	0.153 eV
S_elec	0.0000000	eV/K	0.000 eV
S_vib	0.0000002	eV/K	0.000 eV
S (1 atm -> P)	-0.0000000	eV/K	-0.000 eV
S	0.0020140	eV/K	0.600 eV

Free energy components at T = 298.15 K and P = 101325.0 Pa:

==========		===
H -T*S	-2077.818 -0.600	eV eV
G	-2078.419	eV
==========		===

Can we go beyond DFT?

High Throughput CCSDT(T)/CBS

$$E_{total}^{CBS} \approx E_{HF}^{CBS} + E_{MP2}^{CBS} + \left(E_{CCSD(T)}^{cc-pVTZ} - E_{MP2}^{cc-pVTZ}\right)$$

$$E_{CCSD(T)}^{cc-pVTZ} \approx E_{Normal-DPLNO-CCSD(T)}^{cc-pVDZ} + \left(E_{Tight-DPLNO-CCSD(T)}^{cc-pVDZ} - E_{Normal-DPLNO-CCSD(T)}^{cc-pVDZ}\right)$$

J.S. Smith et al. Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning. *Nature Comm.* 2019, 10, 2903.

Accuracy Benchmark

	CPU-core hours		Mean absolute deviation from CCSD(T)-F12 (kcal/mol)	
	Alanine (13 atoms)	Aspirin (21 atoms)	S66	W4-11
CCSD(T)/CBS	9.13	427.00	0.03	1.31
CCSD(T)*/CBS (this work)	1.44	7.44	0.09	1.46

J.S. Smith et al. Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning. *Nature Comm.* 2019, 10, 2903.

Transferring knowledge of CCSD(T)/CBS

- Regenerate 10% of ANI-1x training data (0.5M of 5M)
- For high-level reference we use CCSD(T)/CBS accurate QM model
- We only retrain 60k of 400k neural network parameters
- Results show clear improvement over DFT trained model
- New models are exceeding the DFT in accuracy

J.S. Smith et al. Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning. Nature Comm. 2019, 10, 2903.

Transferring knowledge of CCSD(T)/CBS

Method	Avg. Time/data point
CCSD(T)	24h
DFT	6m
ANI-1ccx	2µs

15M of HPC computer hours at LANL. To be released soon

LANL Ben Nebgen

Justin S. Smith

UNC Roman Zubatyuk

Hydrocarbon reaction energy benchmark, DFT vs CCSD(T)

J.S. Smith et al. Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer Regraine Opture Comm. 2019, 10, 2903.

-150 -100

-50

100

50

0

Torsion Angle (degrees)

150

-150 -100

-50

150

50

0

Torsion Angle (degrees)

100

Estimate Strain Energy in Druglike Fragments. J. Chem. Inf. M

Accurate Dihedral Profiles for Drug-like Molecules (Genentech Benchmark)

Sellers, B. D.; James, N. C.; Gobbi, A. A Comparison of Quantum and Molecular Mechanical Methods to Estimate Strain Energy in Druglike Fragments. *J. Chem. Inf. Model.* **2017**, *57* (6), 1265–1275.

Can we go beyond simple energies?

Bird's Eye View on Architecture

Rethinking Network Architecture: AIMNet

Atoms-in-molecules neural net

Iterative "SCF-like" update for better accuracy and Long range interactions

Multimodal and multi-task learning: gas phase energy, charges, atomic volumes, continuum solvent (SMD) Correction

Deep NN network, AIMNet with T=3: 33 hidden layers, ~1M parameters

Accuracy vs NNet Iterations

Importance of LR descriptor for atomic charges

DFT ω B97x/def2-TZVPP atomic charges on the sulfur atom of substituted thioaldehyde and AIMNet prediction with a different number of iterative passes T.

Fast & Accurate Solvation Free Energies with AIMNet

a) Experimental versus predicted with AIMNet solvation free energies (kcal/mol) for 414 neutral molecules from MNSol database. b) performance of AIMNet and other solvation models on torsion benchmark of Sellers et al.

Major future developments

Quantum Refinement: next generation method for bio-crystallography and Cryo-EM

Structure determination workflow: crystallography

Slide courtesy of Pavel Afonine & PHENIX Q|R team

Quantum Refinement & ANI

Q|R – Home

- TeraChem is very expensive!
- Need for special hardware (GPU)
- Takes day to a week on HPC

- Free for academia!
- Optional special hardware (GPU)
- Seconds to minutes on laptop

Slide courtesy of Pavel Afonine & PHENIX Q|R team

Toward Realistic Macromolecular Simulations

Mycobacterium tuberculosis (5MXV) in explicit water Simulated with ANI-2 (CHNOSFCI)

- ~35K atoms
- Explicit water
- No ions
- S, F and Cl in ligand

Timings for a 5x ensemble prediction for ANI-2x

GPU	ANI-2x time per step	Total time per step	Steps per day
Tesla V100	297ms	317ms	272k

5ns simulation time

Simulation of Complex Chemical Reactions

https://youtu.be/DRVMH5u8EA0

Carbon nanoparticles/sheets nucleation [4000 atoms in 60A box at 2500K, 5ns MD simulation]

Use the ANI-1x potential:

ANI-1x interfaced to ASE Python library Available at: <u>https://github.com/isayev/ASE_ANI</u>

ANI-1x implementation in PyTorch Available at: https://github.com/aiqm/torchani

Coming soon to AMBER, OpenMM & LAMMPS

Use the AIMNet:

Accurate and Transferable Multitask Prediction of Chemical Properties with an Atoms-in-Molecule Neural Network. **ChemRxiv**, 2018.

AIMNet implementation in Pytorch & ASE calculator: Available at: <u>https://github.com/aiqm/aimnet</u>

Use the ANI-1 dataset:

ANI-1: A data set of 20M off-equilibrium DFT calculations for organic molecules

Sci. Data, 2017, **4**, 170193 DOI: 10.1038/sdata.2017.193

ANI Data set Python library Available at: https://github.com/isayev/ANI1_dataset Users:

academic labs:

- Stanford
- U Pitt
- CMU
- USF
- NCSU
- Barcelona
- Helsinki
- Tel Aviv

Government labs, companies etc.

