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WHAT COULD THE FUTURE LOOK LIKE FOR FORCE FIELD SCIENCE?



MACHINE LEARNING

WE CAN LOOK TO THE MACHINE LEARNING FIELD FOR INSPIRATION
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MACHINE LEARNING

TENSORFLOW

● Open software ecosystems have the potential to accelerate progress
● Providing useful levels of abstraction enhances productivity
● Easy-to-use tools find new uses everywhere



CAN WE MAKE BUILDING NEW FORCE FIELDS AS EASY AS TRAINING 
A MACHINE LEARNING MODEL?
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A MACHINE LEARNING MODEL?

Would this be useful to the community?



EASY

HARD

Bonds/angle refitting to high-level QM
Refit torsions to high-level QM for drug-like molecules
Small molecule Lennard-Jones improvements based on liquid property data

Valence type expansion
Lennard-Jones type expansion
Inclusion of host-guest thermodynamics in fitting
Refit BCCs to high-quality QM and liquid-phase data
Use partial bond orders in fitting process to simplify valence type complexity 
Introduce off-site charges and BCCs to support them

Complete Lennard-Jones refit (requires breaking AMBER compatibility)
Bayesian parameter uncertainty propagation to quantify systematic error
Surrogate thermodynamic models to accelerate forcefield parameterization
Automated type refinement to penalize complexity
Selective polarizability

Gen 1

Gen 2

Gen 3

Automated and ready to scale to more data to achieve increased accuracy/coverage

AUTOMATION IS KEY TO SCALABILITY



AUTOMATION ALLOWS US TO FOCUS ON SCIENCE 
AND RAPIDLY BENEFIT FROM MATURE RESEARCH EFFORTS



QM electrostatic potentials near molecular surface
QM equilibrium geometries and force constant matrices (Hessians)
QM single-point energies for 1- and 2-torsion drives
C6 dispersion coefficients
statistic atomic and molecular polarizabilities

EXPERIMENTAL DATA

QM DATA

densities of neat liquids and misicble liquid mixtures
enthalpies of mixing of miscible molecular liquids
transfer free energies (partition and distribution coefficients, hydration free 
energies)
host-guest binding thermodynamics (free energies and enthalpies)
small molecule 1D/2D NMR data (chemical shifts, J-coupling constants, NOE/ROEs)
dielectric constants of neat liquids (and possibly mixtures)
speed of sound data
small molecule crystal structures and primary reflection data (CCSD)
protein-ligand binding free energies

primarily valence terms
primarily Lennard-Jones
primarily electrostatics

WE CAN EXPLORE MANY PHYSICAL AND QUANTUM CHEMICAL PROPERTIES



AUTOMATION ALLOWS US TO KEEP INCREASING DATASET SIZES TO 
ACHIEVE INCREASINGLY GREATER COVERAGE AND ACCURACY

Generation of large quantum chemical datasets
● PDB Ligand Expo (80K)
● Enamine REAL (11B)
● Partner patent datasets (>1M)
● Partner-submitted datasets: (???)

qcfractal-submit --api-key <key> molecules.smi
Exploiting large physical property datasets
● ThermoML Archive has a huge amount of data we can exploit

Increasing efficiency 
● psi4 and the QCFractal ecosystem
● OpenMM and PropertyEstimator

Increased access to computational resources



SMALL MOLECULE FRAGMENTATION IS REACHING MATURITY
Will soon be generating very large quantum chemical datasets

Inspired by Xinjun Hou and Visnu Sresth (Pfizer) CHAYA STERN



Deliverables:

● Regular versioned improvements of small molecule force fields:

○ Integrating additional experimental data each cycle
■ More complex mixture data
■ Host-guest binding thermodynamics
■ Benchmark sets become training set for next generation force field

○ Aim to transition to Bayesian inference
■ Sample parameter space broadly, escaping local minima
■ Refine/expand atom types with reversible-jump
■ Identify BCCs for next-generation charge models
■ Select optimal mixing rules, off-site charges, etc.

Research questions:
● Which new functional forms are justified by the data?

refit to 
data benchmark release refit to 

data benchmark release

AUTOMATION AND MODULARITY IS KEY TO RAPID ITERATIVE PROGRESS



MODULARITY MAKES IT EASY TO EXPLORE DIFFERENT DATA SOURCES 
AND PHYSICAL MODELS IN PARALLEL

Quantum chemical datasets
● QCFractal can define new distributed quantum chemical workflows

Physical properties
● PropertyDataset/PhysicalProperty can integrate new physical 

properties and data sources
(speed of sound, X-ray scattering, BindingDB, CCSD)

Assessment sets
● PropertyEstimator can integrate distributed free energy workflows

(pAPRika, gmx/gromacs, YANK, perses)
Open force field toolkit:
● ParameterType plugin can integrate new physical models

(virtual sites, point polarizable dipoles, Drude oscillators, ML models)



SMIRNOFF EXTENSIONS WILL ENABLE MORE SCIENTIFIC RESEARCH

● Wiberg bond order (WBO) interpolated valence terms
● Virtual sites
● Alternative Lennard-Jones mixing rules / pairwise LJ parameters
● Coupled torsions (CMAP)
● Experimental support for alternative vdW functional forms
● Experimental support for point polarizable dipoles / Drude oscillators
● Experimental support for ML potentials



WIBERG BOND ORDER (WBO) INTERPOLATED VALENCE TERMS COULD 
GREATLY REDUCE NUMBER OF DISTINCT TYPES NEEDED

CHAYA STERN



WIBERG BOND ORDER (WBO) INTERPOLATED VALENCE TERMS COULD 
GREATLY REDUCE NUMBER OF DISTINCT TYPES NEEDED

CHAYA STERN



WIBERG BOND ORDER (WBO) INTERPOLATED VALENCE TERMS COULD 
GREATLY REDUCE NUMBER OF DISTINCT TYPES NEEDED

CHAYA STERN

Slope is nearly 
universal!



DISTRIBUTED COMPUTING NEEDS AND RESOURCES WILL CONTINUE TO GROW

Academic clusters:
● MSKCC: ~1000 cores sustained, up to 200 GPUs in bursts
● UCD: ~1000 cores, ~100 GPUs; leading refits to quantum chemical data
● Other sites will continue to be integrated

XSEDE (due 15 Oct 2019):
● Frontera opening soon (CPUs+GPUs)

(Olexandr ran 100K DLPNO-CCSD(T)/CBS in one day!)
Cloud computing
● Would need to reserve budget for AWS/GCE costs

Folding@home?
● Investigating running QCFractal on Folding@home (requires dev $)

Industry resources?
● Contribute to QCFractal quantum chemical calculations?

http://mskcchpc.org/
https://www.tacc.utexas.edu/systems/frontera


year

1990s

early 2000s

mid 2000s

2019

2020

forcefield

1990s

early 2000s

mid 2000s

OFF 1st gen

OFF 2nd gen

parameter fitting scheme

lots of hand tweaking

genetic algorithm

least squares

regularized least squares
(ForceBalance)

Bayesian inference

HOW DO WE AUTOMATE AWAY HUMAN-DRIVEN TASKS?
Force field optimization has evolved over time



WHAT DO WE WANT FROM AUTOMATED PARAMETERIZATION?

Everything is automatic; no hand-tweaking necessary

We aren’t just seeking local brittle optima, but instead good, generalizable parameter sets

We don’t need to arbitrarily assign data weights to different data sources

Feats of chemical insight are not required; decisions guided by statistically sound methodology 

Toolkit automatically selects appropriate functional forms given the data

We can rapidly and systematically improve forcefields with more data

Forcefield provides an assessment of the reliability of its predictions

The forcefield can tell us what new data is most valuable for improving accuracy



A Bayesian inference approach fulfills our desiderata

Parameter space may have many local minima
Bayesian methods can find good, broad, low free energy basins that are likely to generalize

Parameter optimization problems generally feature nonlinear nearly-degenerate solutions
Bayesian methods can cope well with nonlinear regions of high probability

We have good ways to characterize statistical error, but no way to assess systematic error
Bayesan methods can predict chemistry-specific uncertainties (e.g., sulfonyl, sulfonamide groups)

We want to make data-driven decisions about which choices are best justified by data
The data will tell us which functional forms or mixing rules are sufficiently well-justified

Data is automatically weighted by its measurement error
No need for humans to specify weights for different measurements or regularization schemes

We can balance the proliferation of parameters with their gain in accuracy
Polarizability, multipoles more parameters, risk overfitting; Bayesian methods penalize complexity

We want to identify which experiments will give us the most new information at least cost
The whole field of Bayesian experimental design can be harnessed



Nonlinear optimization problems generally feature 
nearly-degenerate solution spaces

Some predicted properties may be insensitive to different choices of parameters in this set, 
but other predicted properties by be very sensitive

why just this set 
of parameters?



PARAMETER LANDSCAPES ARE MULTI-MODAL
Optimizing GBSA parameters to FreeSolv gets stuck in local minima

JOSH FASS



PARAMETER LANDSCAPES ARE MULTI-MODAL
Even near the global basin, there are tons of minima!

JOSH FASS



Predictive uncertainties are essential for good decisions

Existing approaches for quantifying statistical error are mature, but systematic error dominates error. 
We need force fields that know when they will provide poor estimates of predicted properties because 
training data is too limited or parameters may be overfit.



The Bayesian Way

data
forcefield parameters
posterior

prior on forcefield parameters
data model

Bayes rule allows us to assign how confident we are in a specific force field parameter set, 
and provides an automated, statistically motivated way to update parameters given new data

posterior likelihood prior



Data likelihood can be factorized into 
contributions from independent measurements

data
forcefield parameters

likelihood



Forward models come from best practices in computing experimental observables
from molecular simulations, and often involve expectations or free energy differences:

e.g. density calculation

Experimental error models come from models of the experimental measurement process
and may involve unknown parameters corresponding to instrumental reliability:

e.g. density measurement

data
forcefield parametersposterior likelihood prior

Likelihood function requires a forward model and an experimental error model:
* Forward model gives the true error-free property A(𝜃) given parameters 𝜃 
* Experimental error model is probability data A' was observed given error-free A(𝜃)
Both can also be used in regularized least-squares fitting!

Computing the likelihood requires two components



Conditioning on more data reduces uncertainty

Interactive illustration: http://rpsychologist.com/d3/bayes/

As we collect more data, the posterior uncertainty in parameters given data decreases

We can quantify uncertainty in an information-theoretic manner

http://rpsychologist.com/d3/bayes/


data
forcefield parameters

Informationless priors attempt to minimally bias parameters

posterior likelihood prior

Prior rounds of inference can be used as priors:
* Posterior parameter sets can be rapidly reweighted using likelihood functions for new data
* Posterior parameter sets will be close to equilibrium for seeding new posterior sampling

Often we strive to make posterior probabilities independent of parameterization;
e.g., a prior for equilibrium angle 𝜃 and cos(𝜃) should give the same posterior distribution

Nuisance parameters can be introduced to model unknown experimental details like 
instrument noise, but can be marginalized out (but still contribute to overall uncertainty)

Priors express our current state of knowledge



statistical mechanics statistical inference

partition functions normalizing constants

physical properties expectations

entropy
entropy/uncertainty/

information

binding affinities/
partition coefficients

bayes factors/
model evidences

Statistical mechanics and Bayesian inference are 
isomorphic

The same algorithms can be used in both fields

If you know stat mech already, you know Bayesian inference!

potential energy potential
(negative log unnormalized density)



parallel tempering
simulated tempering

wang-landau
nonequilibrium candidate monte Carlo

semigrand-canonical monte carlo
(metropolized) molecular dynamics

configurational bias monte carlo
pruned/enriched rosenbluth methods

sequential Monte carlo
self-adjusted mixture sampling
annealed importance sampling

reversible-jump monte carlo
hybrid monte carlo

particle filtering

statistical mechanics statistical inference
This book unifies methods from both fields if you want to learn more

https://www.springer.com/gp/book/9780387763699

https://www.springer.com/gp/book/9780387763699


Familiar algorithms can be used to sample from 
Bayesian posteriors and potential energy functions

Metropolis Monte Carlo can make updates to individual dimensions or combinations of 
dimensions using only the potential

Hybrid Monte Carlo can exactly sample from the posterior using gradient information, but 
becomes inefficient in high dimension

Langevin integrators can approximately sample from very highly multidimensional problems 
using gradient information, and good Langevin integrators (BAOAB) are accurate and efficient

Gibbs sampling strategies (like replica exchange or expanded ensemble) allow alternation 
between updating different subsets of parameters, or even discrete and continuous parameters



PARAMETER LANDSCAPES ARE MULTI-MODAL
Langevin methods effectively sample parameter space

JOSH FASS



Conditioning on more data reduces uncertainty

Interactive illustration: http://rpsychologist.com/d3/bayes/

We can quantify uncertainty in an information-theoretic manner

As we include more data (N), parameter uncertainty decreases

http://rpsychologist.com/d3/bayes/


A real example: United-atom methane (from Michael Shirts and Levi Naden)
Combining density and enthalpy greatly reduces region over which posterior is large

Conditioning on more data reduces uncertainty



Bayesian models provide a direct way to 
estimate systematic error in predictions

The marginal posterior probability for an expectation describes our confidence in a prediction:

We can also predict the joint uncertainty in two computed properties,
which can exploit favorable cancellation of error in predictions



Predicting properties: The old way

One set of parameters in, one computed result out

the “one true
force field”

Only statistical error can be assessed



Predicting properties: The Bayesian way

We can estimate both statistical and systematic components of computed results
Simulations are performed with a reference parameter set, and fast reweighting assesses systematic error

Multiple parameter sets in, multiple estimates out

reference
parameters



Constructing a force field requires addressing many 
questions where data should drive decisions

Lennard-Jones mixing rules: Which Lennard-Jones mixing rules (Lorentz-Berthelot, geometric, 
arithmetic, others) best fits liquid-phase data?

Functional forms: Which nonbonded sterics model best fits the data?

Atom types: How many atom types do I need to fit the data well? Which ones?

Bond charge corrections (BCCs): How many BCCs (and of what types) do I need to reproduce 
experimental properties well?

Off-atom charges: Do off-atom partial charges provide a sufficient increase in accuracy to warrant 
the additional parameters? Where do they belong?

Polarizable sites: Is polarizability worth the increase in parameters? Which atoms or sites should 
have polarizability? How many distinct polarizability parameters are needed?



Bayesian model selection lets data drive decisions
If discrete model choices are available, Bayes factors provide ratio of evidence for one model 
over another in a manner that is directly interpretable as break-even gambling odds.

model evidence

Computation is isomorphic with an absolute or relative free energy calculation



Bayesian model selection lets data drive decisions
We can include multiple discrete model choices in the same posterior sampling scheme with 
reversible-jump Monte Carlo (RJMC), even if the models differ in dimension! 

Only need to ensure detailed-balance is satisfied in proposed jumps between models:

Computation is isomorphic with grand-canonical Monte Carlo simulation



Reversible-jump Monte Carlo (RJMC) is a statistically 
principled way to sample an unknown number of types
Illustrative example: Fitting mixture of unknown number of Gaussians with RJMC

JOSH FASS

true Gaussian components mixture distribution statistical sample from mixture

RJMC inference simulation 
from statistical sample



Reversible-jump Monte Carlo (RJMC) could sample over atom 
types (penalizing complexity) in an automated way

http://doi.org/10.1021/acs.jctc.8b00821
https://github.com/openforcefield/smarty

CAITLIN 
BANNAN

CAMILA
ZANETTE

http://doi.org/10.1021/acs.jctc.8b00821
https://github.com/openforcefield/smarty


http://doi.org/10.1021/acs.jctc.8b00821
https://github.com/openforcefield/smarty

% atom types
[#1]    hydrogen
[#6]    carbon
[#7]    nitrogen
[#8]    oxygen
[#9]    fluorine
[#15]   phosphorous
[#16]   sulfur
[#17]   chlorine
[#35]   bromine
[#53]   iodine

% total connectivity
 X1             connections-1
 X2             connections-2
 X3             connections-3
 X4             connections-4
 % total-h-count
 H0             
total-h-count-0
 H1             
total-h-count-1
 H2             
total-h-count-2
 H3             
total-h-count-3
 % formal charge
 +0             neutral
 +1             cationic+1
 -1             anionic-1
 % aromatic/aliphatic
 a              aromatic
 A              aliphatic

parent types decorators

X =

proposed child types

[#6X4:1]       tetrahedral carbon
[#6:1]~[#7]    carbon nitrogen-adjacent

A simple scheme using SMARTS “decorators” can sample 
new child types with increased complexity

CAITLIN 
BANNAN

CAMILA
ZANETTE

http://doi.org/10.1021/acs.jctc.8b00821
https://github.com/openforcefield/smarty


    H ([#1:1])
        5262 ([#1:1]~[#6])
            4148 ([#1:1]~[#6!X3])
                8668 ([#1:1]~[#6!X3]~[$ewg2])
                    1874 
([#1:1]~[#6!X3](~[$ewg2])~[$ewg2])
                        4596 
([#1:1]~[#6!X3](~[#7])(~[$ewg2])~[$ewg2])
                2356 ([#1:1]~[#6!X3X2])
                5962 ([#1:1]~[#8X2])
                2012 ([#1:1]~[#6!X3]~[#17])
            4227 ([#1:1]~[#6]~[#17])
            1674 ([#1:1]~[#6H1X3]~[#7!X4])
                6955 ([#1:1]~[#6H1X3](~[#6])~[#7!X4])
        1945 ([#1:1]~[#16])
    C ([#6:1])
        4016 ([#6X4:1])
        3620 ([#6;X3:1])
    N ([#7:1])
    O ([#8:1])
        3664 ([#8H0:1])
        1964 ([#8!X2;R0:1])
    F ([#9:1])
        2860 ([#9!R:1])
    P ([#15:1])
        5153 ([#15:1]~[$ewg2])
    S ([#16:1])
        7194 ([#16:1]~[*])
    Cl ([#17:1])
        4081 ([#17:1]~[#6])
    Br ([#35:1])
    I ([#53:1])

Sampling with this scheme can generate SMARTS-based 
typing trees with interesting complexity

CAITLIN 
BANNAN

CAMILA
ZANETTE



A simple RJMC scheme can recover human-generated atom 
types over large typed molecule datasets

http://doi.org/10.1021/acs.jctc.8b00821
https://github.com/openforcefield/smarty

http://doi.org/10.1021/acs.jctc.8b00821
https://github.com/openforcefield/smarty


Initial experiment: Sampling over GBSA atom types fit to 
small molecule hydration free energies

Example of a GBSA type creation proposal

JOSH FASS



Initial experiment: Sampling over GBSA atom types fit to 
small molecule hydration free energies

Hierarchical SMIRNOFF types

log posterior

JOSH FASS



The RJMC approach can discover interesting chemistry!

Hierarchical SMIRNOFF types

log posterior

JOSH FASS



Our second-generation fitting approach will use Bayesian 
inference, reusing all our existing software components
Automated atom and valence type determination

- Published: SMIRKY Monte Carlo moves can rediscover existing types (Zanette, Bannan, Mobley)
- Current: Sampling over GBSA typing rules and parameters (Josh Fass)
- Next: Automated Lennard-Jones type determination to fit ThermoML Archive data
- Beyond: Automated mixing rule and functional form determination

Automated parameter fitting with MCMC avoids local minima
- Currently exploring efficient parallel parameter searching/sampling schemes that utilize 

gradients and can make use of distributed computing resources

Uncertainty quantification via rapid reweighting
- “killer app” is binding free energy calculations

https://chemrxiv.org/articles/Toward_Learned_Chemical_Perception_of_Force_Field_Typing_Rules/6230627


BAYESIAN FITTING WITH TENSORFLOW PROBABILITY?

https://www.tensorflow.org/probability

●
●
●
●

https://www.tensorflow.org/probability


HOW DO WE WANT TO SUPPORT MACHINE LEARNING POTENTIALS?

Olexandr Isayev will tell us about ANI and friends next
Could we extend SMIRNOFF to include ANI-like models?

Killer app: Fit hybrid models (ML for valence + physical long-range interactions) to both 
QM and physical property data.

Need to standardize how simulation packages will support ML potentials:
MolSSI Interoperability Workshop 3-5 Nov 2019 in Brooklyn NY 
https://molssi.org/2019/07/29/molssi-workshop-molecular-dynamics-software-interoperability/

https://molssi.org/2019/07/29/molssi-workshop-molecular-dynamics-software-interoperability/


MACHINE LEARNING WILL COME TO REPLACE PAIN POINTS

AM1-BCC presents significant challenges to growth:
● AM1 ~15 seconds (with wide variability) per small molecule 

(and still isn’t deven particularly good)
● Cannot scale to biopolymers to provide consistent charge model
● Requires conformer generator, which is toolkit-dependent
● Even ELF10 (conformer selection/averaging) still produces 

toolkit-dependent charges
● Few good choices for AM1 software

Wiberg bond orders (WBOs) present same challenges

Can we replace this with a simple machine learning model that will 
produce conformer-independent charges and scale to biopolymers?



GRAPH CONVOLUTIONAL NETWORKS FOR PARTIAL CHARGES

https://github.com/choderalab/gimlet Yuanqing Wang (MSKCC)

https://doi.org/10.1021/acscentsci.8b00507

https://github.com/choderalab/gimlet
https://doi.org/10.1021/acscentsci.8b00507


COMBINING PHYSICS WITH MACHINE LEARNING IS POWERFUL

Rappe and Goddard (1991) doi:10.1021/j100161a070
Gilson, GIlson, and Potter (2003) doi:10.1021/ci034148o

http://doi.org/10.1021/j100161a070
http://doi.org/10.1021/ci034148o
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COMBINING PHYSICS WITH MACHINE LEARNING IS POWERFUL

DFT/COSMO-RS charges from Bleiziffer, Schaller, and Riniker ChEMBL set: doi:10.1021/acs.jcim.7b00663

https://doi.org/10.1021/acs.jcim.7b00663


COMBINING PHYSICS WITH MACHINE LEARNING IS POWERFUL

500x faster than AM1-BCC
Portable (currently TensorFlow)
<35 ms/molecule on CPU or GPU
Scalable to biopolymers

Yuanqing Wang (MSKCC)



BESPOKE MOLECULE FITTING PIPELINE WILL REUSE COMPONENTS

Reuse existing components in local workflow:
● QCFractal / TorsionDrive / GeomeTRIC / QCEngine

○ psi4 quantum chemical calculations
○ ANI1-ccx fast approximate coupled-cluster

● Optional QCArchive instance for local caching of QC calcs
● RESP/RESP2 multi-conformer electrostatics



SUSTAINABILITY IS KEY TO LONG-TERM SUCCESS

Funding
● Open Force Field Consortium: Continue to focus on near-term industry needs
● NSF CHE: Exploration of Bayesian inference for parameterization
● Institutional funding
● MolSSI Software Fellowships
● NIH Focused Technology R&D R01: Biopolymers and heterogeneous systems
● Chan Zuckerberg Essential Open Source Software for Science
● Other funding sources?

Community
● Formed Scientific Advisory Board to help maximize impact in force field communities

○ We want force field developers to be more productive with our tools
● Working with package developers to better integrate OFF tools and force fields
● Aiming to nucleate a supportive, active community of developers and users

http://openforcefield.org/consortium
https://www.nsf.gov/div/index.jsp?div=CHE
http://molssi.org/category/software-fellows/
https://grants.nih.gov/grants/guide/pa-files/PAR-17-045.html
https://chanzuckerberg.com/rfa/essential-open-source-software-for-science/
http://openforcefield.org/science

