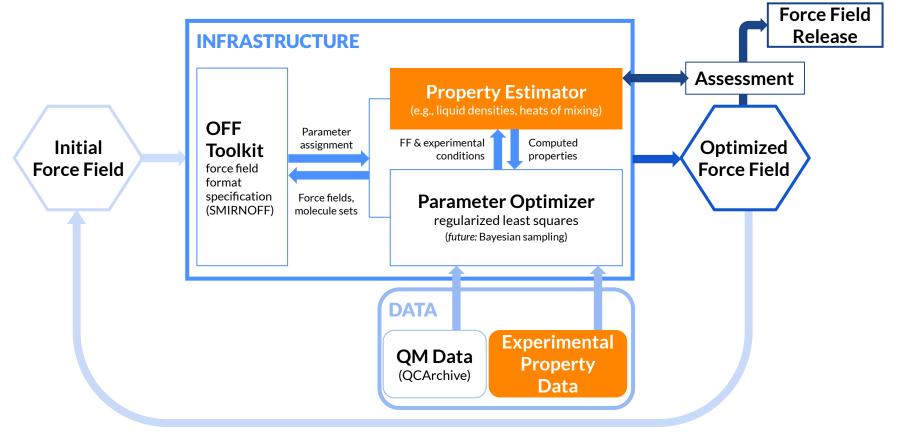
Parameterization Perspective II: The Property Estimator

Simon Boothroyd

THE GOAL: AUTOMATED, RAPID, AND SCALABLE ESTIMATION OF PHYSICAL PROPERTY DATA

PROVIDE TOOLS FOR CURATING AND ANALYSING DATA SETS OF PHYSICAL PROPERTIES

AUTOMATED, FLEXIBLE AND EXTENSIBLE ESTIMATION OF PROPERTIES AND THEIR GRADIENTS W.R.T PARAMETERS



MODULAR ARCHITECTURE WHICH CAN SCALE ACROSS SITES AND INTO THE CLOUD

Icons modified from the Font Awesome collection (https://fontawesome.com/license/free)

FORMS A KEY COMPONENT OF THE OPENFF ASSESSMENT AND OPTIMISATION PIPELINE

BUILT IN UTILITIES FOR EXTRACTING DATA FROM THE THERMOML ARCHIVE

Droporty

Number of Data Points (in Thousands)

Property	Pure	Binary	Ternary
Density	63.6	224.5	97.3
Vapor Pressure	26.3	57.3	7.2
Enthalpy of Vaporization	0.5	0	0
Enthalpy of Mixing	-	30.2	2.1
Dielectric Coefficient	1	3.2	0.2
Surface Tension	2.6	5.4	1
Activity Coefficient	30.3	3.1	4.3
Heat Capacity	14.1	16.7	2.9

EXTRACTING AND CURATING DATA FROM THE THERMOML ARCHIVE

Load in the data sets of interest directly from their DOIs. data_set = ThermoMLDataSet.from_doi(*dois_of_interest)

Filter properties measured for substances containing anything other than C, N, O and H
data_set.filter_by_elements('C', 'N', 'O', 'H')

Filter any properties measured for substances containing more than one component
data_set.filter_by_components(number_of_components=1)

https://github.com/openforcefield/nistdataselection

ESTIMATION REQUESTS MADE FROM A 'CLIENT', AND EXECUTED ON A COMPUTE 'SERVER'

FORCE FIELD + DATA SET

Framework used to extract and curate data directly from source e.g. NIST ThermoML, BindingDB

ESTIMATOR CLIENT

Estimator client automatically maps physical properties to calculation workflows

ESTIMATOR SERVER

Server determines fastest estimation approach and distributes calculation to compute workers

ESTIMATED DATA SET

Estimated data set returned to the client object / user

Icons modified from the Font Awesome collection (https://fontawesome.com/license/free)

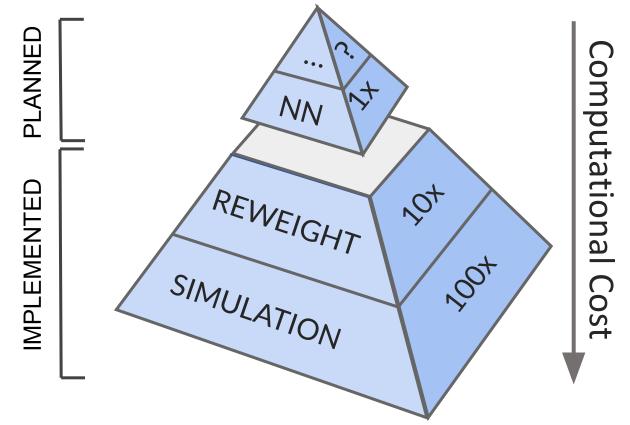
ESTIMATES OF PROPERTY DATA SETS CAN BE REQUESTED IN JUST 6 LINES OF PYTHON

Load in the data set of interest.

data_set = ThermoMLDataSet.from_file('10.1016/j.jct.2016.10.001')
data_set.filter_by_properties(Density, DielectricConstant)

Load in the force field parameters to use.
force_field = smirnoff.ForceField('smirnoff99Frosst-1.1.0.offxml')

Create the client object.


property_estimator = PropertyEstimatorClient()

Submit the request to a running server.

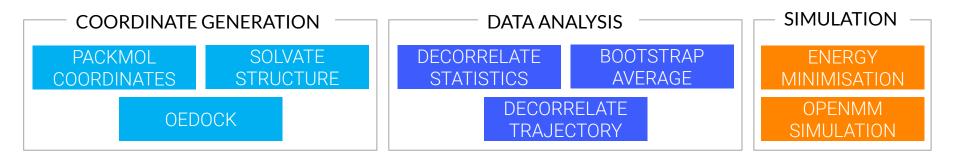
request = property_estimator.request_estimate(data_set, force_field)

Wait for the results.
results = request.results(synchronous=True)

A MULTI FIDELITY APPROACH IS EMPLOYED TO ESTIMATE PROPERTIES AS RAPIDLY AS POSSIBLE

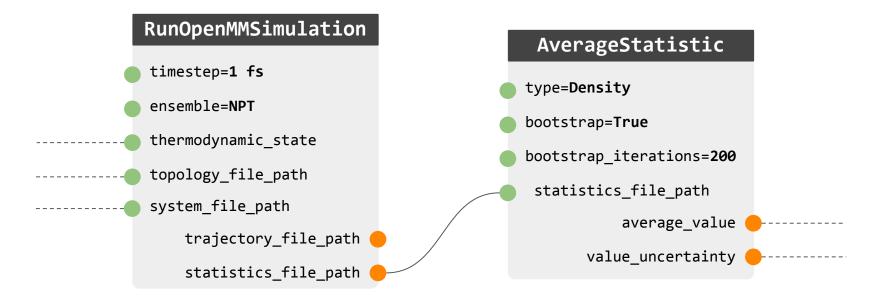
FACILITATES CHEAP AND ACCURATE EVALUATION OF OBJECTIVE FUNCTION

...and wanders out of MBAR trust region

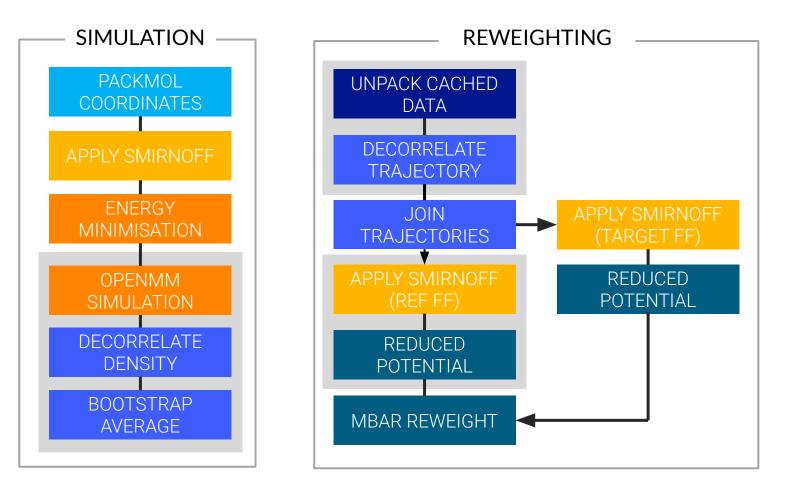

...and more sampling eventually triggers more simulations

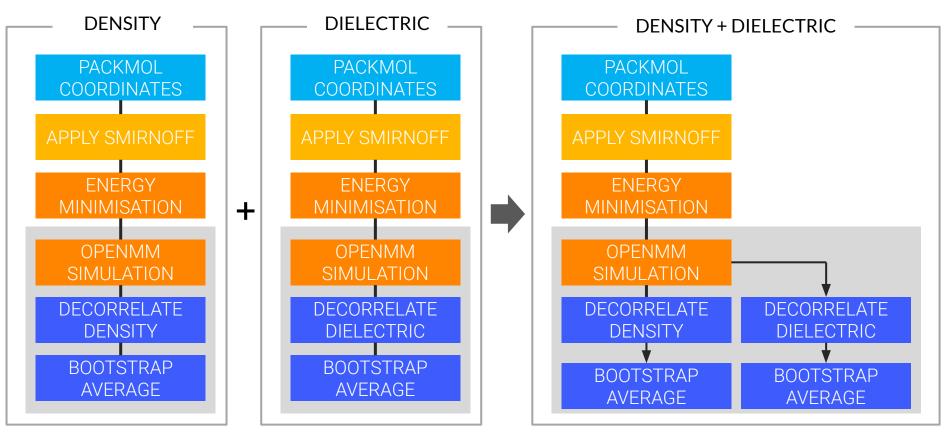
sampler initially starts in region far from equilibrium... new simulation data expands MBAR trust region...

surrogate models will eventually "cache" results in this region, speeding likelihood evaluations


DOI: 10.13140/RG.2.2.19199.25767

ESTIMATION WORKFLOWS CONSTRUCTED FROM MODULAR, EXTENSIBLE PROTOCOLS




PROTOCOLS COMBINED TOGETHER IN WORKFLOWS BY INPUT / OUTPUT 'SOCKETS'

EXAMPLE DENSITY ESTIMATION WORKFLOWS

WORKFLOWS AUTOMATICALLY MERGED WHERE POSSIBLE TO REDUCE SIMULATION EXPENSE

CURRENTLY USING DASK FOR SCALABLE, ADAPTIVE, AND DISTRIBUTED COMPUTING

JOBID	USER	JOB_NAME	STAT	QUEUE	FROM_HOST	EXEC_HOST	SUBMIT_TIME	START_TIME	TIME_LEFT
11960504	boothros	forcebal	RUN	cpuqueue	lilac	ls03	Aug 24 11:21	Aug 24 11:21	95:56 L
11995798	boothros	dask-worker	RUN	gpuqueue	ls03	lt20	Aug 27 05:04	Aug 27 11:12	5:46 L
11995802	boothros	dask-worker	RUN	gpuqueue	ls03	lt19	Aug 27 05:04	Aug 27 11:23	5:58 L
11995799	boothros	dask-worker	RUN	gpuqueue	ls03	lt08	Aug 27 05:04	Aug 27 11:14	5:49 L
11995800	boothros	dask-worker	RUN	gpuqueue	ls03	lt01	Aug 27 05:04	Aug 27 11:23	5:58 L
11995801	boothros	dask-worker	RUN	gpuqueue	ls03	lt01	Aug 27 05:04	Aug 27 11:23	5:58 L
11995797	boothros	dask-worker	RUN	gpuqueue	ls03	lt13	Aug 27 05:04	Aug 27 10:35	5:10 L
11995803	boothros	dask-worker	PEND	gpuqueue	ls03	-	Aug 27 05:05		-
11995804	boothros	dask-worker	PEND	gpuqueue	ls03	-	Aug 27 05:05	-	-
11995805	boothros	dask-worker	PEND	gpuqueue	ls03	-	Aug 27 05:05	-	-
11995806	boothros	dask-worker	PEND	gpuqueue	ls03	s s	Aug 27 05:06		-
11995807	boothros	dask-worker	PEND	gpuqueue	ls03	-	Aug 27 05:06	-	-
11995808	boothros	dask-worker	PEND	gpuqueue	ls03		Aug 27 05:06	5. 6	
11995809	boothros	dask-worker	PEND	gpuqueue	ls03	-	Aug 27 05:06	(—)	-
11995810	boothros	dask-worker	PEND	gpuqueue	ls03		Aug 27 05:06	-	32 -
11995811	boothros	dask-worker	PEND	gpuqueue	ls03	-	Aug 27 05:07		-
11995812	boothros	dask-worker	PEND	gpuqueue	ls03	-	Aug 27 05:07		-
11995813	boothros	dask-worker	PEND	gpuqueue	ls03	-	Aug 27 05:07	_	-
11995814	boothros	dask-worker	PEND	gpuqueue	ls03	2. 	Aug 27 05:07	-	-
11995815	boothros	dask-worker	PEND	gpuqueue	ls03	-	Aug 27 05:07	(—)	-
11995816	boothros	dask-worker	PEND	gpuqueue	ls03	-	Aug 27 05:07	12 -1	-
11995817	boothros	dask-worker	PEND	gpuqueue	ls03	-	Aug 27 05:07	-	
11995818	boothros	dask-worker	PEND	gpuqueue	ls03		Aug 27 05:07	2 -	2 . —2

https://github.com/dask/dask-jobqueue

ALL CODE AVAILABLE TO DOWNLOAD ON GITHUB

THE PROPERTY ESTIMATOR

https://github.com/openforcefield/propertyestimator

NIST DATA CURATION REPO

https://github.com/openforcefield/nistdataselection

THE NEXT STEPS...

EXPAND THE AVAILABLE DATA CURATION AND ANALYSIS TOOLS CONTINUE TO EXPAND, TEST AND AUTOMATE THE BUILT IN PROPERTIES

- Host Guest Binding Affinities (pAPRika + YANK) Automated Setup?
- Absolute and Relative Solvation Free Energies (YANK / PERSES)
- Vapor Pressures

IMPLEMENT SURROGATE MODELLING FOR MARKED PERFORMANCE IMPROVEMENT

EXTEND THE DISTRIBUTED ARCHITECTURE TO MULTIPLE CLUSTERS