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As of this week, our first major round of
parameter optimization is complete

e Current version of optimized force field
- available online is our first release
candidate

e Numerical versioning scheme: XY.Z

X = major release

Y = minor release
Z = bughix

e |f we make it to four major releases, they
could be called “parsley, sage, rosemary
& thyme”
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1.Are you go-ing to Scar- bo-rough Fair? Pars-ley, sage, rose-mar-y and thyme.




OpenFF “parsley” 1.0.0-RC1: Optimized parameters

At a glance: Which parameters were optimized?

e Bond stretching: Equilibrium lengths and force constants 172 parameters
e Angle bending: Equilibrium angles and force constants 74  parameters
e Torsions: Barrier heights (phases not optimized) 254 parameters
e Lennard-Jones o and € parameters 30 parameters

Total: 530 parameters

At a glance: What data did we use?
QM data generation: Yudong Qiu & Daniel Smith
Experimental data curation: Simon Boothroyd

e Valence (bond & angle): QM optimized geometries and calculated vibrational frequencies
1785 optimized structures
895 sets of frequencies
e Torsion: QM torsion drives (Energy vs. torsion profiles of constrained optimized QM geometries)
1086 torsion drives (15° resolution)
e Lennard-Jones: Density and AHVap of molecular liquids
39 liquid density measurements
19 AHVaID measurements



OpenFF “parsley” 1.0.0-RC1: Optimized parameters

At a glance: How were the parameters optimized?

e Startfrom the SMIRNOFF99Frosst parameter set adopted from AMBER99 and parm@Frosst

e Regularized, nonlinear least-squares optimization as implemented in ForceBalance software

e Parameters were optimized in three major stages:
1) Fitting valence and torsion parameters to QM calculations (Yudong Qiu)
2) Keeping (1) params frozen, fit LJ parameters to thermodynamic properties (Simon Boothroyd)
3) Keeping (2) LJ params frozen, refit valence and torsion parameters to QM calculations

Optimized parameters, fitting data and optimization output is currently located at:
https://github.com/lpwgroup/forcebalance-qcarchive/releases

Force field provided in .offxml format, ready for simulations
Repository includes detailed release notes for each parameterization run
Downloadable files includes plots and analysis of fine optimization details


https://github.com/lpwgroup/forcebalance-qcarchive/releases
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Selection of QM level of theory

‘ I ‘ fournal of Chemical Theory and Computation
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Toward Accurate Conformational Energies of Smaller Peptides and
Medium-Sized Macrocycles: MPCONF196 Benchmark Energy Data
Set

Jan Reza&,*® Daniel Bim, Ondrej Gutten,” and Lubomir Ruli$ek*

Gilead Sciences Research Center and The Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo
namésti 2, 166 10 Praha 6, Czech Republic

© Supporting Information

ABSTRACT: A carefully selected set of acyclic and cyclic
model peptides and several other macrocydes, comprising 13
compounds in total, has been used to calibrate the accuracy of
the DFT(-D3) method for conformational energies, employ-
ing BP86, PBEO, PBE, B3LYP, BLYP, TPSS, TPSSh, M06-2X,
B97-D, OLYP, revPBE, M06-L, SCAN, revIPSS, BH-LYP,
and @B97X-D3 functionals. Both high- and low-energy
conformers, 15 or 16 for each compound adding to 196 in
total, denoted as the MPCONF196 data set, were included,
and the reference values were obtained by the composite
protocol, yielding the CCSD(T)/CBS extrapolated energies or
their DLPNO-CCSD(T)/CBS equivalents in the case of larger

CCSD(T)
reference
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Benchmark ab Initio Conformational Energies for the Proteinogenic
Amino Acids through Explicitly Correlated Methods. Assessment of
Density Functional Methods
Manoj K. Kesharwani,* Amir l(zmomé and Jan M. L. Martin*"
Department of Organic Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
*School of Chemistry and Biochemistry, The University of Westen Australia, Perth, WA 6009, Australia

© Supporting Information

ABSTRACT: The relative energies of the YMP] conformer database of ccpVDZF12
the 20 proteinogenic amino acids, with N- and C-termination, have been

re-evaluated using explicitly correlated coupled cluster methods. Lower- o defz-azve
cost ab initio methods such as MP2-F12 and CCSD-F12b actually are e
outperformed by double-hybrid DFT functionals; in particular, the DSD-

PBEP86-NL double hybrid performs well enough to serve as a secondary ” :
standard, Among range-separated hybrids, @BO7X.V performs well, while o o °* |
B3LYP-D3B] does surprisingly well among traditional DFT functionals. # N
Treatment of dispersion is important for the DFT functionals; for the &
YMPJ set, D3BJ generally works as well as the NL nonlocal dispersion <
fanctional. Basis set sensitivity for DFT calcuhtions on these conformers < ¢
is weak enough that def2-TZVP is generally adequate. For conformer
comections to heats of formation, B3LYP-D3BJ and especially DSD-
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e Based on published
benchmark studies of
conformational energies.

e B3LYP-D3(BJ) functional
and Salahub’s DZVP basis
gives good compromise

between accuracy & cost
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Molecules used in QC calculations
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e We started with a set of 468 small
molecules provided by Roche

e 820 rotatable bonds involving 4 heavy
atoms not in rings; after filtering for
intramolecular hydrogen bonds,
ended up with 669

e A“coverage set” of molecules was
created (David Mobley) to ensure full
coverage of the SMIRNOFF
parameters, leading to 417 more
torsion drives.

e A total of 1,785 optimized conformers
were generated from these two sets
of molecules; freq. calculations @
lowest minimum.
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All QM calculations were done inside QCArchive ecosystem

QCArchive executes torsiondrive service which performs
wavefront propagation of constrained optimizations

Constrained optimizations carried out by geomeTRIC
package calling Psi4 for energies and gradients; >250k
optimizations run, zero optimization convergence errors

QCArchive also implements unconstrained geometry
optimization and Hessian calculations, used to inform
valence parameters

Completed calculations were downloaded from QCArchive
and converted into ForceBalance readable formats



Selection of experimental data

Density only; AHvap only; has both
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e Molecules with experimental
thermodynamic property data
identified from ThermoML
database (covers data published
in last 10 years)

e Focus on small compounds with
good parameter coverage and
availability of density and AHvap

e Selected set of molecules covers
15 out of 35 SMIRNOFF
nonbonded types (5H,2C,30, 1
N,1F 1S, 1Cl 1Br)



ForceBalance is a force field optimization tool
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e Python toolkit with a main executable
ForceBalance for carrying out optimizations.

e Designed for flexibility, FB allows the user to
optimize force fields using a wide range of:
(1) Functional forms
(2) Reference data (QM or expt.)

(3) MM simulation software

e Designed for reproducibility, FB enables
systematic improvement of models by adding
data or physical detail to previous runs.

e Freely available for commercial use via 3-clause
BSD license.

e Software distribution comes with 20+ example
calculations plus all data sets (including those
used in published work)



Theory of force field parameter updates

Force field parameters vary across many orders of magnitude and may obey complex

functional relationships and constraints.

In FB, the optimization algorithm sees an array of mathematical parameters that are
well-behaved, i.e. are fully unconstrained and are on order 1.

Physical parameters are related to mathematical parameters by shifting and scaling:

Physical ~ _ Initial _ Rescaling % Mathematical
parameters values matrix parameters
k =k +Tk
phys phys math

Rescaling matrix consists of prior widths on diagonal
representing the size of expected changes over the
optimization (or over parameters of the same type).

Typically, one prior width should be specified for each parameter type

(fewer than 10 independent user-specified values).
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Theory of force field parameter updates

The rescaling matrix T is almost always diagonal; off-diagonal could be used to constrain net
charges on molecules to stay constant.

More generally, evaluated parameters may be defined as any mathematical function of
physical parameters:

Full setof Physical Evaluated and deeper evaluated
parameters :
S parameters, parameters, parameters if any...
comprises:
(0 (1) (0)
l{full o l{phys EB l(eval (kphys) @ l(eval (kphys ’keval @ o

“Physical” & “evaluated” parameters may be used as scratch variables not to be read by the
MM software. Thus, parameters that are actually used by the MM software can be defined
such that they obey almost any desired mathematical relationship - such as summing up to a
constant, restricted to within a range, or obeying a geometric / trigonometric relationship.



Theory of objective function

The objective function is a weighted sum of least-squares contributions called targets plus

regularization: Weighted sum

over targets Regularization

Objective
function
user-specified w, unity usually sufficient

L (Ko ) = D0 WL (K, ), [

ictaroete

Each target is a weighted sum of least-squares contributions for one or more properties:

User-specified weights for properties
(unity usually sufficient)

)= 5wl i)

Each property is a weighted and normalized sum over individual data points:

Weighted, normalized sum
over data points
(uniform or automatic weights)

(ref) :
1 Z Wijp

yijp (kmath> _yijp
pEpoints

Lij (kmath> - d2 Z

)

math

Overall normalization
to remove units

ip
pEpoints



Theory of optimization algorithm

The matrix of second derivatives (Hessian) of a least-squares objective function can be
estimated if the first derivatives of residuals are known (Gauss-Newton approximation):
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This enables highly efficient quasi-Newton optimization algorithms to be used.
(i+1) =i
kmath o l(math T (Happrox [kmathl—i_ )\I)

The A parameter is used to restrict the optimization step to lie within a trust radius (which is
adjusted on-the-fly based on step quality), or it can be used in line-search minimization to
determine the next step.

FB implements BFGS Hessian updating algorithm as an alternative, less efficient approach.



New targets in ForceBalance for QM fitting

New optimized geometry target

e Involves matching MM optimized structure to QM optimized structure

e Geometries are expressed as internal coordinates, then (MM - QM) differences are scaled:
(bond 0.05 A, angle 8° improper torsion 20°)

e Each molecule contributes 1-10 to the total objective function

New torsion profile target

e Involves matching MM energy to QM energy along torsion profile

e MM structures are minimized with 1 kcal/mol/A harmonic restraints (torsion atoms frozen) prior to
comparison with QM

e MM energies are referenced to lowest energy structure in QM

OpenMM implementation of vibrational frequency target

e Uses OpenMM to compute vibrational frequencies and vibrational modes
e Matching of vibrational modes was not performed due to numerous pathological cases
e Useof internal coordinate Hessian is planned for a future update

(Cartesian to IC Hessian conversion codes have been implemented)



PropertyEstimator for physical properties

PropertyEstimator (Simon Boothroyd)

e Software toolkit for simulation of physical properties
e Drop-inreplacement for ForceBalance native property calculation codes
e Anplatform for improved performance and improved methods for rapid & robust estimation

FB & PropertyEstimator interface (Yudong Qiu & Simon Boothroyd)

e FB asks PropertyEstimator for thermodynamic properties and gradients
(computed using thermodynamic fluctuation formulas)
e PE-provided quantities are used to build FB objective function for optimization and associated

gradients and approximate Hessian
e Aspart of this implementation, FB now uses the OpenFF toolkit to set parameters using the API.



Basic ForceBalance workflow

1) Add special comments to force field XML file indicating parameters to be optimized:

<Bond smirks="[#6X3:1]-[#6X3:2]" length="1.45 * angstrom" k="820.0 * angstromxx-2 *
molex*-1 * kilocalorie" id="b4" parameterize="k, length"/>

2) Create parameterization target folders containing theoretical and/or experimental data

S 1s targets/
optimized_geometry_1

optimized_geometry_2 vibrational_frequency_1 properties_1
3) Specify calculation settings using input file
Soptions

jobtype optimize
forcefield fit_bonds_angles.offxml

4) Run and wait for results. For large jobs, distributed computing is supported.



Results: Overall convergence behavior

Objective Function, stage 1 optimization Objective Function, stage 2 optimization Objective Function, stage 3 optimization
(Fitting bonded parameters to QM) (Fitting LJ to properties) (Refitting bonded parameters with new LJ)
3.00E+04 4.00E+01 3.00E+04
2.50E+04 2.50E+04
3.00E+01
2.00E+04 2.00E+04
1.50E+04 2.00E+01 1.50E+04
1.00E+04 1.00E+04
1.00E+01
5.00E+03
0.00E+00
0.00E+00 0.00E+00
0 5 10 15 0 2 4 6 8 10 0 5 10

lteration Number Iteration Number Iteration Number

Overall optimization characteristics:

e Optimization “converges” within 10-15 nonlinear cycles when fitting to QM data
e Fluctuations in thermodynamic properties prevent tight convergence in stage 2 (manually stopped)
e Stage 3 optimization (with optimized LJ) has slightly higher final objective function than stage 2

15
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Results: Fitting of torsion profiles

Torsion Profile Objective Function Contributions, ranked by optimized objective function

100

" k) W
| e “? nqu”MLI UIIM.W” IllJ“‘MlJ

—Initial ==Optimized



Relative Energies (kcal/mol)

Results: Fitting of torsion profiles

Major improvement after optimization:

—— QM Relative Energies S
—— MM Iter 14 o O
MM Iter O

-165 -135 -105 -75 -45

-15 15 45 75

Torsion Angles

105 135 165

Dataset Name
Entry Label

SMIRNOFF Coverage Torsion Set 1
Ccl[c:2]([cH:1]c(s1)Br)[CH:3]2[CH2:4]C2
Canonical SMILES Cclc(cc(s1)Br)C2CC2
Torsion Atom Indices 0, 1, 6,
Torsion SMIRKs [#6X4;r3:1]-;@[#6X4;r3:2]-[#6X3;r5:3]-;@[#6X3;r5:4]
Torsion SMIRKs ID t36
SMIRKs Total Count 5

Relative Energies (kcal/mol)

Not looking as good:
F —— QM Relative Energies
—— MM lter 14
N/ MM lIter O
H

/

T T T T T T T T T T T T
-165 -135 -105 -75 -45 -15 15 45 75 105 135 165

Torsion Angles
Dataset Name OpenFF Groupl Torsions
Entry Label Cl[c:1]1cccc([c:2]1[NH:3][CH3:4])F
Canonical SMILES Cclcccc(cINC)F
Torsion Atom Indices [3, 4, 8, 7]
Torsion SMIRKs [*:1]~[#7X3,#7X2-1:2] - ' @[#6X3:3]~[*:4]
Torsion SMIRKs ID t69
SMIRKs Total Count 231

Most torsion profiles improve agreement with QM significantly
Some others demonstrate equivocal or slightly worse quality of fit
Closer examination of individual torsion profiles will inform new parameter types in future releases




Objective function contribution

100
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Results: Fitting of optimized geometries

Optimized Structure Objective Function Contributions, ranked by optimized objective function
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1.68 A

1.66

QM Value

1.62 1

1.60 1

Results: Fitting of optimized geometries

<Bonds> b51 [n=696]
[#16X2:1]-[#8X2:2]

1.64 1

orig equilibrium value

/7 new equilibrium value

=== reference QM=MM
iter_O
iter_0014

1.62 1.64 1.66 1.68
MM Value

QM Value

1.85

1.80 A

1.751

1.70 A

1.65

1.60 1

1.55 A1

<Bonds> b54 [n=318]
[#16X4,#16X3:1]~[#7:2]

- S

, orig equilibrium value
e new equilibrium value

% —== reference QM=MM

, iter_0

iter_0014

1.55 1.60 1.65 1.70 1.75 1.80 1.85
MM Value

QM Value

135 A1

130 1

125

120 1

115 A

110 1

<Angles> al3 [n=17]
[*;r6:1]1~;@[*;r5:2]~;@[*;r5;x2:3]

orig equilibrium value ,
new equilibrium value 4
reference QM=MM F*4
iter_0 p. 4
iter_0014 7

110 115 120 125 130 135
MM Value

Within one bond or angle parameter type, MM optimized values more tightly distributed than QM
Optimization can shift the mean, but cannot easily change distribution shape (middle)
Energy-minimized angles in constrained systems can be far from equilibrium parameter

Bimodal or very broad distributions suggest need for some new parameter types, or bond order-based
parameter assignment in future releases




Objective function contribution

Results: Fitting of vibrational frequencies

Vibrational Frequency Objective Function Contributions, ranked by optimized objective function
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Results: Fitting of vibrational frequencies

: : : : Vibrational Frequencies: Initial Parameters Vibrational Frequencies: Final Parameters
Max QM vs MM difference of vibration frequencies vibfreq_OpenFF_Optimization_Set_1_000_C6H80 vibfreq_OpenFF_Optimization_Set_1_000_C6H80

vibfreq_OpenFF_Optimization_Set_1_000_C6H8O
vibfreq_OpenFF_Optimization Set_1_001_C6HON30O 3500 3500
vibfreq_OpenFF_Optimization_Set_1_002_C12H12N2
vibfreq_OpenFF_Optimization_Set 1 003 CBH1IN30
vibfreq_OpenFF_Optimization_Set_1_004_C12H16
vibfreq_OpenFF_Optimization_Set_1_005_CBH1IN
vibfreq_OpenFF_Optimization Set_1_006_CBH1002S
vibfreq_OpenFF_Optimization_Set 1_007_C7HINO
vibfreq_OpenFF_Optimization_Set_1_008_C13H180

vibfreq_OpenFF_Optimization Set_1_009_C5H8N20

vibfreq_OpenFF_Optimization Set 1_010_C7H10N20

vibfreq_OpenFF Optimization Set 1_011 C14FH110

vibfreq_OpenFF_Optimization_Set_1_012_COHON3

vibfreq_OpenFF_Optimization_Set 1_013_C6H8N202

3000 .2} 3000

2500 2500

vibfreq_OpenFF Optimization Set 1 014 C12H13N

vibfreq_ OpenFF Optimization Set 1 015 C5H10

vibfreq_OpenFF Optimization_Set 1_016_C12H12N2

vibfreg_ OpenFF Optimization Set 1 017 COHON3O

vibfreq_OpenFF_Optimization_Set_1_018_C14H13NO

vibfreq_OpenFF Optimization_Set_1_019_C10H15N20

vibfreq_OpenFF_Optimization_Set_1_020_CBHINO2

vibfreq_OpenFF_Optimization_Set_1_021_ C11H1SNO

n
o
(=3
o
n
o
o
o

MM Frequency
o
8
x

1500 .';

MM Frequency

vibfreq_OpenFF_Optimization Set 1 022 C11H10N2

vibfreq_OpenFF Optimization Set 1_023 C12H19N2
vibfreq_OpenFF_Optimization_Set_1_024_C8H8N202

vibfreq_OpenFF_Optimization_Set_1_025_C8H10N202

vibfreq_OpenFF Optimization_Set 1_026_C9H1202S

vibfreq_OpenFF Optimization_Set_1_027_C15H12N20

iter 0 1000 *® 1000
. iter 14 * £

; . ' 500
200 300 400 < 500 x

() - o
0 500 1000 1500 2000 2500 3000 3500 o \®
QM Frequency 0 500 1000 1500 2000 2500 3000 3500
QM Frequency

o
=
=y
=

m Overlap > 0.5 Overlap 0.1 -0.5 % Overlap <0.1
m Overlap > 0.5 Overlap 0.1 -0.5 % Overlap <0.1

e Most of the contributions come from a few modes with large (>500 cm™2) frequency differences
e Parameter fitting significantly improves correlation without hurting mode alignment
e Future fitting using internal coordinate Hessian would be a more direct approach



Results: Fitting of thermodynamic properties

MM Simulation (kg/mA3)

Density comparisons Heat of vaporization comparisons
2600 100
&
¢ o
0
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Br- > Br _ 80 2
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600 20
600 1000 1400 1800 2200 2600 20 40 60 80
Experiment (kg/m”3) Experiment (kJ/mol)
o Stage 1 parameters ¢ Stage 2 optimized © Stage 1 parameters ¢ Stage 2 optimized

Notable improvements for both observables, corrected underestimated density for halogens
Outlier for AHvap is a carboxylic acid with possible sampling issues
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Results: Changes in parameters

Bonds/Bond/length
111: b55
121: b6l
143: b73
75: b37
91: ba5
119: b60
117: b59
151: b77
Prior Width
0.0 0.5 1.0 1.5 2.0 2.5
Bonds/Bond/k
112: b56
6: b4
10: b6
8: b5
24: b13
14: b8
28: bl5
Prior Width
0 200 400 600 800 1000 1200
Angles/Angle/angle
176: a3
192: all
229: a3l
190: al0
244: 338
238: a35
Prior Width
0 20 40 60 80 100 120

Angles/Angle/k

197: 213
179: a4
219: 225
203: a21
213: 222
217:a24
183: a6
239: a35
Prior Width

100 150

Plots highlight only the parameters with
the largest changes out of several
hundred that were optimized.

Bond lengths have small changes as
expected.

Force constants change by up to
30-40%.

Equilibrium angle parameters can be far
away from energy-minimized
geometries (a3 = cyclopropane).

Some angle force constants are very
small (optimized to ~15 kcal/mol/A2).
Possible that we're seeing slight
overfitting due to large prior width for
this parameter type.



Results: Changes in parameters

vdW/Atom/rmin_half

29: [#35:1]

15: [#8:1]

13: [#6X4:1]

3: [#LLH#EXAH#7,#8,#9,#16,#17,#35]
1: [#1:1]-[#6X4]

7: [#1:11[#6X3]~[#7,#8,#9,#16,#17,#35]
17: [#8X2H0+0:1]

21: [#7:1]

25: [#9:1]

23: [#16:1]

27: [#17:1]

11: [#6:1]

19: [#8X2H1+0:1]

5: [#1:1]-[#6X3]

9: [#1:1]-[#8]

Prior Width

0.00 0.25 0.50 0.75 1.00 1.25

vdW/Atom/epsilon

1.50

1.75

2.00

28: [#35:1]

4: [#1:11-[#6X3]

14: [#8:1]

16: [#8X2H0+0:1]

18: [#8X2H1+0:1]

2: [#1:1]-{#6XA)-[#7,#8,#9,#16,#17,#35]
12: [#6X4:1]

10: [#6:1]

22: [#16:1]

24: [#9:1]

26: [#17:1]

0: [#1:1]-[#6X4]

61 [#1:1]-[#6X3]~[#7,#8,#0,#16,#17,#35]
20: [#7:1]

8: [#1:1)-[#8]

Prior Width

0.00 0.05 0.10 0.15 0.20

e Torsion parameters will often change by relatively large amounts or change sign. Largest changes are ~3

kcal/mol in 1-fold and 2-fold terms.

0.25

0.30

0.35

ProperTorsions/Proper/k1l

449: £127
421: £105
498: £155 =
333: t42
366: t65

374: 172 o
Prior Width

284: t22
494: t151
316: t34

364: 164
497: t154
442: t123
356: t61
272: 116
439: 1122
279: 19
417: t101 4
445: t124 4

Prior Width -

IS

365: t64

468: t140
296: t26
280: t19
322: 36

446: t124

443: 1123

Prior Width

-1.0

-0.5 0.0 0.5

e vdW parameters change by less than 5% to match thermodynamic properties.



Outlook

Force field is ready for thorough benchmarking and testing

e Welook forward to hearing about your results
e We will be running extensive benchmark calculations within our collaboration

Some near-term development goals (next minor release?)

e Replacement of vibrational frequencies by internal coordinate Hessians
e Including torsion drives of flexible rings
e Co-optimization of LJ and bonded parameters using all targets

Longer term goals (not an inclusive list)

e Identify valence degrees of freedom that need to be explicitly scanned
e Incorporate improved charge models (e.g. Schauperl| & Gilson’s RESP2)

or optimize charge model parameters to reproduce QM and experimental observables
e Including thermodynamic properties of mixtures in training data set



Thank you!

For help with this release & ongoing collaborations:
Christopher Bayly (all-around wizard)
Jeffrey Wagner, John Chodera (toolkit development & support)
David Mobley, Byron Tjanaka (parameter coverage)
Michael Shirts, Mike Gilson, Owen Madin (experimental data selection)
Xavier Lucas & Roche (providing a great molecule set)
Chaya Stern (conformer generation)
Hyesu Jang (RESP methods & intramolecular H-bonds)
Victoria Lim (QM method benchmarking)
Levi Naden, Andrea Rizzi (ForceBalance Python 3 compatibility)
Trevor Gokey (vibrational analysis)
Jessica Maat (improper torsions)
Michael Schauperl (electrostatic models)
David Slochower (host-guest binding)
Karmen Condic-Jurkic (planning next major release)




