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Abstract

The transformation of coordinates and time from an inertial frame to another inertial frame
is obtained without using rigid measuring-rods and clocks as primitive entities. The obtained
transformation is applied to some cases.

1 Introduction

In section 3 of his work on electrodynamics of moving bodies [1] Einstein derives the Lorentz
transformation using rigid measuring-rods and clocks both in the “stationary” system as in the
system in uniform motion of translation relatively to the former. These two types of physical
things, that is, measuring rods and clocks were treated as primitive entities.

In this work we avoid the use of rods and clocks as in [1]. Instead we use hypothetical objects
called AM which have very small volume, internal clock and communication capacity with others
AM’s.

Using the AM’s, a system of coordinates, S, is constructed as well another system, S′, moving
with constant speed with respect to S. The transformation of coordinates and time from S to S′

is obtained. The resultant transformation differs from Lorentz’ transformation.

In section 2 the transformation found in this work is given. The sections 2 to 8 the proposed
transformation is applied to position, speed, Doppler effect, aberration of light, moment, mass,
force, energy, electromagnetic field, wave equation and Sagnac’s effect. The Schrödinger equation
is invariant when the obtained transformation is used. In section 10 some comparisons with the
special relativity and a consideration on space properties are made.

2 The Transformations

2.1 Lorentz Transformation

Let S′ be a reference system moving with respect to the reference system S with constant
speed v in the direction x+. The axis-y′ and axis-z′ are parallel to axis-y and axis-z, respectively.
Let us suppose that the zero of t′ coincides with the zero of t and the origin of x′, y′, z′ coincides
with x, y, z when t = 0. The Lorentz transformation is

x′ =
x− vt

(1− v2

c2 )1/2
(1)

y′ = y (2)

z′ = z (3)

and

t′ =
t− v

c2x

(1− v2

c2 )1/2
(4)

2.2 Proposed Transformation

Let us assume that the universe is flat, that is, the curvature k is zero and the light velocity
c is constant.
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Let there be a set of AM ’s (Automobile Modules). Each AM has a light clock, very small
volume and can send light communication signals to any other AM . Two AM ’s can determine if
one is moving with respect to the other or at rest using Doppler Effect. The movement of a AM
does not affect the movement or rest of a second AM localized in the vicinity of the first. When
an AM sends a signal in a given direction it also emits light in the opposite direction so that the
action-reaction effect on the AM is zero. The same action-reaction effect zero due to the emission
of light by an AM module also occurs when the module absorbs or reflects a light signal.

2.2.1 The Inertial System S

Let there be two AM ’s identified by O and X. A light signal a1 with frequency νo was sent
from O to X and reflected by X to O with the same frequency ν0. The position of X in relation to
O is being monitored with this signal and ν0 remains constant. This means that X is not moving
with respect to O. Let a2 be another light signal, this signal is sent by O to X at the instant tx
measured with the clock of O which is immediately reflected back by X and returns to O at the
instant tx + ∆tx measured with the clock of O. The distance between O and X is

xu = c∆tx/2 > 0 (5)

Let us consider an AM identified by Y . Two light monitoring signals a3 and a4 with
frequencies ν1 and ν2 were sent from O and X to Y , respectively, and they were reflected back to
O and X with the same frequencies that were sent. The distances of Y in relation to O and X
are being monitored with these signals and the frequencies ν1 and ν2 remain constant. Let a5 be
a light signal, this signal is sent by O to Y at the instant ty measured with the clock of O, it is
reflected back by Y , and returns to O at the instant ty + ∆ty measured with the clock of O. The
distance between O and Y is

yu = c∆ty/2 > 0 (6)

Let a6 be a light signal with a frequency ν3, this signal is sent by X to Y at the instant tx measured
with the clock of X, it is reflected back by Y , and returns to X at the instant tx + ∆txy measured
with the clock of X. The distance between X and Y is

dXY = c∆txy/2 > 0 (7)

The distance dXY is communicated by X to an observer in O which verifies that

dXY < xu + yu (8)

that is, Y is not in the straight line that passes by O and X.

Let us consider an AM identified by Z. Three light monitoring signals a7, a8, and a9 with
frequencies ν4, ν5 and ν6 were sent from O, X, and Y to Z and were reflected back to O, X, and
Y with the same frequencies, respectively. These signals show that Z is not moving with respect
to O, X, and Y . Let a10 be a light signal sent by O to Z at the instant tz measured with the clock
of O which is reflected back by Z and returns to O at the instant tz + ∆tz. The distance between
O and Z is

zu = c∆tz/2 > 0 (9)

Using the information on the light signals among X, Y , and Z provided to O the observer in O
verifies that the straight line determined by the positions of O and Z is not in the plane that
contains the positions of O, X, and Y .

Let the positions of O, X, Y , and Z be such that

yu =
1√
2

(
c
(∆tXY

2

))
(10)

zu =
1√
2

(
c
∆tXZ

2

)
=

1√
2

(
c
∆tY Z

2

)
(11)
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and
xu = yu = zu (12)

where (i) ∆tXY is the time interval for a signal to be sent from X to Y and reflected back by Y to
X, (ii) ∆tXZ is the time interval for a signal to be sent from X to Z and reflected back by Z to
X,(iii) ∆tY Z is the time interval for a signal to be sent from Y to Z and reflected back by Z to Y
and (iv) xu is the length unit. The position of O is the origin of the inertial system S. The axis-x
is the straight line determined by the positions of O and X. Analogously the axis-y and axis-z are
the straight lines determined by the positions of O and Y , and O and Z.

Let P an AM be at rest with respect to O, X, Y and Z. The distances from P to O, X,
Y and Z are measured using the same procedure used to determine the distance from O to X
above. Then the distances from the position P to axis-x, axis-y and axis-z can be calculated. The
position of P can be put in the form (axxu, ayyu, azzu), where ax, ay, and az are real numbers.

The synchronization of the clocks of O and P , where P is at rest in S, is obtained considering
that the light speed is constant and needs the time interval equal to the distance from O to P
divided by c to move from O to P . Let g be a light signal sent by P to O which is reflected back
to P and ∆tg the time interval that g spent to go to O and return to P . When g arrives at P
the time of the clock of P is t2. As soon as the signal g returns from P to O the module O sends
a signal h to P informing (t1 + ∆tg/2), where t1, the time measured in O when g leaves O. The
synchronization is obtained setting the clock of P such that the value t2 is changed to the value
when h is received.

t1 + ∆tg/2 (13)

u 

u 
√2  u 

axis-x 

axis-y 

u 

√2  u 

√2  u 

axis-z 
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Figure 1: System S

Consider the point px on the axis-x, the point py on the axis-y and the point pz on the axis-z.
The distances from these three points to the origin of S are equal. Be an observer in pz looking at
the plane-xy. If, for this observer, the rotation of px in the plane-xy of π/2 radians in the left-hand
direction results in the coincidence of the px with py, then px is on the positive part of the axis-x,
py and is on the positive part of the axis-y, and pz is in the part of the axis-z.
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Figure 2: Point p in the system S

2.2.2 The Inertial System S′

We can assume that the origins of S and S′ are coincident: when (x = 0, y = 0, z = 0, t = 0)
we have (x′ = 0, y′ = 0, z′ = 0, t′ = 0). Let there be three planes: (i) the plane mirror1 such that
z = 0; (ii) the plane mirror2 such that z = z0 with z0 > 0; and (iii) the plane trajectory such that
y = 0. Let us consider a photon emitted by a source at the origin of the system S. The trajectory
of the photon is in trajectory and the angle that the photon form with the axis-x when it leaves
the source is θ, where 0 < θ < π/2.

Now let (i) be a AM identified by A which is moving in system S along axis-x in the positive
direction with constant speed v, (ii) an AM identified by B which is moving on plane trajectory
at speed v along a straight line parallel to axis-x in the positive direction with z = z0, (iii) a AM
identified by C at rest in position (0, 0, z0), and (iv) two AM ’s identified by D and E both at rest
in positions (x0/2, 0, z0) and (x0, 0, 0) with x0 > 0, respectively. When A reaches the origin of S
the position of B is (0, 0, z0) and the clocks of O, A, B, and C are synchronized at t = t′ = 0.

At t = t0 the module A emits a photon forming a positive angle θ with the axis-x less than
π/2. Consider the angle θ such that, when the photon is reflected back by mirror2 it arrives at
the mirror1 and the module A in the position of the axis-x equal to

v∆t (14)

In this case the angle is given by

θ = arctan
( z0
v(∆t/2)

)
(15)

∆t is the time interval between two successive reflections of the photon in the mirror1.

The time interval spent for light emitted from O at t = 0 in direction given by the angle π/2
to returns to O after have been reflect back by mirror2 and the module C is

∆t1 =
2z0
c

(16)
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The time interval observed in S for the light emitted from A at the time t = 0 and θ given
by (15) to arrives at the mirror2 and B and be reflected back to A is ∆t2 given in

2
√

(v∆t2/2)2 + z20)

c
= ∆t2 (17)

Substituting (16) into (17) we obtain

∆t2 = γ∆t1 (18)

where

γ =
1√

1− (v/c)2
(19)

For the subsystem formed by A, B and the photon, the light is emitted from A directly to
B and reflected back directly to A. This subsystem is a light clock, let us call it clock-AB. Let
clock-OC be the subsystem formed by O, C, and a photon emitted by O at t = 0 at the angle π/2.
If we consider (i) the reflection of the photon by the mirror2 in the position of B as the “tick” of
the clock-AB and the reflection of the photon by the mirror1 in the position of A as its “tock” (ii)
the reflection of the photon by the mirror2 in the position of C as the “tick” of the clock-OC and
the reflection of the photon by the mirror1 in the position of O as its “tock”, then the “tick-tock”
in the clock-AB flows more slowly than the “tick-tock” of the clock-OC by the factor γ.

A →  
B → 

0 

axis-x 

axis-z 

O 

A 

B 

C D 

E 

z 

Figure 3: Clock −AB

Let x0 be such that (i) when the first “tick” occurs in the clock-AB the module B coincides
with D and at this instant B communicates to D the “tick” occurrence and (ii) when the first
“tock” occurs in the clock-AB the module A coincides with E and at this instant A communicates
to E the “tock” occurrence. Therefore for a number n of “tick-tock”

t′ =
n∆t1
n∆t2

t =
t

γ
(20)
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where n >>> 1, t is the time of S and t′ is the time of A.

Let us rename as O′ and Y ′ the modules A and B, respectively. Let in O′ be the origin of
S′ and the AM modules X ′ and Z ′ of S′ be moved in such way that the distances from X ′ and
Z ′ to O′ stay constant with the time t′ and

(a) X ′ and O′ determine the axis-x′, the axis-x and axis-x′ are in the same straight line with
the same positive direction

(b) Y ′ and O′ determine the axis-y′ and the axis-y′ is in the plane-xy

(c) Z ′ and O′ determine the axis-z′ and the axis-z′ is in the plane-xz

(d) when t′ = t = 0 the axis-y′ coincides with axis-y and they have the same positive direction

(e) when t′ = t = 0 the axis-z′ coincides with axis-z and they have the same positive direction.

 O  

F’ 

axis-x’ 

axis-y’ 

O’ 

 B  

 A  

B’ 

X’=X/ 

Y’=Y/ 

Z’=Z/ 

axis-z’ 

Figure 4: System S′

The same procedure used to synchronize the clocks in the system S is used in S′. We have that
the time is the same in all positions of the system S′. The time of O′ is the time of S′.

Similarly to S the distance between two AM ’s in S′ is the time (t′ in this case) that the light
takes to go from one AM to the other multiplied by the speed of light.

The time interval that the light spent to go from (xi, y, z) to (x, y, z) in S is

t− ti =
x− xi
c

(21)

From (20) this time interval when measured in S′ becomes

t′ − t′i =
x− xi
γc

(22)
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and the distance in S′ corresponding to t′ − t′i is

x′ − x′i = c(t′ − t′i) =
x− xi
γ

(23)

for xi = 0 we have

x′ =
x

γ
(24)

The time interval that the light spent to go from (x, yj , z) to (x, y, z) in S is

t− tj =
y − yj
c

(25)

This time interval when measured in S′ becomes

t′ − t′j =
y − yj
γc

(26)

and the distance in S′ corresponding to t′ − t′j is

y′ − y′j = c(t′ − t′j) =
y − yj
γ

(27)

for yj = 0 we have

y′ =
y

γ
(28)

In the same way the distance in S′ corresponding to the distance in S from (x, y, zk) to (x, y, z) is

z′ − z′k = c(t′ − t′k) =
z − zk
γ

(29)

for zk = 0 we have

z′ =
z

γ
(30)

in the inertial system S′.

3 Speed and Movement in S ′

Let p be a particle moving in S with uniform speed v. The components v′x, v′y, v′z of the
speed of the particle relatively to the referential S′ are

v′x =
dx′

dt′
=

dx
γ

dt
γ

=
dx

dt
= vx (31)

v′y =
dy′

dt′
=

dy
γ

dt
γ

=
dy

dt
= vy (32)

v′z =
dz′

dt′
=

dz
γ

dt
γ

=
dz

dt
= vz (33)

where vx, vy, vz are the components of the speed of the particle relatively to the referential S.

Let the position of a particle along the time in S be given by

px(t) = x0 + vxt (34)

py(t) = y0 + vyt (35)

pz(t) = z0 + vzt (36)
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where vx, vy, vz and x0, y0, z0 are constants. The corresponding coordinates of the particle along
the time in S′ are

px′(t′) = x′0 + v′xt
′ (37)

py′(t
′) = y′0 + v′y′t

′ (38)

pz′(t
′) = z′0 + v′z′t

′ (39)

Considering (20), (24), (28), (30), (37), (38) and (39) we obtain

px′(t′) =
x0 + vxt

γ
(40)

py′(t
′) =

y0 + vyt

γ
(41)

pz′(t
′) =

z0 + vzt

γ
(42)

4 Doppler Effect

Let sr be a source of light at rest in the system S and emitting with the frequency νr. Let us
consider another source of light sv moving with uniform speed v in S. The monochromatic light
emitted by sv originates from the same process that produces the light of sr. An observer or is
at rest in the origin of S and at the instant ta the observed position of sv is (svx, svy, svz). The
source sv is at rest with respect to the system S′.

In S′ the light is emitted with the frequency νv, using (20) this frequency is transformed to

ν′v =
1

∆tv
=

γ

∆tr
= γνr (43)

where ∆tv and ∆tr are the periods measured in S′ an S, respectively.

Let us consider, without loss of generality, that svy = svz = 0. At the instant ta the
component of v in the straight line which passes by by sv and or is

vos = v cos θ (44)

where
cos θ =

vx√
v2x + v2y + v2z

=
vx
v

(45)

The frequency νo observed by or is such that

c− vos
νo

=
c

νv
(46)

or
νo = νv

(
1− vos

c

)
(47)

Substituting (43) and (44) into (47) we obtain

νo = γνr

(
1− v cos θ

c

)
(48)

The longitudinal Doppler occurs when θ = 0, that is,

νo = γνr

(
1− v

c

)
(49)

When θ = π/2 we have the transversal Doppler

νo = γνr (50)
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5 Aberration of Light

Let sr be a source of light at rest in S which at instant ti = 0 begins to emit a pulse of light.
The spatial position of sr is (0, py, 0) with py > 0.

The pulse of light spends

tf − ti =
py
c

(51)

to reach the origin of S. In the system S′ the time interval for the pulse emitted by the source to
reach the axis-x′ is

t′f − t′i =
tf − ti
γ

=
py
γc

(52)

In S′ the position corresponding to the origin of S for t′i = 0 moves with speed v in the direction
x′−. The pulse reaches the axis-x′ at position

p′x = −(t′f − t′i)v (53)

An observer o′r located in (p′x, 0, 0) of S′ will see the arriving light forming an angle α with axis-x′.
Since for θ = π

2 − α the adjacent side is√(
(t′f − t′i)c

)2
−
(

(t′f − t′i)v
)2

(54)

we can write

tan θ = −
(t′f − t′i)v√(

(t′f − t′i)c
)2
−
(

(t′f − t′i)v
)2 (55)

or
tan θ = −γ v

c
(56)

6 Moment, Mass, Force, and Energy

6.1 Moment

Now let us consider the moment of a particle in the form

p =
h

λ
(57)

where h is the Planck constant and λ is length of the wave associated with the particle. Let us
assume that h is invariant under the transformation from S to S′. Therefore we have

p′ =
h

λ′
=
h
λ
γ

= γp (58)

6.2 Mass

The moments p and p′ are
p = m(v) v (59)

where m(v) denotes that m is a function of v and

p′ = m′(v′) v′ (60)

Substituting (59) and (60) into (58) we obtain

m′(v′) v′ = γm(v) v (61)

Seeing that v′ = v we have
m′(v) = γm(v) (62)
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From (62) we note that the rest mass m in S increases to the rest mass γm in S′.

The dimension of the Planck constant is ML2T−1. Seeing that the part corresponding
to L2T−1 is divided by γ when transformed from S to S′ and that h is invariant under the
transformation, we conclude that the part corresponding to M is multiplied by γ when transformed
from S to S′, that is,

m′ = γm (63)

6.3 Force

In system S′ let v′ be equal to v′x. The component x of the force is given by

F ′x =
d

dt′
p′x (64)

and the component x′ of the moment is

p′x = γmvx (65)

Since v′x changes with the time we have

dγ

dt
=

d

dt

(
1√

1− v2x
c2

)
=
γ3vx
c2

dvx
dt

(66)

considering that

dt′ =
dt

γ
(67)

we find

F ′x =
d

dt′

(
γmvx

)
= m

(
vx
dγ

dt′
+ γ

dvx
dt′

)
(68)

F ′x = m
dvx
dt′

(
γ2v2x
c2

+ γ

)
(69)

or

F ′x = Fx

(
γ3v2x
c2

+ γ2

)
(70)

6.4 Energy

The work realized by a force F to accelerate a particle from rest to speed v is the kinetic
energy Ec of the particle. For simplicity let us consider F in direction x+,

Ec =

∫ v

0

Fds =

∫ v

0

d(m(v)v)

dt
ds =

∫ v

0

d(γmv)

dt
ds =

∫ v

0

vd(γmv) (71)

where

d(γmv) =

(
v2

c2
(

1− v2

c2

) 3
2

+ γ

)
dv (72)

so

Ec =

∫ v

0

v

(
v2

c2
(

1− v2

c2

) 3
2

+ γ

)
dv = mc2(γ − 1) (73)

mc2 is the rest energy and the total energy of the free particle is

γmc2 = Ec +mc2 (74)
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6.5 Example with a star binary system

Let be a binary system composed of two stars. One of the stars has mass m, the other has
mass M and m <<< M . The Figure 5 shows the star system in S.

r 

axis-x 

axis-y 

M 

m 

Figure 5: A star binary system

The force exerted on the smaller star is

F = G
Mm

r2
(75)

where G is the gravitational constant and r is the distance between the centers of the two stars.
The orbital period is

T =

√
2πr3

GM
(76)

As usual the system S′ noves with speed u, where u = ux, and using the equation (70) the force is

F ′x = γ2Fx (77)

and the radius
r′ =

r

γ
(78)

The force variation with the inverse of the square of the distance holds in S′. The unity of G is
N.m2kg−2 or [L3T−2kg−1] and

G′ =
G

γ2
(79)

As expected the orbital period of the smaller star is

T ′ =

√√√√ 2π
(
r
γ

)3(
G
γ2

)(
γM

) =
T

γ
(80)

7 Electromagnetic Field

The differential forms of the Maxwell’s microscopic equations are

∇ ·E =
ρ

ε0
(81)

∇× E =
∂B

∂t
(82)
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∇ ·B = 0 (83)

∇×B = ε0µ0
∂E

∂t
+ µ0J (84)

Let us notice that ε0 has dimension [L−3.M−1.T 2.C2] and µ0 has the dimension [L.M.C2]. It is
easy to see that ε0 and µ0 are invariant under the proposed transformation.

The integral form of (81) is ∮
s

E · dA =

∫
V

ρ

ε0
dV (85)

Let us consider in S an electrical charge Q confined inside the spherical surface s given by

x2 + y2 + z2 = r2 with r > 0 (86)

In this case ∫
V

ρ

ε0
dV =

Q

ε0
(87)

where V = 4
3πr

3. For the system S′ the spherical surface s is transformed to

(x′ − vt′)2 + y′2 + z′2 = r′2 with r′ > 0 (88)

The integral ∮
s′
E′ · dA′ (89)

over the spherical surface s′ given by (88) is∮
s′
E′ · dA′ =

1

4πε0

Q′

r′2

∮
s′
dA′ =

Q′

ε0
(90)

Since ∫
v′

ρ′

ε0
dV ′ =

∫
v

(γ3ρ)

ε0

(dV
γ3

)
=
Q

ε0
(91)

we conclude that ∮
s′
E′ · dA′ =

∮
s

E · dA =
Q

ε0
(92)

The charge is invariant under the proposed transformation.

The action of the electromagnetic field on a charged particle q is given by

F = q(E + v ×B) (93)

From section 6.3 we have

F ′ =
(γ3v2
c2

+ γ2
)
F (94)

therefore

F ′ = q

((γ3v2
c2

+ γ2
)
E + v ×

(γ3v2
c2

+ γ2
)
B

)
(95)

Provided that
F ′ = q(E′ + v′ ×B′) = q(E′ + v ×B′) (96)

we conclude

E′ =
(γ3v2
c2

+ γ2
)
E (97)

and

B′ =
(γ3v2
c2

+ γ2
)
B (98)

As example, let be the case in the system S shown in Figure 6. The electrical current is

12



I = 2(η+ − η−)v (99)

and
v = v+ = −v− (100)

where

η+ - positive charge per unit length

η− - negative charge per unit length [a negative value]

v+ - drift speed of the positive electrical charges on the conductor

v− - drift speed of the negative electrical charges on the conductor

u 

r 

F 

v+ 

v- 

q 

Figure 6: A charge q moving parallel to a conductor with current I

The electric and magnetic fields and the force are

E = (η+ + η−)
r

2ε0r
= 0 (101)

B = µ0I
ϕ

2πr
(102)

and
F = −qu×B (103)

where

q - positive electric charge

u - speed of the charge q

r - distance from the charge q to the central axis of the conductor
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For system S′ moving in relation to S with speed ux = u, uy = 0 and uz = 0 we have

γ =
1√

1− (uc )2
(104)

v′+ = v+ (105)

v′− = v− (106)

η′+ = γη+ (107)

η′− = γη− (108)

and
u′ = u (109)

therefore

E′ = γ(η+ + η−)
(r/γ)

2ε0(r/γ)
= 0 (110)

B′ = µ0(γI)
ϕ

2π(r/γ)
= γ2B (111)

and
F ′ = −qu′ ×B′ = −γ2qu×B = γ2F (112)

8 Wave Equation

Let us represent the plane wave by

Ψ(x, t;k) = A exp (ik · x− iωt) (113)

where A is the amplitude of the wave, k the wave vector, and ω the angular speed. For a particle
associated to the wave (113) and moving in the system S with speed v we have

v =
dω

dk
(114)

For simplicity, let the particle be at rest in the origin of the system S′. De Broglie proposes that
the relation E = ~ω holds for material particles, that is,

γmc2 = ~ω (115)

Let us assume
ω = vk (116)

From (115) and (116) we can obtain

k
v2~
c2

= p (117)

The energy and the angular speed can be written as

E = γmc2 = (γmv)
c2

v
= p

c2

v
(118)

and

ω =
E

~
= p

c2

~v
(119)

Substituting the k of the vetorial form of (117) and ω from (119) into (113) we have

Ψ(x, t;p) = A exp
( ic2
~v2

p · x− ipc2

~v
t
)

(120)

14



Using

ϕ(x;p) = A exp
( ic2
~v2

p · x
)

(121)

and

φ(t) = exp
(
− ipc2

~v
t
)

(122)

the equation (120) becomes
Ψ(x, t;p) = ϕ(x;p)φ(t) (123)

The Laplacian of ϕ(x;p) and the second derivative of φ(t) are

∇2ϕ(x;p) = −A
( pc2
~v2

)2
exp

( i
~
p · x

)
= −

( pc2
~v2

)2
ϕ(x;p) (124)

and
d2φ(t)

dt2
= −

(pc2
~v

)2
exp

(
− ipc2

~v
t
)

= −
(pc2
~v

)2
φ(t) (125)

Since
d2Ψ(x, t;p)

dx2
= [∇2ϕ(x;p)]φ(t) (126)

and
d2Ψ(x, t;p)

dt2
= ϕ(x;p)

d2φ(t)

dt2
(127)

we have
d2Ψ(x, t;p)

dx2
= −

( pc2
~v2

)2
Ψ(x, t;p) (128)

and
d2Ψ(x, t;p)

dt2
= −

(pc2
~v

)2
Ψ(x, t;p) (129)

From (128) and (129) we find the wave equation

d2Ψ(x, t;p)

dx2
=

1

v2
d2Ψ(x, t;p)

dt2
(130)

In the system S′ the equation (130) is

d2Ψ′(x′, t′;p′)

dx′2
=

1

v′2
d2Ψ′(x′, t′;p′)

dt′2
(131)

with the solution

Ψ′(x′, t′;p′) = A exp
( ic2
~v′2

p′ · x′ − ip′c2

~v′
t′
)

(132)

Substituting

x′ =
x

γ
(133)

t′ =
t

γ
(134)

v′ = v (135)

and

p′ = k′v
′2~
c2

= k′ v
2~
c2

= (γk)
v2~
c2

= γp (136)

into (132) we find

Ψ′(x′, t′;p′) = Ψ(x, t;p) (137)

On (137) it is worth mentioning John von Neumann [2]
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“First of all we must admit that this objection points at an essential weakness which is,
in fact, the chief weakness of quantum mechanics: its non-relativistic character, which
distinguishes the time t from the three space coordinates x, y, z, and presupposes
an objective simultaneity concept. In fact, while all other quantities (especially those
x, y, z, closely connected with t by the Lorentz transformation) are represented by
operators, there corresponds to the time an ordinary number-parameter t, just as in
classical mechanics.”

9 Sagnac Effect

Consider a rigid Sagnac interferometer shown in Figure 7. The two counter-propagating light
beams share a common optical circular path with radius r for the interferometer at rest (ω = 0).
In the system S′ the angular speed of the interferometer is ω′.

dl’ 

ω’ 

r’ 

Figure 7: A rigid Sagnac interferometer

Using the proposed transformation we have

ω′ =
v′

r′
=

dl/γ
dt/γ
r
γ

= γ
dl
dt

r
(138)

Let us assume that the speed u of S′ in relation to S is

v =
dl

dt
(139)

therefore

γ =
1√

1−
(
v
c

)2 (140)

Let us denote v
r by ω. In the system S′ the time intervals for the two light beams cross dl′ are

dl′

c+ v′
(141)

and
dl′

c− v′
(142)

The difference between (142) and (141) is

δt′ =
( 1

c− v′
− 1

c+ v′

)
dl′ =

2v′

c2 − v′2
dl′ (143)
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for the complete path the difference is

∆t′ =
2v′

c2 − v′2
2πr′ (144)

Since that
r′ =

r

γ
(145)

1

γ

2v′

(c2 − v′2)
= γ

2v′

c2
(146)

and
v′ = v (147)

we obtain

∆t′ =
4v

c2 − v2
πr = γ

4ω(πr2)

c2
= γ

4ωA

c2
(148)

where A is the area limited by the circumference. If

v << c (149)

then

∆t′ ∼=
4ωA

c2
(150)

The equation (150) has the same form that the equation (30) found in Post [3].

10 Comparisons with the special relativity and a consider-
ation on space properties

10.1 The energy that capacitors can store in S ′ after a rotation

Consider capacitance of the capacitors shown in Figure 8. Each capacitor consists of two
parallel square plates both of area A separated by a distance d such that d <<

√
A. Both capacitors

are presented in system S. The two plates of one of capacitors (denoted by α) are parallel to the
plane x-z and the two plate of the other capacitor (denoted by β) are parallel to the plane y-z.
Both capacitors are moving in direction axis-x+ with velocity u. The system S′ is moving with
respect to the system S with the same speed u.

The capacitance of the capacitors α and β are obtained with good approximation by

C = ε0
A

d
(151)

and the stored energy in each capacitor is

U =
1

2

Q2

C
(152)

Using the proposed transformation the values of C ′ and U ′ becomes in the system S′

C ′ = ε0
A/γ2

d/γ
=

1

γ
ε0
A

d
(153)

and the stored energy in each capacitor is

U ′ =
1

2

Q2

C ′
=
γ

2

Q2

C
(154)

The mass correspondent to the energy given in (152) is

mαorβ =
1

c2
Q2

C
(155)
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axis-x 

axis-y 

axis-z 

u 

u 

u 

u 

α 
β 

Figure 8: Two capacitors in the system S

In the system S′ the mass m′αorβ must be

m′αorβ = γmαorβ (156)

and this is the case when we consider the equation (154).

Using the Lorentz transformation the energy stored in the capacitors α and β are not equal
in system S′. In this case we obtain two values

γ

2

Q2

C
(157)

and
1

2γ

Q2

C
(158)

Using the Lorentz transformation, a simple 90-degree rotation in a capacitor (in the system S′)
considerably modifies the energy that the capacitor can store.

10.2 Helical movement of a charge in a magnetic field with component
of velocity in the direction of the field

The Figure 9 shows a particle with positive electric charge q traversing a helical path in the
system S. The speed of the particle is v, the component of v parallel to the axis-x is denoted by
vx and the component of v parallel to the plane-yz is denoted by vyz. The magnetic field B is
uniform and parallel to the axis-x. The mass of the particle is denoted by m. The electric charge
path is a composition of uniform circular motion with uniform motion. The following equation
relates electromagnetic and centrifugal forces

qvyzB = m
v2yz
r

(159)
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axis-x 

axis-y 

axis-z 

+q 

B 

Figure 9: Helical movement of a charge in a magnetic field

or

m =
q B r

vxy
(160)

where r is the radius of the uniform circular motion. Let vx = u be where u is the velocity the
system S′ with respect to S.

The velocities transformations in the especial relativity are

v′x =
vx − u

1− u
c2 vx

= 0 (161)

v′y =
vy

γ
(

1− u
c2 vx

) = γvy (162)

and
v′z =

vz

γ
(

1− u
c2 vx

) = γvz (163)

Considering (2) and (3) we have
r′ = r (164)

Since B is uniform and parallel to the axis-x we have

B′ = B (165)

For the system S′ we have

m′ =
qr′B′

v′yz
(166)

From (162) and (163) we can write
v′yz = γvyz (167)

Therefore

m′ =
qrB

γvyz
=
m

γ
(168)
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Now let us use the proposed transformation. Substituting the values of r′ B′ and v′yz we
obtain

m′ =
qr′B′

v′yz
=
q
(
r
γ

)(
γ2B

)
vyz

= γ
qrB

vyz
= γ m (169)

Using the proposed transformation the period of the uniform circular motion in S′ is

T ′ =
2πr′

v′yz
=

2π

vyz

r

γ
=
T

γ
(170)

where T is the period of the uniform circular motion in S.

10.3 On the space properties

(a) 

(b) 

Figure 10: Base and rockets

Let be the figures 10 and 11. The Figure 10 (a) shows a base (in gray) and a blue rocket.
The rocket is stationary with respect to the base. The Figure 10 (a) corresponds to the instant t0
in the Figure 11. The clocks of the base and the blue rocket are synchronized at t0. The Figure
10 (b) corresponds to the instant t2 in the Figure 11. The Figure 10 (b) shows the base moving
away from the blue rocket. In the Figure 11 the speed variation corresponds to the blue rocket,
for t > t2 the speed v is near to c and

t2 − t1 >> t1 − t0 (171)

The blue rocket has a small nave (in black) which has a clock synchronized with the clock of the
blue rocket at t2. The Figure 13 shows how the blue rocket observes the black nave and the base
moving away. For this figure we have

t4 − t3 >> t3 − t2 (172)
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time 

velocity 

t1 t2 t0 

v 

Figure 11: Rocket velocity with the time

(a) 

(b) 

v 

v 

v + Δv 

Figure 12: The base, the blue rocket and the black nave
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velocity 

t3 t2 t4 

-(v+Δv) 

v 

Figure 13: Black nave velocity with the time

and
0 < ∆v <<< v (173)

For an observer X inside the blue rocket that do not know what happened before t2 the time in
the black nave at t4 is expected flows slower than the time measured with the clock of the blue
rocket. At the time t4 the black nave is very near of the gray base and an observer Y inside the
black nave, who also does not know what happened before t2, compares the clock of the black nave
with the clock of the base. For Y which measure of time is expected to be almost equal with the
measure of time of the clock of the black nave at t4? The time measured with the clock of the gray
base? Or the time expected by X?

Let us notice that for the Figure 10 (a) there is no information about what happened before
t0. The system formed by the base, the blue rocket and the black nave in the Figure 10 (a) is
analogous to the system formed by blue rocket and black nave (Figure 12 (a) without the base)
for the observers X and Y at t2.
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