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ABSTRACT
We introduce the abstract concept of rational type expres-
sion and show its relationship to rational language theory.
We further present a concrete syntax, regular type expres-
sion, and a Common Lisp implementation thereof which al-
lows the programmer to declaratively express the types of
heterogeneous sequences in a way which is natural in the
Common Lisp language. The implementation uses tech-
niques well known and well founded in rational language
theory, in particular the use of the Brzozowski derivative
and deterministic automata to reach a solution which can
match a sequence in linear time. We illustrate the concept
with several motivating examples, and finally explain many
details of its implementation.

CCS Concepts
•Theory of computation → Regular languages; Au-
tomata extensions; •Software and its engineering →
Data types and structures; Source code generation;

Keywords
Rational languages, Type checking, Finite automata

1. INTRODUCTION
In Common Lisp [Ans94] a type is identically a set of (po-

tential) values at a particular point in time during the exe-
cution of a program [Ans94, Section 4.1]. Information about
types provides clues for the compiler to make optimizations
such as for performance, space (image size), safety or debug-
gability [New15, Section 4.3] [Ans94, Section 3.3]. Applica-
tion programmers may as well make explicit use of types
within their programs, such as with typecase, typep, the
etc.

While the programmer can specify a homogeneous type
for all the elements of a vector [Ans94, Section 15.1.2.2], or

the type for a particular element of a list, [Ans94, System
Class CONS], two notable limitations, which we address in
this article, are 1) that there is no standard way to specify
heterogeneous types for different elements of a vector, 2)
neither is there a standard way to declare types (whether
heterogeneous or homogeneous) for all the elements of a list.

We introduce the concept of rational type expression for
abstractly describing patterns of types within sequences.
The concept is envisioned to be intuitive to the program-
mer in that it is analogous to patterns described by regular
expressions, which we assume the reader is already familiar
with.

Just as the characters of a string may be described by
a rational expression such as (a · b∗ · c), which intends to
match strings such as "ac", "abc", and "abbbbc", the ratio-
nal type expression (string · number∗ · symbol) is intended
to match vectors like #("hello" 1 2 3 world) and lists
like ("hello" world). Rational expressions match charac-
ter constituents of strings according to character equality.
Rational type expressions match elements of sequences by
element type.

We further introduce an s-expression based syntax, called
regular type expression to encode a rational type expres-
sion. This syntax replaces the infix and post-fix operators
in the rational type expression with prefix notation based
s-expressions. The regular type expression (:1 string (:*

number) symbol) corresponds to the rational type expres-
sion (string · number∗ · symbol). In addition, we provide
a parameterized type named rte, whose argument is a reg-
ular type expression. The members of such a type are all
sequences matching the given regular type expression. Sec-
tion 2 describes the syntax.

While we avoid making claims about the potential utility
of declarations of such a type from the compiler’s perspec-
tive [com15], we do suggest that a declarative system to
describe patterns of types within sequences has great utility
for program logic, code readability, and type safety.

A discussion of the theory of rational languages in which
our research is grounded, may be found in [HMU06, Chap-
ters 3,4]. This article avoids many details of the theory,
and instead emphasizes examples of problems this approach
helps to solve and explains a high level view of its implemen-
tation. A more in-depth report of the research including the
source code is provided in [New16].

2. THE REGULAR TYPE EXPRESSION
We have implemented a parameterized type named rte



:* match zero or more times.
:+ match one or more times.
:? match zero or one time.
:1 match exactly once.
:or match any of the regular type expressions.
:and match all of the regular type expressions.

Table 1: Regular type expression keywords

(regular type expression), via deftype. The argument of
rte is a regular type expression.

A regular type expression is defined as either a Common
Lisp type specifier, such as number, (cons number), (eql

12), or (and integer (satisfies oddp)), or a list whose
first element is one of a limited set of keywords shown in
Table 1, and whose trailing elements are other regular type
expressions.

As a counter example, (rte (:1 (number number))) is
invalid because (number number) is neither a valid Common
Lisp type specifier, nor does it begin with a keyword from
Table 1. Here are some valid examples.

(rte (:1 number number number))

corresponds to the rational type expression (number ·
number · number) and matches a sequence of exactly
three numbers.

(rte (:or number (:1 number number number)))

corresponds to (number+(number ·number ·number))
and matches a sequence of either one or three numbers.

(rte (:1 number (:? number number)))

corresponds to (number · (number · number)?) and
matches a sequence of one mandatory number followed
by exactly zero or two numbers. This happens to be
equivalent to the previous example.

(rte (:* cons number))

corresponds to (cons · number)∗ and matches a se-
quence of a cons followed by a number repeated zero
or more times, i.e., a sequence of even length.

The rte type can be used anywhere Common Lisp expects
a type specifier as the following examples illustrate. The
point slot of the class C expects a sequence of two numbers,
e.g., (1 2.0) or #(1 2.0).

(defclass C ()
((point :type (and list (rte (:1 number number))))
...))

The Common Lisp type specified by (cons number) is the
set of non-empty lists headed by a number, as specified in
[Ans94, System Class CONS]. The Y argument of the func-
tion F must be a possibly empty sequence of such objects,
because it is declared as type (rte (:* (cons number))).
E.g., #((1.0) (2 :x) (0 :y "zero")).

(defun F (X Y)
(declare

(type (rte (:* (cons number)))
Y))

...)

3. APPLICATION USE CASES
The following subsections illustrate some motivating ex-

amples of regular type expressions.

lambda-list :=
(var*
[&optional

{var | (var [init-form [supplied-p-parameter]])}*]
[&rest var]
[&key {var | ({var | (keyword-name var)}

[init-form [supplied-p-parameter]]) }*
[&allow-other-keys]]

[&aux {var | (var [init-form])}*]
)

Figure 1: CL specification syntax for the ordinary
lambda list

3.1 RTE based string regular expressions
Since a string in Common Lisp is a sequence, the rte

type may be used to perform simple string regular expres-
sion matching. Our tests have shown that the rte based
string regular expression matching is about 35% faster than
CL-PPCRE [Wei15] when restricted to features strictly sup-
ported by the theory of rational languages, thus ignoring CL-
PPCRE features such as character encoding, capture buffers,
recursive patterns, etc.

The call to the function remove-if-not, below, filters a
given list of strings, retaining only the ones that match an
implicit regular expression "a*Z*b*". The function, regexp-
to-rte converts a string regular expression to a regular type
expression.

(regexp-to-rte "(ab)*Z*(ab)*")
==>

(:1 (:* (member #\a #\b))
(:* (eql #\Z))
(:* (member #\a #\b)))

(remove-if-not
(lambda (str)

(typep str
‘(rte ,(regexp-to-rte "(ab)*Z*(ab)*"))))

’("baZab"
"ZaZabZbb"
"aaZbbbb"
"aaZZZZbbbb"))

==>
("baZab"
"aaZbbbb"
"aaZZZZbbbb")

The regexp-to-rte function does not attempt the daunt-
ing task of fully implementing Perl compatible regular ex-
pressions as provided in CL-PPCRE. Instead regexp-to-

rte implements a small but powerful subset of CL-PPCRE
whose grammar is provided by [Cam99]. Starting with this
context free grammar, we use CL-Yacc [Chr09] to parse a
string regular expression and convert it to a regular type
expression.

3.2 DWIM lambda lists
As a complex yet realistic example we use a regular type

expression to test the validity of a Common Lisp lambda
list, which are sequences which indeed are described by a
pattern.

Common Lisp specifies several different kinds of lambda
lists, used for different purposes in the language. E.g.., the
ordinary lambda list is used to define lambda functions, the
macro lambda list is for defining macros, and the destructur-
ing lambda list is for use with destructuring-bind. Each
of these lambda lists has its own syntax, the simplest of
which is the ordinary lambda list (Figure 1). The following



code shows examples of ordinary lambda lists which obey
the specification but may not mean what you think.

(defun F1 (a b &key x &rest other-args)
...)

(defun F2 (a b &key ((Z U) nil u-used-p))
...)

The function F1, according to careful reading of the Com-
mon Lisp specification, is a function with three keyword ar-
guments, x, &rest, and other-args, which can be referenced
at the call site with a bizarre function calling syntax such as
(F1 1 2 :x 3 :&rest 4 :other-args 5). What the pro-
grammer probably meant was one keyword argument named
x and an &rest argument named other-args. According to
the Common Lisp specification [Ans94, Section 3.4.1], in
order for &rest to have its normal rest-args semantics in
conjunction with &key, it must appear before not after the
&key lambda list keyword. The specification makes no pre-
vision for &rest following &key other than that one name
a function parameter and the other have special seman-
tics. This issue is subtle. In fact, SBCL considers this such
a bizarre situation that it diverges from the specification
and flags a SB-INT:SIMPLE-PROGRAM-ERROR during compi-
lation: misplaced &REST in lambda list: (A B &KEY X

&REST OTHER-ARGS)

The function F2 is defined with an unconventional &key

parameter which is not a symbol in the keyword package but
rather in the current package. Thus the parameter U must
be referenced at the call-site as (F2 1 2 ’Z 3) rather than
(F2 1 2 :Z 3).

These situations are potentially confusing, so we define
what we call the dwim ordinary lambda list. Figure 2 shows
an implementation of the type dwim-ordinary-lambda-list.
A Common Lisp programmer might want to use this type
as part of a code-walker based checker. Elements of this
type are lists which are indeed valid lambda lists for defun,
even though the Common Lisp specification allows a more
relaxed syntax.

The dwim ordinary lambda list differs from the ordinary
lambda list, in the aspects described above and also it ignores
semantics the particular lisp implement may have given to
additional lambda list keywords. It only supports semantics
for: &optional, &rest, &key, &allow-other-keys, and &aux.

3.3 destructuring-case
(defun F3 (obj)
(typecase obj
((rte (:1 symbol (:+ (eql :count) integer)))
(destructuring-bind (name &key (count 0)) obj

...))
((rte (:1 symbol list (:* string)))
(destructuring-bind (name data

&rest strings) obj
...))))

Notice in the code above that each rte clause of the type-

case includes a call to destructuring-bind which is related
and hand coded for consistency. The function F3 is imple-
mented such that the object being destructured is certain to
be of the format expected by the corresponding destructur-
ing lambda list.

We provide a macro destructuring-case which combines
the capability of destructuring-bind and typecase. More-
over, destructuring-case constructs the rte type specifiers
in an intelligent way, taking into account not only the struc-

(deftype var ()
‘(and symbol

(not (or keyword
(member t nil)
(member ,@lambda-list-keywords)))))

(deftype dwim-ordinary-lambda-list ()
(let* ((optional-var

’(:or var
(:and list

(rte
(:1 var

(:? t
(:? var)))))))

(optional
‘(:1 (eql &optional)

(:* ,optional-var)))
(rest ’(:1 (eql &rest) var))
(key-var
’(:or var

(:and list
(rte (:1

(:or var
(cons keyword

(cons var
null)))

(:? t
(:? var)))))))

(key
‘(:1 (eql &key)

(:* ,key-var)
(:?

(eql &allow-other-keys))))
(aux-var

’(:or var
(:and list

(rte (:1 var (:? t))))))
(aux ‘(:1 (eql &aux)

(:* ,aux-var))))
‘(rte

(:1 (:* var)
(:? ,optional)
(:? ,rest)
(:? ,key)
(:? ,aux)))))

Figure 2: The dwim-ordinary-lambda-list type

ture of the destructuring lambda list but also any given type
declarations.

(defun F4 (obj)
(destructuring-case obj

((name &key count)
(declare (type symbol name)

(type integer count))
...)
((name data &rest strings)
(declare (type name symbol)

(type data list)
(type strings

(rte (:* string))))
...)))

This macro is able to parse any valid destructuring lambda
list and convert it to a regular type expression. Supported
syntax includes &whole, &optional, &key, &allow-other-

keys, &aux, and recursive lambda lists such as:

(&whole llist a (b c)
&key x ((:y (c d)) ’(1 2))
&allow-other-keys)

A feature of destructuring-case is that it can construct
regular type expressions much more complicated than would
be practical by hand. Consider the following example which
includes two destructuring lambda lists, whose computed
regular type expressions pretty-print to about 20 lines each.



(:1 (:1 fixnum (:and list (rte (:1 fixnum fixnum))))
(:and
(:* keyword t)
(:or
(:1 (:? (eql :x) symbol (:* (not (member :y :z)) t))

(:? (eql :y) string (:* (not (eql :z)) t))
(:? (eql :z) list (:* t t)))

(:1 (:? (eql :y) string (:* (not (member :x :z)) t))
(:? (eql :x) symbol (:* (not (eql :z)) t))
(:? (eql :z) list (:* t t)))

(:1 (:? (eql :x) symbol (:* (not (member :y :z)) t))
(:? (eql :z) list (:* (not (eql :y)) t))
(:? (eql :y) string (:* t t)))

(:1 (:? (eql :z) list (:* (not (member :x :y)) t))
(:? (eql :x) symbol (:* (not (eql :y)) t))
(:? (eql :y) string (:* t t)))

(:1 (:? (eql :y) string (:* (not (member :x :z)) t))
(:? (eql :z) list (:* (not (eql :x)) t))
(:? (eql :x) symbol (:* t t)))

(:1 (:? (eql :z) list (:* (not (member :x :y)) t))
(:? (eql :y) string (:* (not (eql :x)) t))
(:? (eql :x) symbol (:* t t))))))

Figure 3: Regular type expression matching de-
structuring lambda list Case-1

An example of the regular type expression matching Case-1

is shown in Figure 3.

(destructuring-case data

;; Case-1
((&whole llist

a (b c)
&rest keys
&key x y z
&allow-other-keys)

(declare (type fixnum a b c)
(type symbol x)
(type string y)
(type list z))

...)

;; Case-2
((a (b c)
&rest keys
&key x y z)
(declare (type fixnum a b c)

(type symbol x)
(type string y)
(type list z))

...))

4. IMPLEMENTATION OVERVIEW
Using an rte involves several steps. The following subsec-

tions describe these steps.

1. Convert a parameterized rte type into code that will
perform run-time type checking.

2. Convert the regular type expression to DFA (determin-
istic finite automaton, sometimes called a finite state
machine).

3. Decompose a list of type specifiers into disjoint types.

4. Convert the DFA into code which will perform run-
time execution of the DFA.

4.1 Type definition
The rte type is defined by deftype.

(deftype rte (pattern)
‘(and sequence

(satisfies ,(compute-match-function
pattern))))

As in this definition, when the satisfies type speci-
fier is used, it must be given a symbol naming a glob-
ally callable unary function. In our case compute-match-

function accepts a regular type expression, such as (:1

number (:* string)), and computes a named unary predi-
cate. The predicate can thereafter be called with a sequence
and will return true or false indicating whether the se-
quence matches the pattern. Notice that the pattern is usu-
ally provided at compile-time, while the sequence is pro-
vided at run-time. Furthermore, compute-match-function
ensures that given two patterns which are EQUAL, the same
function name will be returned, but will only be created and
compiled once. An example will make it clearer.

(deftype 3-d-point ()
‘(rte (:1 number number number)))

The type 3-d-point invokes the rte parameterized type
definition with argument (:1 number number number). The
deftype of rte assures that a function is defined as follows.
The function name, |(:1 number number number)| even if
somewhat unusual, is so chosen to improve the error message
and back-trace that occurs in some situations.

(defun rte::|(:1 number number number)|
(input-sequence)

(match-sequence input-sequence
’(:1 number number number)))

The following back-trace occurs when attempting to eval-
uate a failing assertion.

CL-USER> (the 3-d-point (list 1 2))

The value (1 2)
is not of type

(OR (AND #1=(SATISFIES |(:1 NUMBER NUMBER NUMBER)|)
CONS)

(AND #1# NULL) (AND #1# VECTOR)
(AND #1# SB-KERNEL:EXTENDED-SEQUENCE)).

[Condition of type TYPE-ERROR]

It is also assured that the DFA corresponding to (:1 num-

ber number number) is built and cached, to avoid unneces-
sary re-creation at run-time. Finally, the type specifier (rte
(:1 number number number)) expands to the following.

(and sequence
(satisfies |(:1 number number number)|))

A caveat of using rte is that the usage must obey a re-
striction posed by the Common Lisp specification [Ans94,
Section DEFTYPE]. A self-referential type definition is not
valid. Common Lisp specification states: Recursive expan-
sion of the type specifier returned as the expansion must ter-
minate, including the expansion of type specifiers which are
nested within the expansion.

As an example of this limitation, here is a failed attempt
to implement a type which matches a unary tree, i.e. a type
whose elements are 1, (1), ((1)), (((1))), etc.

CL-USER> (deftype unary-tree ()
‘(or (eql 1)

(rte unary-tree)))
UNARY-TREE
RTE> (typep ’(1) ’unary-tree)
Control stack exhausted (no more space for function call
frames). This is probably due to heavily nested or
infinitely recursive function calls, or a tail call that
SBCL cannot or has not optimized away.



∂a∅ = ∅
∂aε = ∅
∂aa = ε

∂ab = ∅ for b 6= a

∂a(r ∪ s) = ∂ar ∪ ∂as

∂a(r · s) =

{
(∂ar) · s, if r is not nullable

(∂ar) · s ∪ ∂as, if r is nullable

∂a(r ∩ s) = ∂ar ∩ ∂as

∂a(r∗) = (∂ar) · r∗

∂a(r+) = (∂ar) · r∗

Figure 4: Rules for the Brzozowski derivative

PROCEED WITH CAUTION.
[Condition of type SB-KERNEL::CONTROL-STACK-EXHAUSTED]

4.2 Constructing a DFA
In order to determine whether a given sequence matches a

particular regular type expression, we conceptually execute
a DFA with the sequence as input. Thus we must convert
the regular type expression to a DFA. This need only be
done once and can often be done at compile time.

4.2.1 Rational derivative
In 1964, Janusz Brzozowski [Brz64] introduced the con-

cept of the Rational Language Derivative, and provided a
theory for converting a regular expression to a DFA. Addi-
tional work was done by Scott Owens et al. [ORT09] which
presented the algorithm in easy to follow steps.

To understand what the rational expression derivative is
and how to calculate it, first think of a rational expression in
terms of its language, i.e. the set of sequences the expression
generates. For example, the language of ((a|b) · c∗ · d) is the
set of words (finite sequences of letters) which begin with
exactly one letter a or exactly one letter b, end with exactly
one letter d and between contain zero or more occurrences
of the letter c.

The derivative of the language with respect to a given
letter is the set of suffixes of words which have the given
letter as prefix. Analogously the derivative of the rational
expression is the rational expression which generates that
language. E.g., ∂a((a|b) · c∗ · d) = (c∗ · d).

The Owens [ORT09] paper explains a systematic algo-
rithm for symbolically calculating such derivatives. The for-
mulas listed in Figure 4 detail the calculations which must
be recursively applied to calculate the derivative.

4.2.2 DFA for regular expressions
Another commonly used algorithm for constructing a DFA

was inspired by Ken Thompson [YD14, Xin04] and involves
decomposing a rational expression into a small number of
cases such as base variable, concatenation, disjunction, and
Kleene star, then following a graphical template substitution
for each case. While this algorithm is easy to implement, it
has a serious limitation. It is not able to easily express
automata resulting from the intersection or complemention
of rational expressions. We rejected this approach as we

would like to support regular type expressions containing the
keywords :and and :not, such as in (:and (:* t integer)

(:not (:* float t))).
We chose the algorithm based on Brzozowski derivatives.

Initial state Create the single initial state, and label it
with the original rational expression. Seed a to-do list
with this initial state. Seed a visited list to ∅.

States While the to-do list is non empty, operate on the
first element as follows:

1. Move the state from the to-do list to the visited
list.

2. Get the expression associated with the state.

3. Calculate the derivative of this expression with
respect to each letter of the necessarily finite al-
phabet.

4. Reduce each derivative to a canonical form.

5. For each canonical form that does not correspond
to a state in the to-do nor visited list, create a
new state corresponding to this expression, and
add it to the to-do list.

Transitions Construct transitions between states as fol-
lows: If S1 is the expression associated with state P1

and S2 is the expression associated with state P2 and
∂aS1 = S2, then construct a transition from state P1

to state P2 labeled a.

Final states If the rational expression labeling a state is
nullable, i.e. if it matches the empty word, label the
state a final state.

Brzozowski argued that this procedure terminates because
there is only a finite number of derivatives possible, modulo
multiple equivalent algebraic forms. Eventually all the ex-
pressions encountered will be algebraically equivalent to the
derivative of some other expression in the set.

4.2.3 DFA for regular type expressions
The set of sequences of Common Lisp objects is not a

rational language, because for one reason, the perspective
alphabet (the set of all possible Common Lisp objects) is
not a finite set. Even though the set of sequences of objects
is infinite, the set of sequences of type specifiers is a ratio-
nal language, if we only consider as the alphabet, the set of
type specifiers explicitly referenced in a regular type expres-
sion. With this choice of alphabet, sequences of Common
Lisp type specifiers conform to the definition of words in a
rational language.

There is a delicate matter when the mapping of sequence
of objects to sequence of type specifiers: the mapping is
not unique. This issue is ignored for the moment, but is
discussed in Section 4.4.

Consider the extended rational type expression P0 =
(symbol · (number+ ∪ string+))+ . We wish to construct
a DFA which recognizes sequences matching this pattern.
Such a DFA is shown in Figure 5.

First, we create a state P0 corresponding to the given
rational type expression.

Next we proceed, to calculate the derivative with respect
to each type specifier mentioned in P0 and construct states
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3

symbol

number

string

symbol

number

symbol

string

Figure 5: Example DFA

P1, P2, and P3 as those are the unique derivative forms which
are obtained by the calculation. We discard the ∅ value.

∂numberP0 = ∅
∂stringP0 = ∅
∂symbolP0 = (number+ ∪ string+)

· (symbol · (number+ ∪ string+))∗

= P1

∂numberP1 = number∗

· (symbol · (number+ ∪ string+))∗

= P2

∂stringP1 = string∗ · (symbol · (number+ ∪ string+))∗

= P3

∂symbolP1 = ∅
∂numberP2 = P2

∂stringP2 = ∅
∂symbolP2 = P1

∂numberP3 = ∅
∂stringP3 = P3

∂symbolP3 = P1

Next, we label the transitions between states with the
type specifier which was used in the derivative calculation
between those states. We ignore transitions from any state
to the ∅ state.

Finally, we label the final states. They are P2 and P3

because only those two states are nullable. I.e. (number∗ ·
(symbol · (number+ ∪ string+))∗) can match the empty
sequence, and so can (string∗ · (symbol · (number+ ∪
string+))∗)

4.3 Optimized code generation
The mechanism we chose for implementing the execution

(as opposed to the generation) of the DFA was to generate
specialized code based on typecase, block, and go. As an
example, consider the DFA shown in Figure 5. The code in
Figure 6 was generated given this DFA as input.

The code is organized according to a regular pattern. The
typecase, commented as OUTER-TYPECASE switches on the
type of the sequence itself. Whether the sequence, seq,
matches one of the carefully ordered types list, simple-

vector, vector, or sequence, determines which functions
are used to access the successive elements of the sequence:
svref, incf, pop, etc.

(lambda (seq)
(declare

(optimize (speed 3) (debug 0) (safety 0)))
(block check

(typecase seq ; OUTER-TYPECASE
(list
(tagbody
0

(when (null seq)
(return-from check nil)) ; rejecting

(typecase (pop seq) ; INNER-TYPECASE
(symbol (go 1))
(t (return-from check nil)))

1
(when (null seq)

(return-from check nil)) ; rejecting
(typecase (pop seq) ; INNER-TYPECASE

(number (go 2))
(string (go 3))
(t (return-from check nil)))

2
(when (null seq)

(return-from check t)) ; accepting
(typecase (pop seq) ; INNER-TYPECASE

(number (go 2))
(symbol (go 1))
(t (return-from check nil)))

3
(when (null seq)

(return-from check t)) ; accepting
(typecase (pop seq) ; INNER-TYPECASE

(string (go 3))
(symbol (go 1))
(t (return-from check nil)))))

(simple-vector
...)
(vector
...)
(sequence
...)
(t nil))))

Figure 6: Generated code recognizing an RTE

The final case, sequence, is especially useful for applica-
tions which wish to exploit the SBCL feature of Extensi-
ble sequences [New15, Section 7.6] [Rho09]. One of our rte
based applications uses extensible sequences to view verti-
cal and horizontal slices of 2D arrays as sequences in order
to match certain patterns within row vectors and column
vectors.

While the code is iterating through the sequence, if it en-
counters an unexpected end of sequence, or an unexpected
type, the function returns nil. These cases are commented
as rejecting. Otherwise, the function will eventually en-
counter the end of the sequence and return t. These cases
are commented accepting in the figure.

Within the inner section of the code, there is one label per
state in the state machine. In the example, the labels P0,

P0

P2

P3

P1

integer

number ∩ integer integer

number

Figure 7: Example DFA with disjoint types



P1, P2, and P3 are used, corresponding to the states in the
DFA in Figure 5. At each step of the iteration, a check is
made for end-of-sequence. Depending on the state either t

or nil is returned depending on whether that state is a final
state of the DFA or not.

The next element of the sequence is examined by the
INNER-TYPECASE, and depending of the type of the object
encountered, control is transferred (via go) to a label corre-
sponding to the next state.

One thing to note about the complexity of this function
is that the number of states encountered when the function
is applied to a sequence is equal or less than the number of
elements in the sequence. Thus the time complexity is linear
in the number of elements of the sequence and is independent
of the number of states in the DFA.

In some cases the same type may be specified with ei-
ther the rte syntax or with the Common Lisp native cons

type specifier. For example, a list of three numbers can
be expressed either as (cons number (cons number (cons

number null))) or as (rte (:1 number number number)).
Should the rte system internally exploit the cons speci-

fier when possible, thus avoiding the creation of finite state
machines? We began investigating this possibility, but aban-
doned the investigation on discovering that it lead to signif-
icant performance degradation for long lists. We measured
roughly a 5% penalty for lists of length 5. The penalty grew
for longer lists: 25% with a list length of 10, 40% with a list
length of 20.

4.4 The overlapping types problem
In the example in Section 4.2.3, all the types considered

(symbol, string, and number) were disjoint. If the same
method is naively used with types which are intersecting,
the resulting DFA will not be a valid representation of the
rational expression. Consider the rational expression in-
volving the intersecting types integer and number: P0 =
((number · integer) ∪ (integer · number)). The sequences
which match this expression are sequences of two numbers,
at least one of which is an integer. Unfortunately, when we
calculate ∂numberP0 and ∂integerP0 we arrive at a different
result.

∂numberP0 = ∂number( (number · integer)
∪ (integer · number))

= ∂number(number · integer)
∪ ∂number(integer · number)

= (∂numbernumber) · integer
∪ (∂numberinteger) · number

= ε · integer ∪ ∅ · number
= integer ∪ ∅
= integer

Without continuing to calculate all the derivatives, it is
already clear that this result is wrong. If you start with the
set of sequences of two numbers one of which is an integer,
and out of that find the subset of sequences starting with a
number, we get back the entire set. The set of suffixes of
this set is not the set of singleton sequences of integer.

To address this problem, we augment the algorithm of Br-
zozowski with an additional step. Rather than calculating
the derivative at each state with respect to each type men-
tioned in the regular type expression, some of which might
be overlapping, instead we calculate a disjoint set of types.

More specifically, given a set A of overlapping types, we cal-
culate a set B which has the properties: Each element of B
is a subtype of some element of A, any two elements B are
disjoint from each other, and ∪A = ∪B.

Figure 7 illustrates such a disjoint union. The set of over-
lapping types A = {number, integer} has been replaced
with the set of disjoint types B = {number∩integer, integer}.

This extra step has two positive effects on the algorithm.
1) it assures that the constructed automaton is determin-
istic, i.e., we assure that all the transitions leaving a state
specify disjoint types, and 2) it forces our treatment of the
problem to comply with the assumptions required by the the
Brzozowski/Owens algorithm.

The algorithm for decomposing a set of types into a set of
disjoint types is an interesting research topic in its own right.
While this topic is still under investigation, we have several
algorithms which work very well for a small number of types
(i.e. lists of up to 15 types). At the inescapable core of each
algorithm is Common Lisp function subtypep [Bak92]. This
function is crucial not only in type specifier simplification,
needed to test equivalence of symbolically calculated Brzo-
zowski derivatives, but also in deciding whether two given
types are disjoint. For example, we know that string and
number are disjoint because (and string number) is a sub-
type of nil.

We explicitly omit further discussion of that algorithm in
this article. We will consider it for future publication. For a
complete exposition of our ongoing research into this topic,
see the project report on the LRDE website [New16].

5. RELATED WORK
Attempts to implement destructuring-case are numer-

ous. We mention three here. R7RS Scheme provides case-

lambda [SCG13, Section 4.2.9] which appears to be syntac-
tically similar construct, allowing argument lists of various
fixed lengths. However, according to the specification noth-
ing similar to Common Lisp style destructuring is allowed.

The implementation of destructuring-case provided in
[Dom] does not have the feature of selecting the clause to be
executed according to the format of the list being destruc-
tured. Rather it uses the first element of the given list as a
case-like key. This key determines which pattern to use to
destructure the remainder of the list.

The implementation provided in [Fun13], named destructure-

case, provides similar behavior to that which we have devel-
oped. It destructures the given list according to which of the
given patterns matches the list. However, it does not handle
destructuring within the optional and keyword arguments.

(destructuring-case ’(3 :x (4 5))
((a &key ((:x (b c))))
(list 0 a b c)) ;; this clause should be taken
((a &key x)
(list 2 a x))) ;; not this clause

In none of the above cases does the clause selection con-
sider the types of the objects within the list being destruc-
tured. Clause selection also based on type of object is a
distinguishing feature of the rte based implementation of
destructuring-case.

The rte type along with destructuring-bind and type-

case as mentioned in Section 3.3 enables something similar
to pattern matching in the XDuce language [HVP05]. The
XDuce language allows the programmer to define a set of
functions with various lambda lists, each of which serves



as a pattern available to match particular target structure
within an XML document. Which function gets executed
depends on which lambda list matches the data found in
the XML data structure.

XDuce introduces a concept called regular expression types
which indeed seems very similar to regular type expressions.
In [HVP05] Hosoya et al. introduce a semantic type ap-
proach to describe a system which enables their compiler to
guarantee that an XML document conform to the intended
type. The paper deals heavily with assuring that the regular
expression types are well defined when defined recursively,
and that decisions about subtype relationships can be cal-
culated and exploited.

A notable distinction of the rte implementation as op-
posed to the XDuce language is that our proposal illustrates
adding such type checking ability to an existing type system
and suggests that such extensions might be feasible in other
existing dynamic or reflective languages.

The concept of regular trees, is more general than what
rte supports, posing interesting questions regarding appar-
ent shortcomings of our approach. The semantic typing
concept described in [HVP05] indeed seems to have many
parallels with the Common Lisp type system in that types
are defined by a set of objects, and sub-types correspond
to subsets thereof. These parallels would suggest further re-
search opportunities related to rte and Common Lisp. How-
ever, the limitation that rte cannot be used to express trees
of arbitrary depth as discussed in Section 4.1 seems to be
a significant limitation of the Common Lisp type system.
Furthermore, the use of satisfies in the rte type defini-
tion, seriously limits the subtypep function’s ability to rea-
son about the type. Consequently, programs cannot always
use subtypep to decide whether two rte types are disjoint or
equivalent, or even if a particular rte type is empty. Neither
can the compiler dependably use subtypep to make similar
decisions to avoid redundant assertions in function declara-
tions.

It is not clear whether Common Lisp could provide a way
for a type definition in an application program to extend
the behavior of subtypep. Having such a capability would
allow such an extension for rte. Rational language theory
does provide a well defined algorithm for deciding such ques-
tions given the relevant rational expressions [HMU06, Sec-
tions 4.1.1, 4.2.1]. It seems from the specification that a
Common Lisp implementation is forbidden from allowing
self-referential types, even in cases where it would be possi-
ble to do so.

6. CONCLUSIONS
In this paper we presented a Common Lisp type definition,

rte, which implements a declarative pattern based approach
for declaring types of heterogeneous sequences illustrating it
with several motivating examples. We further discussed the
implementation of this type definition and its inspiration
based in rational language theory. While the total compu-
tation needed for such type checking may be large, our ap-
proach allows most of the computation to be done at compile
time, leaving only an O(n) complexity calculation remaining
for run-time computation.

Our contributions are

1. recognizing the possibility to use principles from ratio-
nal theory to address the problem dynamic type check-

ing of sequences in Common Lisp,

2. adapting the Brzozowski derivative algorithm to se-
quences of lisp types by providing an algorithm to sym-
bolically decompose a set of lisp types into an equiva-
lent set of disjoint types,

3. implementing an efficient O(n) algorithm to pattern
match an arbitrary lisp sequence, and

4. implementing concrete rte based algorithms for recog-
nizing certain commonly occurring sequence patterns.

For future extensions to this research we would like to ex-
periment with extending the subtypep implementation to al-
low application level extensions, and therewith examine run-
time performance when using rte based declarations within
function definitions.

Another topic we would like to research is whether the
core of this algorithm can be implemented in other dynamic
languages, and to understand more precisely which features
such a language would need to have to support such imple-
mentation.
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