
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/335712808

Large Scale Unit Testing for Go Programming Language Packages

Research · September 2019

DOI: 10.13140/RG.2.2.36308.76166

CITATIONS

0
READS

3

2 authors:

Some of the authors of this publication are also working on these related projects:

IT and Software Technologies View project

Kean Ho Chew

ZORALab Enterprise, Puchong, Malaysia

7 PUBLICATIONS 1 CITATION

SEE PROFILE

Lee Booi Lim

9 PUBLICATIONS 36 CITATIONS

SEE PROFILE

All content following this page was uploaded by Kean Ho Chew on 10 September 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/335712808_Large_Scale_Unit_Testing_for_Go_Programming_Language_Packages?enrichId=rgreq-448c9dea145503105f1dcef777c108b2-XXX&enrichSource=Y292ZXJQYWdlOzMzNTcxMjgwODtBUzo4MDE0MTM3MjI1NTAyNzJAMTU2ODA4MzMyOTUxOQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/335712808_Large_Scale_Unit_Testing_for_Go_Programming_Language_Packages?enrichId=rgreq-448c9dea145503105f1dcef777c108b2-XXX&enrichSource=Y292ZXJQYWdlOzMzNTcxMjgwODtBUzo4MDE0MTM3MjI1NTAyNzJAMTU2ODA4MzMyOTUxOQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/IT-and-Software-Technologies?enrichId=rgreq-448c9dea145503105f1dcef777c108b2-XXX&enrichSource=Y292ZXJQYWdlOzMzNTcxMjgwODtBUzo4MDE0MTM3MjI1NTAyNzJAMTU2ODA4MzMyOTUxOQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-448c9dea145503105f1dcef777c108b2-XXX&enrichSource=Y292ZXJQYWdlOzMzNTcxMjgwODtBUzo4MDE0MTM3MjI1NTAyNzJAMTU2ODA4MzMyOTUxOQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kean_Ho_Chew?enrichId=rgreq-448c9dea145503105f1dcef777c108b2-XXX&enrichSource=Y292ZXJQYWdlOzMzNTcxMjgwODtBUzo4MDE0MTM3MjI1NTAyNzJAMTU2ODA4MzMyOTUxOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kean_Ho_Chew?enrichId=rgreq-448c9dea145503105f1dcef777c108b2-XXX&enrichSource=Y292ZXJQYWdlOzMzNTcxMjgwODtBUzo4MDE0MTM3MjI1NTAyNzJAMTU2ODA4MzMyOTUxOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kean_Ho_Chew?enrichId=rgreq-448c9dea145503105f1dcef777c108b2-XXX&enrichSource=Y292ZXJQYWdlOzMzNTcxMjgwODtBUzo4MDE0MTM3MjI1NTAyNzJAMTU2ODA4MzMyOTUxOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lee_Booi_Lim?enrichId=rgreq-448c9dea145503105f1dcef777c108b2-XXX&enrichSource=Y292ZXJQYWdlOzMzNTcxMjgwODtBUzo4MDE0MTM3MjI1NTAyNzJAMTU2ODA4MzMyOTUxOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lee_Booi_Lim?enrichId=rgreq-448c9dea145503105f1dcef777c108b2-XXX&enrichSource=Y292ZXJQYWdlOzMzNTcxMjgwODtBUzo4MDE0MTM3MjI1NTAyNzJAMTU2ODA4MzMyOTUxOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lee_Booi_Lim?enrichId=rgreq-448c9dea145503105f1dcef777c108b2-XXX&enrichSource=Y292ZXJQYWdlOzMzNTcxMjgwODtBUzo4MDE0MTM3MjI1NTAyNzJAMTU2ODA4MzMyOTUxOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kean_Ho_Chew?enrichId=rgreq-448c9dea145503105f1dcef777c108b2-XXX&enrichSource=Y292ZXJQYWdlOzMzNTcxMjgwODtBUzo4MDE0MTM3MjI1NTAyNzJAMTU2ODA4MzMyOTUxOQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Large Scale Unit Testing for Go Programming
Language Packages

Chew, Kean Ho [1] ; Lim, Lee Booi [2]

[1] ZORALab Enterprise
kean.ho.chew@zoralab.com

[2] Independent
lee.booi.lim@gmail.com

July 2019, 1st Issues

Abstract
Testing in Go is reasonably easy compared to all
other programming languages due to its out of the
box tools availability and robustness. Moreover, there
are many tutorials made available for beginners to
learn and practice.

When at scaled, such as growing beyond 1000 test
cases, the existing test approaches introduced by the
tutorials become too complicated, causing a huge
refactoring efforts like 2-3 days overhauling efforts.
Hence, there is a need for a new large scale test
approach for unit testing Go packages.

This paper first introduces Go programming
language. Then, it proceeds to present the current
trends related to Go testing practices and its
approaches. After that, the paper presents all
encountered problems while using the existing test
approaches at scale. The root causes of the problems
are identified and mitigation actions are determined.

Lastly, the paper proposes a large scale test approach
based on the learning and mitigation actions. The
approach is then discussed and concluded.

1. Introduction
Testing in Go programming language is reasonably
easy to develop due to the design nature of the
language. Go itself is specifically designed for
programmers to be more productive by being
expressivess, concise, clean, and efficient as both
human and machine understandable language [1] .
Hence, there is no exception to its unit testing facility.
However, a lot of Go testing tutorials and guidelines
are useful at the beginning when the package is
small; they are cumbersome and heavy when scaled.

Normally, this problem happens when there is a test
requirement to have the package to be tested
thoroughly, like building a stable security module.
Considering writing a cryptography wrapper library,
the issue arises when the total test cases easily grown
to >1000 units test cases.

This paper started off by introducing the Go
programming language itself and reviewing current
test methodologies in Go. Then, the paper listed all
the encountered problems while running the test suite
at scale. These problems were analyzed for their
causes and determines the necessary mitigation
actions. With the mitigation actions determined, The
paper then proposes the large scale test approach
alongside explaining its design mechanics. The
approach was discussed and concluded.

2. Overview
In this section, this paper provided the necessary
information related to Go programming language, its
current test methodologies and approaches for Go
packages.

Then, the paper explained the problem encountered
during large scale testing while using the specified
approaches.

2.1. Go Programming Language
Go programming language was developed by Google
since 2007 to create dependendable and efficient
software [1][2] . It is designed based on analyzing pros
and cons of various programming languages x to
resolve software engineering issues and to provide an
alternative to C++ [2] . Among the competitor
languages analyzed are C [1][2] , C++ [1][2] , C# [3] , Java [2] ,
Python [3] , Javascript [3] , Swift [3] , and Haskell [3] .

1 of 29

The most notable benefit for using Go is that Go has
the best portability among all competitors [2] . It is done
via resolving dependencies and closely compiled into
a single, self-contained executable binary file at build
time [4] . Compared to its competitors with the like of
Python, Ruby, and Javascript, the compiled Go
program simply runs without needing to setup the
language interpreter [5] . As compared to Java, it
eliminated the need of virtual machine, further
boosting the program’s performance [5] . As a result,
Go fully fulfilled for the “Write Once, Run Anywhere
(WORA)” design mantra in software programming
language from start [5] .

The second notable benefit is that it can perform
concurrency processing easily without heavy library
and simple to understand [2] . Its goroutine and channel
functionalities are lightweight, consuming almost 2
kilobytes of heap memory compared to 1 megabyte
size when using Java programming language [6] .

The third benefit is the well-prepared development
tools made available for Go programmers out of the
box [2] . Go standard development package comes with
a formatting tool known as “Gofmt” that can format
the style of codes to a single style standard
automatically, making it easier for all Go
programmers; “Go get” quickly sources and manages
Go dependencies from Git version control system
(GVCS); “Go doc” readily generates documentation
directly from the source code itself [2] . Hence, the
programmer only needs to focus on working on
source codes regardless of what level of proficiency.

Although the programming language is relatively
young compared to all of its competitors, it did
overcome some of the shortcomings of the other
languages. Therefore, it is worth pursuing in-depth
research with Go programming language giving that
it provided Go programmers a lot of benefits out of
the box.

2.2. Testing in Go
Like any other languages, testing in Go offers the
conventional test methodologies like [8] :

1. Static Analysis
2. Unit Testing
3. Test Coverage

a. Standard Node CFG
b. Edge CFG
c. Condition CFG
d. Boundary Value Analysis

For static analysis, Go communities built a large set
of various static analysis linters grouped under an
umbrella Go package known as “golangci-lint” [8] .
This Go linter program is an independent executable
program meant to perform all forms of static analysis
not limited to standard cyclomatic complexity scan,
duplicated codes scan, critics, global constant and
variables scan, style, security, etc [8] . With some
tweaking to bundle the command lines under a single
command or text editor macros, one can run static
analysis easily and automatically after saving the
source codes [9] .

Go heavily depends on unit testing to the point of
providing robust and flexible tools for it [9] . Due to the
flexibility nature of the Go programming
language [2][3] , any developer can implement various
types of unit testing approaches [7] . Moreover, Go
even provide a test coverage heat-mapping tool,
allowing one to view which part of codes are not
tested or tested intensively. Figure 2.2-1 shown a
snapshot of such heatmap. With all these tools
available for programmer, one can proceed to
perform effective testing and code refactoring
without wasting resources over redundant test cases.

Go also provides performance benchmarking tool in
its testing package, allowing the programmer to
benchmark statistically across different executions [10] .
This tool allows programmer to view and analyze
execution flow and path to understand bottlenecks
and weaknesses [10] . However, Go developers are
advised to focus on simplicity, readability, and
productivity first instead of performance or
concurrency [11] . Hence, the use of benchmarking tool
should be done sparingly and sensibility. Figure 2.2-2
shown a snapshot of the benchmark statistic outputs
while Figure 2.2-3 shown the execution flow chart
with statistical timing.

In this paper, the testing focuses on some static
analysis tools and unit testing components only while
leaving benchmark and its associated tools outside of
research scope. This is to maintain the research focus
to present large scale unit testing for Go packages,
not about an overall test methodologies in Go
programming language.

2 of 29

Figure 2.2-1 - the test coverage heatmap tool

Figure 2.2-2 the benchmark statistics outputs

3 of 29

Figure 2.2-3 - the benchmark execution path map

4 of 29

2.3. Test Approaches
In this section, the paper reviewed numerous
approaches and recommendations used by various Go
programmers and official site. This gives us a clear
understanding about the current practices for writing
test codes in Go programming languages.

The section covers a minimum of 2 important
aspects: the file structures, the testing approach.

2.3.1. Basic Testing Approach
The very basic unit testing approach would be direct
data comparison or direct data assertion [12] . The idea
is to:

1. Write a test function
2. Execute the subject and get its output
3. Compare the output directly with the desired

output.

Figure 2.3.1-1 shown a simple example for
Add(...) function. This function, acting as test
subject, is being called inside the TestAdd(t
*testing.T) test function. The output of a fixed
value where a = 2, b = 2 is directly compared
to the output value (4). If the output is not equal, the
test function raises an error assertion.

func TestAdd(t *testing.T) {

 if Add(2, 2) != 4 {

 t.Errorf("Expected 2 + 2
to equal 4")

 }

}

Figure 2.3.1-1 - a basic unit testing approach for
testing Add(a, b) function

The file structure, as usual, following the standard
recommendation where the test codes are parked
under a seperate source_test.go file for
source.go source code [12][13] . Figure 2.3.1-2 shows
the source code structure for Add(a, b) function.

directory
├── add.go
└── add_test.go

Figure 2.3.1-2 - file structure for hosting source codes
and test codes separately.

This is highly suitable for beginners and tester to
write simple assertion functions for simple Go
implementations. Additionally, for simple source
codes that requires 1 or 2 changes like “Hello World”
application, this basic approach should suffice.

However, if the requirement expands like having a
bigger boundary value analysis coverage [7] , this basic
test approach is not scalable since the test parameters
are hard-coded into the test code. From Figure
2.3.2-1, if we want to know whether Add(a, b)
function is able to handle negative addition, tester
needs to create a duplicate test function with different
test parameters, yielding the total test codes in Figure
2.3.2-3.

Although it is simple to understand, it is hard to
maintain due to duplications. Example, what if the
requirement is to rename Add to Sum , while having
more than 1000 repeated test cases, it would be scary
to review all the changes after a simple “find and
replace” editing command.

This is where the table-driven test approach kicks in
to facilitate such changes.

func TestAdd(t *testing.T) {

 if Add(2, 2) != 4 {

 t.Errorf("Expected 2 + 2 to equal
4")

 }

}

func TestNegativeAdd(t *testing.T) {

 if Add(2, -2) != 0 {

 t.Errorf("Expected 2 + (-2) to
equal 0")

 }

 if Add(-2, 2) != 0 {

 t.Errorf("Expected (-2) + 2 to
equal 0")

 }

}

Figure 2.3.1-3 - expanded basic unit testing approach
for testing Add(a, b) function

5 of 29

2.3.2. Table-Driven Test Approach
Table-driven test approach employs a table test
structure to manage different parameters for a test
case execution (can be known as test algorithm). This
approach isolates the chaotic test parameters away
from test algorithms, allowing testers to easily add
new test cases by manipulating the parameters
without changing or altering the test
algorithm [12][13][14] .

If we refactor the Add(a, b) function from Figure
2.3.1-3 using table-driven test approach, Figure
2.3.2-1 shown the new set of codes inside
add_test.go without introducing any alteration to
the existing file structures.

func TestAdd(t *testing.T) {

 scenarios := []struct {

 a int

 b int

 o int // output

 } {

 {2, 2, 4},

 {-2, 2, 0},

 {2, -2, 0},

 }

 // test algorithms

 for _, s := range scenarios {

 x := Add(s.a, s.b)

 log(t, s.a, s.b, s.o, x)

 assertError(t, x, s.o)

 }

}

func log(t *testing.T,

 a int,

 b int,

 o int,

 x int) {

 t.Logf(`a=%v b=%v o=%v x=%v`,

 a, b, o, x)

}

func (t *testing.T,

 x int,

 output int) {

 if x != o {

 t.Errorf("bad results.")

 }

}

Figure 2.3.2-1 - table-driven approach for testing
Add(a, b) function

The parameters are tabulated under a temporarily
declared scenarios structure, holding all the
previous parameters and expects output as
guided [12][13][14] . The test algorithms are refactored into
2 test functions: log(...) ,
assertError(...) , making it isolated from the
test case parameters. When tester needs to add new
boundary value analysis, say handling 0, or overflow,
the tester would only needs to increase the scenario
test cases without altering the test algorithm itself.

The test developer can also declares the scenario
structure privately outside the test function, making it
reusable across various test functions. This is useful
for recycling the scenario structures, making the test
codes shorter.

This table-driven test approach is the preferred and
highly recommended test approach for all unit testing
in Go packages due to its scalability in terms of
parameters increment and test algorithm
isolation [12][13][14] .

6 of 29

2.3.3. Time Sensitive Test Approach
Time sensitive test approach is a unique test approach
related to execution timing, not limited to just output
assertion. Unlike benchmarking which is meant for
comparison and competitiveness, this time
measurement test approach is for setting a function
executes within the expected time duration and time
limits.

A good use case would be having a function to
prevent side-channel timing attack in secret data
comparison like password comparison [15][16] . The
timing for any outcome from the secret data
comparison (be in failed, system error, system
unavailability, passed, hardware caching, etc.) should
be executed within the same timing responses
regardlessly. This is to prevent attackers from
guessing the secret data by observing the execution
timing behavior [15][16] .

For testing time sensitive function in Go, instead of
setting the system to execute test in parallel that can
introduce more complications like guessing failure
cause [17] , it is preferable to opt for concurrent
timestamping with timeout ranges. Figure 2.3.3-1
illustrates an example of measuring and testing
runtime.

Using timestamping with timeout ranges, the
approach simplifies the test algorithms and
dependency on complex hardware or testing on
various hardwares. Since we cannot measure time
with 100% accuracy during runtime, using an
acceptable range test approach is the only available
option for the tester. Hence, this test approach is
rarely seen in most of the guides.

func TestAdd(t *testing.T) {

 start := time.Now()

 _ := Add(2, 2)

 stop := time.Now()

 duration := stop.Sub(start)

 select {

 case duration:

 // do something pass

 case duration + (400 *
time.Millisecond):

 // do something pass

 // within range

 default:

 t.Errorf(“failed timing -
%v”, duration)

 // handle failed cases

 }

}

Figure 2.3.3-1 - a basic unit testing approach for
testing Add(a, b) function

3. Encountered Problems
In this section, the paper lists out all the problems
encountered when using the introduced test
approaches at scaled. These problems were observed
from some past projects’ developments, especially
when developing Go packages with strict
requirements such as cryptography wrapper.

3.1. Unpredictable Architectural Changes
for Test Codes

The most painful problem is managing many
architectural changes of test codes in Go. These
changes come in different forms like test algorithm
changes, test parameters’ data structure changes,
chaotic requirements as an overall input changes, and
test environment changes. Further details and
mitigation actions will be discussed in section 5.

These architectural changes are interrelated. Thus, by
adapting to these changes, the test suite is constantly
under refactoring at an overhaul level. At scaled, this
overhaul takes days to complete, which can be a
maintenance nightmare.

Also, these changes are unpredictable throughout the
early stages of development like prototyping,
especially conforming to many Agile software
development lifecycles. Go facilitates early stage
testing to make sure the created prototype is testable
while making design decisions. Since the changes are
unpredictable, it is not easy to facilitate a future-proof
architecture design for the test suite.

7 of 29

3.2. Wrong Test Approaches for Large
Scale Testing

When tester chosen the wrong test approach at the
start, for scaling, it is a big problem. This includes
making bad decisions such as not using table-driven
test approach, improper or no planning for test data
structure, no proper planning for mitigating future
changes like architectural changes mentioned earlier,
and no proper file structure management.
Consequently, the test suite becomes unmaintainable
at scaled, which often requires either overhaul
refactoring or redo from scratch. A good case study is
shown in Figure 2.3.1-3 where a test approach was
chosen wrongly. At scaled of 1000 cases, that would
be a heavy problem.

Another case study is shown in Figure 3.2-1. This is
the result of improper planning for data structure,
which yielded a long data declaration per test cases.
At scaled to 1355 total cases, the test data definition
itself yielded a total of 48229 total lines of codes.

Figure 3.2-1 - Total test cases with 1355 total cases
(off screen) and 48229 total lines of codes just to

build the test table scenarios.

3.3. Long Test Codes When Scaled
Long test codes at scaled using the introduced test
approaches is also a problem. Moreover, there was no
guidance for file structure planning and usually have
all the test codes squeezed under a single file. This
makes the test suite very difficult to maintain since a
small change can be snowballed into huge efforts. If
the test suite scaled beyond control, it becomes
unmaintainable.

A good case study is by observing Figure 3.2-1 and
Figure 3.2-2, the optimized version of Figure 3.2-1.
Both consumed 23746 to 48229 lines of codes for
1355 total cases. Even in optimized condition, it is
still considerably long which calls for attention for
careful handling.

Figure 3.3-1 - Total test cases with 1357 total cases
and 23746 total lines of codes to define test cases.

8 of 29

3.4. Missing Assertion and Limited
Logging Functionality

Another problem is that Go's standard package only
provides some primitive tools like minimum logging
mechanism and no assertion functions for testing.
The main reason is because of Go being a static type
design. Go allows developers to spin various
permutations of standard data types, but the assertion
functions in the standard package are specific to a
single rule or single data type. Therefore, tester
needs to use 3rd party test package to workaround
this problem.

When a tester uses Go’s interface{} to make a
generic input function, it introduces additional
complications and defeat Go’s clarity principle.
Therefore, there is no easy, uniform, and clean way to
log information and assert statement without building
the package’s own assertion.

3.5. Frequent Naming Collision
While complying to Effective Go naming convention
practices, a problem found is frequent naming
collision happening across source codes and test
codes [18] . From Effective Go, it is mandatory to
organize the naming pattern to be short and concise,
and intuitively understandable, usually consisting of
1-3 short words [18] . Also, both source codes and test
codes share the same naming pool in the package
which means every content in a Go package is
organized and references by a unique name.

When the tester is using these names without
consideration, it disrupts the developer future
development due to names being “magically” taken
out by test codes. This results in wasting memory,
unnecessary names for testing alone, unnecessary
refactoring efforts due to renaming.

3.6. Infrastructure Differences
Different results are produced due to different
infrastructures at development and testing stages is
another notable problem. This is seen when using
time-sensitive test approach while testing
time-related Go packages. From developer’s
perspective, the test results passed via their hardware
like their development laptop. However, upon
reaching tester, the continuous integration
infrastructure produced negative results with the
same source codes due to the use of virtual machines.

A good case study would be shifting from a hardware
test machine to a Docker container, where a lot of
local security restrictions are introduced by Docker
itself. Another case is that the tester runs the test on
actual hardware while leaving continuous integration
testing in a virtual machine.

To have consistent results, the team has to make the
continuous integration infrastructure built within their
development hardware, ensuring that the source
codes not only works in development machine but
also in production infrastructure, which is duplicated
efforts.

4. Potential Causes to Problems
In this section, the paper lists out all the causes from
the aforementioned problems. These causes are
analyzed so that a better mitigation can be planned
and proposed. The primary objective is to find a
consistent way to manage these causes in order to
mitigate the problems effectively while seeking
reasonable maintainability, readability, scalability,
and affordable maintenance costs.

4.1. Rapid and Chaotic Requirement
Changes

Rapid and chaotic requirement changes may affect
both source codes and test codes respectively. These
changes can be addition, removal, and alteration an
inconsistent amount of source codes per changes. The
changes can happen either systematically or chaotic
depending various factors. Low morale talents tend to
have chaotic changes since the focus is no longer on
product development. Another case would be
different product development stages where
prototyping stages tends to have chaotic changes for
market-fit requirements. Also, different development
lifecycle (SDLC) such as cowboy SDLC can have
chaotic requirement changes while systematic SDLC
like agile or waterfall development lifecycles tends to
introduce systematic changes.

Since the test codes are developed based on the
requirements and source codes, any changes to the
source codes may trigger unpredictable architectural
changes to the test codes or breaking them. Hence,
the objective is to identify all the encountered
changes and isolate them from one another, providing
a consistent and stable way to manage these changes.

9 of 29

4.2. Insufficient Experience
The technical debt and the experience of a tester with
both testing in Go and the programming language
itself can be the primary cause for some problems
discussed in section 3. This is commonly seen since
Go programming language is new, many developers
and testers are currently transition from other
languages to use Go.

Without sufficient experience, tester tends to create a
number of problems like unable to deal with
unpredictable architectural changes, selecting the
wrong test approaches for large scale testing,
frequently creates naming collision for developers,
and creating infrastructure differences.

Hence, another mitigation objective is to facilitate a
learning environment for inexperienced tester without
compromising test suite scaling quality. This also
includes finding a recoverable way to refactor
rescuable test suite. Another objective is to have the
tester practice the compliant consistency in naming
convention and coding pattern.

4.3. Missing Guidelines or Tutorials for
Large Scale Testing

The lack of guidance and tutorials covering large
scale testing aspects is another problematic
cause [12][13][14] . Most guides and tutorials only
mentions about known approaches and their how-to
but none actually mention about the scaling and the
encountered problems mentioned earlier.

Without proper guidance and necessary experiences,
inexperience tester tends to create a lot of problems,
especially creating unmaintainable long test codes,
frequently creating naming collision problems for the
developers.

Hence, the mitigation objectives are to increase the
technical competency either by identify and create
the missing guidelines for large scale testing or
facilitate a learning environment for large scale
testing without compromising test suite quality.

4.4. Large Test Cases Quantity
Upon scaling, the massive test cases quantity itself is
a problematic cause, creating long test codes
problem. The large quantity of test cases not only
magnifies the problems of the product; it also
magnifies the magnitude of the impacts for these
problems.

A small mistake such as defining test case data
structure without label as shown in Figure 4.4-1 can
be magnified into a huge problem. Bad and complex
source codes is another case study. A single
complicated test subject that offers a wide variety of
unrelated functions can complicates its test data
structure by consolidating all non-related test data
together to form a huge, unnecessary test data
structure.

Therefore, this reinforces the mitigation objective to
isolate all identified architectural changes from
influencing one another, and to reduce test cases
quantity by making use of insightful test tools. By
isolating all the changes, it indirectly facilitate a
learning environment for inexperienced tester
discussed in section 4.2.

Figure 4.4-1 - bad structure definition without

element label

4.5. Infrastructure Influences
Infrastructure influences in both development and
testing facility is causing the infrastructure
differences problem. Testing facility can be
influenced by various factors like project timeline,
monetary assets, hardware, software, talent pool,
resources availability/constraints, etc.

10 of 29

A case study is when a project has limited resources,
the allocation usually focuses on development pool,
trading off the quality of testing. Without sufficient
resources, various problems can occur like
inconsistent results from infrastructure differences.

Another case study is that when a tester is specialized
in virtualization or container software, the testing tool
can be done entirely in software. This benefits from
cost saving from overall infrastructure in exchange
for introducing possible infrastructure differences
problem.

Therefore, another mitigation objective is to ensure
the available resources like infrastructure are
producing the same results as the development.

4.6. Compliances to Go Standards
The senary cause is the requirement to comply with
Go standards like Effective Go coding standards for
both source codes and test codes. By having test
codes to comply with Go standards, it is easy to cause
problems like frequent naming collision if the
development team does not practice a consistent and
agreed patterns.

Also, it is easy to get into code duplication collision
during static analysis with test codes. Duplicated
codes often appear in an unplanned test data
structure, especially with test cases data definition.

Therefore, the mitigation actions should have an
objective to facilitate a means to provide consistency
and eliminating duplication for both present and
future developments. This way, it ensures the test
codes are always complying to Go standards.

5. Mitigations Actions
In this section, this paper lists out all the mitigation
actions based on the objectives learned from
analyzing the problems’ causes for large scale testing.
These actions act as important guidelines for
developing the large scale testing approach in section
6.

5.1. Use Simulation Test Technique
Simulation test technique provides good isolation for
each architectural changes, essentially mitigate the
unpredictable architectural changes problem and
facilitate easy management to rapidly and chaotic
requirement changes. The about isolating each of
changes is

One way is to use simulation test technique over the
conventional direct data test technique. The process
for performing the simulation type testing always
follow the following steps:

1. Learn - learn the operating environment
variables for offset preparations

2. Prepare - preparing the simulation
environment

3. Test - have the test subject runs in the
simulated environment

4. Assert - check all the output generated by
the test subject.

Simulation test technique is also able to mitigate any
changes related to test environment such as changing
the test machines for running the time-sensitive test
suite, essentially isolate any resources related
influences. It is done by either heuristically learn the
new environment offsets’ value or easily-pre-run the
test suite in the new environment.

The cost however, is that simulation test technique
can be slightly more complicated if the tester is not
familiar with simulation type test development. Also,
it depends on the availability of mocking the test
subject’s.

5.2. Proper Isolations
Additionally, a good mitigation action is to
essentially isolate all architectural changes. The
prerequisite to implement this action is to use
simulation technique described in section 5.1. There
are different strategies to handle each changes from
the start. Although it is unpredictable upfront, tester
can use 1000 lines of codes in a single file as a
decision factor. Here are some proactive pointers:

1. You should use large scale approach if the
total test cases can go beyond 100 cases and
each test scenario structure contains more
than 25 elements, yielding a minimum of
2500 lines of codes excluding structure
braces others.

2. You can start to consider using large scale
approach but not necessarily implementing
it if the total test cases is 10 but each test
scenario structure contains more than 25
elements, yielding 250 lines of codes
excluding struct braces.

These strategies are explained and shown in the
following subsections.

11 of 29

5.2.1. Isolate Test Algorithm Changes
Test algorithm changes is related to testers
refactoring the test algorithms. This includes the
implementation process, assertion, preparation, test
approaches etc without affecting the existing number
of test cases or altering the source codes.

A good example would be the refactoring Add(a,
b) function from Figure 2.3.1-3 to Figure 2.3.2-1.
The test algorithm had changed from the basic testing
approach to table-driven approach due to previous
bad decisions like using the wrong test approach from
the start. However, the test parameters, the total
number of test cases, the source codes, and the test
results remained noticeably unchanged.

To isolate this type of changes from others, tester
usually separate test algorithm into a single own file.

5.2.2. Isolate Test Parameters Changes
Test parameters changes is usually related to altering
the test parameters’ data structure from the
table-driven test approach. They change by
increasing/decreasing the data elements declaration
or altering element's data type.

A good example would be the test parameter
structure transformation from Figure 5.2.2-1 to
Figure 5.2.2-2. There is a huge change by
eliminations (notable those inBad* or inMissing*
parameters), and new additions (notable switches).
This resulted in Figure 5.2.2-3 where the data
definition

To isolate this type of changes from others, tester
uses flexible “switches”, usually in a form of
map[string]bool listing to hold common
elements. That way, common switching elements can
be unified under a single “switches” element,
allowing the tester to create/remove any common
elements at a given time without altering the overall
data structure. Also, this facilitates dynamic element
declaration, providing tester some flexibility in
controlling test data.

Figure 5.2.2-1 - scenario data structure before test
parameter changes

12 of 29

Figure 5.2.2-2 - scenario data structure after test

parameter changes

Figure 5.2.2-3 Resultant definition for using the new
scenario data structure after parameter changes.

5.2.3. Isolate Test Requirements Changes
Test requirements changes is the alteration from the
design input, usually related to source codes
addition/removal. With such alteration, the test codes
have to be altered in order to react to the new
changes.

One example would be enabling
VerifySignature(...) function placeholder to
a fully functional function in the source codes, shown
in Figure 5.2.3-1 and Figure 5.2.3-2 respectively. By
adding source codes into the test subject, there is a
need to add new test algorithm, parameters, and test
cases in the test suite to ensure the new source codes
are within the test coverage.

To isolate these changes among other, tester can use
simulation test technique to fully isolate between the
test suite and source codes to cope with the chaotic
requirement changes.

Figure 5.2.3-1 - the initial placeholder for
VerifySignature(...) function

Figure 5.2.3-2 the source code changes for
VerifySignature(...) function.

13 of 29

5.2.4. Isolate Test Environment Changes
Test environment changes is related to the test
environment and machine when the test suite is being
executed. By changing the test environment, it affects
the test results without any codes alteration.

One example is the usage of physical hardware in
development environment while using virtual
machine in the automated testing facility. The
physical and simulated hardware differences can
affect some functions like time and randomness in
their respective means.

To isolate this problem, tester can deploy simulation
test technique by either pre-run the test suite in the
new test environment and react accordingly.
Alternatively, tester can develop a “train” model to
learn environment before preparing the simulation
parameters.

5.3. Extensive Use Test Coverage Heatmap
To mitigate the problem with long codes upon scaling
by reducing the test cases quantity to only the
effective ones, one way is to always make full use of
test coverage heatmap to accurately and effectively
develop the test cases.

This is done via the heatmap visualization, which
provides a “radar” awareness of the test suite against
the source codes. This “radar” awareness acts as a
directional input for the tester to know what and
where to test the source codes. Hence, the tester only
creates test cases necessary to achieve full test
coverage.

5.4. Heed Golangci-lint Linter Warnings
Apart from using test coverage heatmap extensively,
another important mitigation action is to always heed
the linter warning from Golangci-lint static analysis
report for test codes, especially the code duplication
warning. This mitigates a number of problems like
frequent naming collision, long test codes, and
having the test codes fulfilling Go Standards
compliance requirements.

There was a thought that most test codes are meant
for duplication but this is a myth:

1. Repeating codes still means unnecessary
redundancy.

2. Repeating test scenario value assignments
means there is/are

a. duplicated test cases

b. unnecessary large scenario
structure

c. possible redundant test cases since
tester usually only need to test
boundary and invalid values.

If other linters like gosec once a while providing false
positive warning, tester should flag them accordingly
with the machine-reading comment:
//nolint:gosec as instructed by the
golangci-lint documentation [8] .

5.5. Build Own Assertion and Log
Functions

To effectively mitigate the missing assertion and
limiting logging function problem, one good action
would be always build the test suite’s own assertion
and abstract the logging function into a consistent test
output presenter. The prerequisite to implement this
action is to use simulation technique described in
section 5.1.

It is done by isolating any new invention or 3rd party
assertion or logging tool under a single function,
leaving development opportunities for inexperienced
tester to gain experience while leaving simple
optimization effort for experienced tester to improve
the test suite. Tester can also abstract the logging
function into a 3rd-party package to make output
printing consistent and pretty shown in Figure 5.5-1.

This keeps the assertion from data processing for
logging and remains a single judgement statement.
Also, it keeps the data log reporting format consistent
across all test cases.

14 of 29

Figure 5.5-1 - a snapshot of a pretty print log output

5.6. Practice Consistent Syntaxes and
Styles

Practicing consistent syntax and coding style, always
complying to Go standards like Effective Go [18] is
also a good way to mitigate numerous problems. It
helps by reducing long test codes, reducing naming
collision by fulfilling the objective of complying to
Go standards, reducing long test codes by using
insightful tools and practices, and providing a means
for inexperienced tester to learn on-the-job without
compromising maintainability. Maintaining syntaxes
consistency also provides a searchable environment
in a large test codes, which makes scaling easier.

Another way to simplify the naming convention (e.g.
keeping it short and organized) in the test codes is to
make use of Go’s interface for test cases data
structure. It effectively bind the test functions to the
necessary test cases, keeping the name specific to it
while freeing the global names for other usages.

When the coding styles and syntaxes are consistent, it
provides an easier learning environment for
inexperienced tester to quickly gain the necessary
knowledge and experiences on the job, thus, reducing
inexperience mistakes when contributing to the test
suite.

5.7. Refactor One Step at A Time
To mitigate problems like rescuing a still refactorable
test suite caused by technical debt and inexperienced,
one good way is to refactor an existing rescuable test
suite one step at a time. This is to avoid massive and
untrackable problems when transforming an existing
approach to the large scale test approach. It is done
by refactoring one element at a time and let Go
compiler to guides the step-by-step efforts.

Tester should keep an open mind that one can use
mixed approaches for continuous improvement
instead of one big major refactoring effort. Such big
refactoring effort is a high maintenance cost should
only execute when there is a business value in it.

A case study is shown in Figure 5.7-1, the tester
changes one element
(s.inSwitches[inRelatedInvalidEncryp
tedPEMData) instead of all the cases at one time
and runs the compiler. Once the transition is done, it

is version controlled and the tester moved onto the
next element.

Another case study is shown in Figure 5.7-2 and
Figure 5.7-3. Both figures show mixed approaches
usage for both scenario definition and algorithm
respectively. Tester does not necessarily to fully
migrate the test suite until the efforts are worthy to
pursue.

Figure 5.7-1 - changing one element at a time

Figure 5.7-3 - definition of mixed approaches for

scenario definition

15 of 29

6. Large Scale Test Approach
In this section, this paper proposes the resultant large
scale test (LST) approach for testing large Go
packages. It is based on all the mitigation actions
from section 5, covering the approach’s objective,
basic rules and mindset, file structure, steps of
executions and growth, and refactoring efforts
recommendation.

This is to facilitate learning environment without
compromising test suite quality when scaled for
inexperienced tester to work effectively together with
those experienced and specialized teammates

6.1. Main Objectives
For implementing large scale test approach, there are
a number of main objectives to be cleared of. The
main objectives are:

1. Proper isolation - to provide proper isolation for
all types of identified changes via various ways
such as file structuring by responsibilities, its
contents, and steps to implement the changes.

2. Compliant to Go standard - to ensure the
approach complies to Go standards without
special exceptions, tools, and rules for keeping
things simple, reusing existing test tools for
keeping the test suite consistent with source
codes.

6.2. Basic Rules and Good Practices
In order to achieve all the objectives effectively,
tester has to comply with a list of rules and mindset.
Otherwise, it would be very difficult and confusing to
implement LST. These rules and good practices are:

1. Use Table-Driven Test Approach - It allows the
tester to scale a test suite by quantity without
duplicating test test algorithms all over the place.

2. Always use Data Structure to organize Test
Parameters - It facilitates organizations and
flexibility. This ensures any new test parameters
being added or being removed in future will not
introduce heavy lifting changes to the entire test
suite.

3. Always Comply to Go Programming
Standards and Practices - It keeps the syntaxes
and codes consistent, heed the warning from
static analysis tools like golangci-lint for both
source codes and test codes. Without having the
same development attention as source codes for

test codes, they can grow to become a
time-bomb.

4. Always use Helpers and Subroutines - It helps
to reduce test codes duplication. When using
helpers and subroutines, it allows the tester to
build simulated environment for its test subject,
isolated the test parameters away from test cases
configurations. This simplifies the test
configurations by introducing a standardized
“switches” instead of feeding test parameters to
the test subject.

6.3. Proposed File Structure
To maintain proper organization with anticipation of
possible addition/removal changes in future, this
approach employs a different file structure
organization. Figure 6.3-1 shows the directory tree
structure holding both the source codes and the test
codes. This is a huge difference compared to the
original file structure shown in Figure 2.3.1-2.

Directory
├── <source>.go
├── <source>_test.go
├── <source>_<MISC>_test.go
├── <source>_<publicAPI>_test.go
└── <source>_scenarios_test.go

Figure 6.3-1 - the naming pattern for large scale
testing approach.

The roles and responsibilities for each type of files
are:

1. <source>.go holds the source codes.
2. <source>_test.go holds the test

scenario structure declaration, helpers,
simulation subroutines, assertion functions,
etc. It is the “library” or placeholder for all
test codes in this package.

3. <source>_scenarios_test.go
holds the definition of all test cases with the
parameters’ values. For any increment of
test cases, its description, configurations are
defined here.

4. <source>_<publicAPI>_test.go
holds the test algorithms for a public API
offered by the <source>.go . This file
describes how a test subject is being tested,
calling the helpers and subroutine functions
from <source>_test.go .

5. <source>_<MISC>_test.go holds any
test algorithms that is not compatible with
public API. A good case is to set up

16 of 29

pre-testing tools before running the test like
the “ TestMain(m *testing.M) ”
function.

The <source>.go tag means the main source
codes. It should comply to effective Go standards and
nothing should change. When a given name is
available (example: passphrase), the tester should
replace all the <source> tag with that name. Like
the standard Go, all test codes reside in the file with
_test.go suffix.

6.3.1. Important Guidelines
Although the file structure is clearly defined, there
are some important guidelines to comply for avoiding
costly pitfalls. The following list holds some warning
guides requiring attention:

1. If Golang-lint linter is reporting warnings and
bad practices (e.g. “don’t repeat yourself”) in any
test files, tester must refactors and simplify that
file before it becomes a complication.

2. The content for each files should not go outside
of its roles and responsibilities. Example, when
the tester starts defining test cases inside
<source>_test.go , it is a warning sign that
it was done wrongly. Tester should move those
test cases into
<source>_scenarios_test.go instead.

3. Only import any other packages in
<source>_test.go . If any other files is
importing packages aside from testing
package, it is done wrongly and tester should
wrap the involved codes into a subroutine and
sent it to the <source>_test.go instead.

4. In the test parameter data structure, it must have
a testType data element. This testType
acts as a gatekeeper for test algorithms to operate
with the associated test values or skip it. This is
mainly because all the given test cases’ data,
related or otherwise, are fed to all test algorithms
regardlessly under a loop. Only the gatekeeper
can distinguish the test cases is meant for a
particular test algorithm.

5.

6.4. Naming Conventions
When deploying large-scale testing approach into the
test suite, there are some naming conventions to
comply with in order to achieve the objectives and
practices.

6.4.1. Go Standards
There should not be any changes or differentiation
from Go standards such as commentary styles, short
syllabus and insightful names, package naming,
function’s private and public exposures, etc.
Anything that does not complies to gofmt , a formatter
rule tool should not be committed in anyway.

For any variables, structures, constants, and functions
related to test suite, it should always start with test
prefixes. Similar from Go Standards, the capitalized
prefix (Test-) such as “ func
TestObject(...) ” is a reserved function naming
convention for test executions.

Figure 6.4.1-1 shows an example template of
<source>_test.go with a library of assertion.
Notice that each subroutine functions begins with the
private function test- prefix. Also, the test
parameter data structure also has the same naming
prefix. Therefore, the naming pools for test suite and
source codes can be safely separated with strict
discipline.

const (

 testAddStandardLabel = 123

)

type testAddScenario struct {

 ...

}

func testAssertAdd(...) {

 ...

}

func testPrepareAdd(...) {
 ...

}

Figure 6.4.1-1 - naming example for LST

17 of 29

6.4.2. Private First
Aside from complying to Go Standards like the
test prefixes, tester should always use private
naming (lower case starting name like
“ testName(...) ”. Firstly, this can avoid
unnecessary public API exposure through test codes.
Secondly, it keeps the test suite private to that
package alone. In Figure 6.4.1-1, all test functions
including internal assertion are in private exposure.

6.4.3. Go Interface Organization
To maintain the one-three short naming convention,
tester can use Go interface feature onto the test
parameters’ data structure. This way, all the functions
are grouped inherently, greatly reduces the name
length and privatized all the internal functions. Due
to the interface grouping effect, that the same name
can be reusable onto different data parameters’ data
structure.

Figure 6.4.3-1 shows the Go interface improvement
over Figure 6.4.1-1 example. Notice that both
functions’ name are now assert and prepare
respectively instead of long phrases.

const (

 testAddStandardLabel = 123

)

type testAddScenario struct {

 ...

}

func (s *testAddScenario)
assert(...) {

 ...

}

func (s *testAddScenario)
prepare(...) {
 ...

}

Figure 6.4.1-1 - naming example for LST

6.5. Proper Isolations
To isolate each type of changes, tester should follow
the guidelines and uses the large scale approach file
structure. This section shows all the steps of large
scale testing approach sequentially.

6.5.1. Writing Test Algorithms
The first step is to write test algorithms. The only file
involved in this step is
<source>_<publicAPI>_test.go , where the
tester write the test algorithms here. The goal in this
step is to clearly write out how the test subject is
being simulated and tested, which is to handle any
changes came originated from:

1. Test algorithm changes
2. Source codes changes

To isolate test parameter changes, test case quantity
changes, and test environment changes from the
above changes, tester should keep the test algorithm
as simple as possible by:

1. Calling helper or subroutines instead of
writing the execution codes.

2. Use simulation configuration, usually in a
form of map[string]boo l data type. It
allows the tester to create simulation
switches by defining the string and set the
value to true. The call out is usually
something like: s.switches[string] .

3. Write the panic capturing function here since
it is part of test algorithm.

4. Use test cases generator function (e.g.
test<DataType>Scenarios()) to
generate all table-driven test scenarios and
then loop over them.

5. At the beginning of the loop, always check
the test case (scenario) containing the
testType value permitted for the
algorithm. This is to ensure the test
algorithms should run on the correct test
cases. If the value is incorrect, the algorithm
should skip the loop by continuing to the
next iteration.

Some tips for writing the test algorithm is always
keep the entire test sequences into 4 general steps:

1. Learn - learn the environment and prepare
offset calibrations for Prepare step.

2. Prepare - prepare the simulation
environment including generating the

18 of 29

required input and output (for later assertion
and logging usage).

3. Test - shows how the test subject is being
tested.

4. Assert - perform assertion and logging for
the test case. It takes the output of the test
subject and test it against the output
generated by the simulation environment
subroutine in prepare step earlier.

For source code changes that breaks its public API
structure, it is an entirely new function. Hence, it is
expected to break the test algorithm. However, such
changes usually involved altering the Test section
where the function call requires an update.

For subroutine/helper functions changes, this is
usually caused by refactoring subroutine/helper
functions in the <source>_test.go . It is
commonly seen as package expands, it involves

abstracting a cleaner subroutine/helper functions to
use across different test algorithms. However, this
change should not break the existing test algorithm in
any way.

By doing only this step yields compilation error since
the <source>_test.go and
<source>_scenarios_test.go are yet to
facilitate all the helpers, data structure, and
subroutines functions used in this test algorithm.

Some case studies are shown in Figure 6.5.1-1 and
6.5.1-2. Figure 6.5.1-1 shown the conventional
implementation, while 6.5.1-2 shows how to handle
test subject with panic behavior. Due to the static data
type in Go, it is better to wrap the panicking test
subject inside a function that captures the output
panic object.

19 of 29

Figure 6.5.1-1 - a case study for writing test algorithm

20 of 29

Figure 6.5.1-2 - a case study for writing test algorithm with panic handling

21 of 29

6.5.2. Writing Test Suite’s Library
With test algorithm is now available, tester can
proceed to develop the test parameters data structure,
helper, and subroutine functions used by the test
algorithm in <source>_test.go . This is
equivalent to developing “library” for the entire test
suite or similar to developing developing Go
package’s source code.

For test parameter, it has its own data structure
usually known as “scenario”. It holds the test
parameters and offers its helper/subroutine function
interfaces. With the defined clarity by referencing the
test algorithm, tester can pinpoint and develop a
reusable helper/subroutine functions instead of
blindly develop the test execution codes.

The goal for this step is to handle changes originated
from:

1. Test parameters changes
2. Test environment changes

To isolate test algorithm changes, source codes
changes, and test cases quantity changes, tester
should keep <source>_test.go as the test
suites’ library codes facilitating:

1. subroutine functions for the test algorithms.
2. assertion function to process the test output

and results.
3. logging functions to process log data.
4. any helper functions like test helper object

creations.
5. no repeating/duplicated helper and assertion

functions.

6. test parameter data structure declaration.
7. labelling for magic numbers and values.

For test parameter data structure, at a minimum, it
should always offers the following 4 elements:

1. uid - the test unique identification number
2. testType - the gatekeeper for letting a test

algorithm to operate on a given test case.
3. description - for tester to communicate and

understand a test case, usually a long string.
4. switches - for test case to configure the

simulation preparations.

For better control and presentation, the switches can
use string data type as the label while boolean as the
value. This provides a constant value for consistency
and uniformity, recyclability purposes at coding level.

At this point, if the test cases (scenarios) function is
missing, the compilation continues to yield error.

The case studies are shown in both Figure 6.5.2-1 and
Figure 6.5.2-2. Their prepareFunction(...)
and assertFunction(...) always relies on the
switches to alter the parameters generations or
checking according to the test cases. Also, in Figure
6.4.2-2, due to the chaotic nature of the data used in a
test algorithms, it is okay to use
map[string]interface{} type to hold various
amounts and different types of input/output data from
the test algorithm. This makes logging efforts easier.

22 of 29

Figure 6.5.2-1 - a case study of defining test parameter data structure with its helper function interfaces

23 of 29

Figure 6.5.2-2 - a case study of defining test parameters with its assertion function

24 of 29

6.5.3. Writing Test Cases (Scenarios)
With both test parameters and test algorithms
available, tester can proceed to develop the test cases
in <source>_scenarios_test.go . Normally,
these test cases are wrapped into a single function,
usually named like
<test_parameter_structure>_scenarios
(...) . Some examples are
testFileHelperScenarios() and
testManagerScenarios() as seen in Figure
6.4.1-1 and Figure 6.4.1-2 respectively. This function
yields a slice (in English: list) of test scenarios
containing test configurations to run on various
associated test algorithms.

The goal for this step is to handle changes originated
from:

1. Test cases quantity changes

To isolate test parameters changes, test algorithm
changes, source code changes, and test environment
changes, tester should keep the test cases scenario
generations to:

1. Only defining the values of the test cases
and nothing else.

2. Strictly use the scenario switches to define
the test cases values.

3. Write the test cases as if it will not be
revisited after scaling.

Due to the switches data element availability, tester
can freely defines any given switches for test
helpers/subroutines functions to configure the
simulation environment. If any unforeseen future test
parameter changes occurs, user can safely alters the

test parameters without needing to go through all the
test cases.

To effectively write the test cases, tester can use Go
test coverage heat map tool to expand the test cases
effectively and accurately. This allows tester to focus
on boundary values and invalid values testing instead
of blindly cherry-picking test values.

For keeping the test case’s description in a readable,
sane manner, tester can use Go’s raw string (̀ ...`)
opening convention instead of conventionals. Using
raw string opening convention reduces the needs to
perform strings concatenation coding, which is an
obfuscation to readability.

If the test cases is written from scratch, tester can first
define the desired passing test case value (known as
“happy path”) to keep everything running. This way,
tester can ensure various parts of the test suite are
working fine before expanding to other test cases.

Figure 6.5.3-1 and Figure 6.5.3-2 shown some case
studies for writing test cases (scenarios). Notice that
both 6.5.3-1 and 6.5.3-2 has similar data structure
patterns but is able to serve different test packages
due to the switches data element. Also, both case
studies has shown good usage of testType data
element where the test cases are specifically meant
for their respective test algorithms. The description
value is clear, clean, and readable at code level.

At this point, the Go compilation should work
properly since every dependencies are met. Any
compilation errors at this point should be related to
smelly codes like syntax errors, etc.

25 of 29

Figure 6.5-3-1 - A simple case study for defining test cases scenarios.

26 of 29

Figure 6.5-3-2 - Another case study for defining test cases scenarios

27 of 29

6.6. Refactoring Guidelines
For refactoring an existing package, both developer
and tester must consider the business value behind it.
If it is too costly (may cost a month), they can
consider using mixed-approaches to refactor small
pieces of changes at a time instead of as a whole.

When it is worthy to refactor an existing test suite to
match this test approach, one should do the following
in sequence:

1. Lock the entire test suite with the existing
test results. The goal is to maintain the same
test result at all times.

2. Alters 1 parameter at a time / apply 1
changes at a time. Example, adding a switch
map object:

a. Formulate the map switch
b. Delete the parameter from the

struct
c. Delete the log printing that deleted

parameter
d. Save and let error report guides you
e. Change each deployed parameter to

match the new switches
f. Change the scenarios listing (can

take time)
g. Save.
h. Re-run test. The result should be

consistent to 1
3. Stage the code into the version control

commitment like Git add.
4. Repeat step #2 and step #3 for other

changes..
5. Re-run final testing to confirm test results

consistent as step #1.
6. Perform thorough code reviews and apply

corrections when needed.
7. Commit the codes.

With the large scale test approach set up and working,
developers and testers can now scale the package
with controllable means. They can now identify the
type of changes introduced in the future and alters the
package without getting into unmaintainable test
codes nightmares.

7. Conclusion
Testing in Go is relatively easy with readily available
test tools and facilities provided by the language
itself. There are many tutorials made available for Go
beginners to learn and adapt to it. However, when
scaled such as going beyond 10,000 lines of codes,

the approaches introduced by these tutorials are
insufficient, potentially causing a scarily large,
unmaintainable test codes which require big efforts to
refactor.

This is where large scale test (LST) approach is
filling the gap. LST provides proper isolation for
various architectural changes, practices to manage
naming conventions, rules and practices to build a
large scale test suite. Also, it utilizes Go’s test
coverage heatmap tools for effective testing.

Tester can consider using mixed-approaches or full
LST approach depending on business values. In any
cases, LST approach has a refactoring guidelines to
smoothen the transformation.

However, LST approach is not recommended to Go
beginners since their priority is to get familiar with
testing in Go, not about advanced testing like
benchmarking or dealing with scaling. This approach
should be briefly mentioned in the testing in Go
introduction but let the beginners to explore on
his/her own.

8. License
This paper is licensed under:

CC-BY

This license lets others distribute, remix, tweak, and
build upon your work, even commercially, as long as
they credit you for the original creation. This is the
most accommodating of licenses offered.
Recommended for maximum dissemination and use
of the licensed materials.

9. Acknowledgement
Thank Lim Lee Booi for her continuous constructive
criticism of the manuscript despite all the hardships.

あ り が と う ご ざ い ま し た | Thank you

10. References
[1] GOLANG.ORG, 2019, “Documentation”, Golang.org,

viewed July 08, 2019, available at: https://golang.org/doc/

[2] MARGARET ROUSE, SARAH LEWIS, 2018, “Go
(Programming Language)”, TechTarget, viewed July 08,
2019, available at:
https://searchitoperations.techtarget.com/definition/Go-progr
amming-language

[3] IRINA SIDORENKO, 2019, “Should I Go? The Pros and
Cons of Using Go Programming Language”,
Hackernoon.com, viewed July 08, 2019, available at:

28 of 29

https://golang.org/doc/
https://searchitoperations.techtarget.com/definition/Go-programming-language
https://searchitoperations.techtarget.com/definition/Go-programming-language

https://hackernoon.com/should-i-go-the-pros-and-cons-of-usi
ng-go-programming-language-8c1daf711e46

[4] PLURALSIGHT, 2016, “An Introduction to the Go
Compiler”, Pluralsight LLC, viewed July 08, 2019, available
at:
https://www.pluralsight.com/blog/software-development/the-
go-compiler

[5] JOHANNES LIEBERMANN, 2017, “Why Golang Is Great
for Portable Apps”, Codeburst, viewed July 08, 2019,
available at:
https://codeburst.io/why-golang-is-great-for-portable-apps-94
cf1236f481

[6] KEVAL PATEL, 2017, “Why should you learn Go?”,
medium.com, viewed July 08, 2019, available at:
https://medium.com/@kevalpatel2106/why-should-you-learn
-go-f607681fad65

[7] CHEW KEAN HO, LIM LEE BOOI, 2018, “Descriptive
Review for Software Testing Algorithm”, ResearchGate.net,
viewed July 08, 2019, available at:
http://doi.org/10.13140/RG.2.2.11325.10724

[8] GOLANGCI, 2019, “Golangci-lint”, Github.com, viewed
July 08, 2019, available at:
https://github.com/golangci/golangci-lint

[9] CHEW KEAN HO, 2018, “Testing”, Guides > Go , Google
Sites, viewed July 08, 2019, available at:
https://sites.google.com/view/chewkeanho/guides/go/testing?
authuser=0

[10] CHEW KEAN HO, 2018, “Benchmark”, Guides > Go ,
Google Sites, viewed July 08, 2019, available at:
https://sites.google.com/view/chewkeanho/guides/go/benchm
ark?authuser=0

[11] DAVE CHENEY, 2019, “Practical Go: Real world advice for
writing maintainable Go programs”, dave.cheney.net, viewed
July 08, 2019, available at:
https://dave.cheney.net/practical-go/presentations/qcon-china.
html

[12] ELLIOT FORBES, 2018, “An Introduction to Testing in
Go”, Tutorial - Golang , Tutorial Edge, viewed July 08, 2019,
available at:
https://tutorialedge.net/golang/intro-testing-in-go/

[13] CALEB DOXSEY, 2019, “Testing”, Go Resources - An
Introduction to Programming in Go , viewed July 08, 2019,
available at: https://www.golang-book.com/books/intro/12

[14] MARTIN TOURNOJI, 2018, “TableDrivenTests”, Golang/go
- Wiki , Golang group via Github.com, viewed July 08, 2019,
available at:
https://github.com/golang/go/wiki/TableDrivenTests

[15] BIV, AXAPAXA, 2016, “Timing attack and good coding
practices”, Cryptography StackExchange, viewed July 08,
2019, available at:
https://crypto.stackexchange.com/questions/41691/timing-att
ack-and-good-coding-practices

[16] PETER SCHWABE, 2016, “Timing Attack and
Countermeasures”, Summer school on real-world crypto and
privacy , Šibenik, Croatia, viewed July 08, 2019, available at:
https://summerschool-croatia.cs.ru.nl/2016/slides/PeterSchwa
be.pdf

[17] MITCHELL HASHIMOTO, 2016, “Advanced Testing in
Go”, Gophercon 2017 , Speakerdeck.com, viewed July 08,

2019, available at:
https://speakerdeck.com/mitchellh/advanced-testing-with-go

[18] GOLANG.ORG, 2019, “Effective Go”, The Go
Programming Language > Docs , golang.org, viewed July 08,
2019, available at: https://golang.org/doc/effective_go.html

[19] CHEW KEAN HO, 2018, “Struct Memory Alignment”,
Guides > Software Coding Style , Google Sites, viewed July
09, 2019, available at:
https://sites.google.com/view/chewkeanho/guides/software-c
oding-styles/in-general/struct-memory-alignment

29 of 29

View publication statsView publication stats

https://hackernoon.com/should-i-go-the-pros-and-cons-of-using-go-programming-language-8c1daf711e46
https://hackernoon.com/should-i-go-the-pros-and-cons-of-using-go-programming-language-8c1daf711e46
https://www.pluralsight.com/blog/software-development/the-go-compiler
https://www.pluralsight.com/blog/software-development/the-go-compiler
https://codeburst.io/why-golang-is-great-for-portable-apps-94cf1236f481
https://codeburst.io/why-golang-is-great-for-portable-apps-94cf1236f481
https://medium.com/@kevalpatel2106/why-should-you-learn-go-f607681fad65
https://medium.com/@kevalpatel2106/why-should-you-learn-go-f607681fad65
http://doi.org/10.13140/RG.2.2.11325.10724
https://github.com/golangci/golangci-lint
https://sites.google.com/view/chewkeanho/guides/go/testing?authuser=0
https://sites.google.com/view/chewkeanho/guides/go/testing?authuser=0
https://sites.google.com/view/chewkeanho/guides/go/benchmark?authuser=0
https://sites.google.com/view/chewkeanho/guides/go/benchmark?authuser=0
https://dave.cheney.net/practical-go/presentations/qcon-china.html
https://dave.cheney.net/practical-go/presentations/qcon-china.html
https://tutorialedge.net/golang/intro-testing-in-go/
https://www.golang-book.com/books/intro/12
https://github.com/golang/go/wiki/TableDrivenTests
https://crypto.stackexchange.com/questions/41691/timing-attack-and-good-coding-practices
https://crypto.stackexchange.com/questions/41691/timing-attack-and-good-coding-practices
https://summerschool-croatia.cs.ru.nl/2016/slides/PeterSchwabe.pdf
https://summerschool-croatia.cs.ru.nl/2016/slides/PeterSchwabe.pdf
https://speakerdeck.com/mitchellh/advanced-testing-with-go
https://golang.org/doc/effective_go.html
https://sites.google.com/view/chewkeanho/guides/software-coding-styles/in-general/struct-memory-alignment
https://sites.google.com/view/chewkeanho/guides/software-coding-styles/in-general/struct-memory-alignment
https://www.researchgate.net/publication/335712808

