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Abstract— Localization in mobile robotics is an active re-
search area. Statistical tools such as Bayes filters are used
for localization. The implementation of Gaussian processes in
Bayes filters to estimate transition and measurement models
were introduced recently. The non-linear and non-parametric
nature of Gaussian processes leads to new possibilities in
modelling systems. The high model complexity and computation
expense based on the size of the dataset are shortcomings
of Gaussian process Bayes filters. This work discusses our
approach of a sparsing process of a dataset based on Bayesian
information criterion model selection and global optimization.
The developed approach combines the idea of avoiding model
overfitting and Bayesian optimization to estimate a sparse
representation of a Gaussian process. Based on visual odometry
data of a mobile robot, the method was evaluated. The results
show the operability of the system and unfold limitations of the
current implementation such as random-initialization.

I. INTRODUCTION

Bayes filters have been used frequently in mobile robotics.
Different textbooks discuss the main aspects of different
implementations of Bayes filters, namely Kalman filter or
extended Kalman filter (EKF) [1]. Unfortunately, known re-
strictions limit the accuracy of Bayes filter implementations.

A Gaussian processes is a method for non-linear and non-
parametric regression, which can be implemented in Bayes
filters (EKF or particle filter) as a motion or measurement
model [2], [3], [4]. The main benefit of a Gaussian process
are estimations based on a dataset D including uncertainty.
This leads to Bayes filter implementations, where prediction
and correction are based on data [4] with minor model
restrictions. The main shortcoming of Gaussian processes
is the usage of the whole dataset for each estimation step.
Therefore, the size of the dataset limits the processing speed.

This work tackles this problem by estimating pseudo-data
for a sparse representation of a Gaussian process. This leads
to the estimation of a new dataset D*, which consists of less
data elements than the original dataset D without significant
loss of model accuracy. This work is structured as follows:
The next section discusses previous work. Section III dis-
cusses our method for optimization. Section IV evaluates
our experiments. Finally, section V summarizes this work
and gives an overview concerning future work.

II. PREVIOUS WORK

Bayes filters are well known methods for state es-

timation in mobile robotics [1, p. 23]. Doing so,
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P(Z4|Z1:4—1, Z1:4, U1:4—1) must be evaluated using different
approximations for motion models p(Z;|u;, Z:—1) as well as
measurement models p(Z;|Z;). This can be done using linear
Gaussians in case of Kalman filter, or taylor approximation
in case of EKF. To overcome approximation problems, non-
parametric regression can be used to estimate models based
on data. Based on that, models can be described using
real system behavior. A method for such tasks is Gaussian
process regression. This model is fully described using a
mean and a covariance function [4], [5]:
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Where GPj p(.) predicts the output (mean) based on the
input Z,e., the dataset D, a kernel vector I? a kernel
matrix K, the identity matrix I and the measurement noise
02. GPs p(.) predicts the inherent uncertainty using the
additional scalar value k(.), the kernel function. Note, that
a detailed description of Gaussian processes and kernel
methods can be found in [6].

The Gaussian process is based on the dataset D =
{(Z0,90), -y (Tn,yn)}, where ¥ € RP*! and § =
(Y15, yn)T and thus ¥ € R™*'. Due to n examples in
D, K € R"™ "™ and % € R"*1. Based on the dimensions of
the Gaussian process parameters K, K and ¥, the size of the
dataset D itself is critical facing real time constraints.

Gaussian process sparsing focuses on the generation of
D* = {(Z5,v5), -, (B, yk,)}, where m is the number of
examples in the new dataset D* and

m<n 3)
GP;p(.) = GP;p-(.) (€))
GPZ,D(~) ~ GP);D*(.) (5)

Recently, different approaches for Gaussian process sparsing
and their applications have been discussed. In [7] a greedy
sample selection is performed, where likelihood approxima-
tion is done. The subset is selected analysing the information
gain. A stop criterion must be defined in terms of fixed set
size or square error value. [8] generates new data points
(pseudo points) to estimate D* based on [7] and a maximum
likelihood approach. [9] and [10] use a sparsed Gaussian pro-
cess based on [8] to estimate stochastic differential equations.

Different to the previous work, the estimation of the
sparse representation of a Gaussian process in this work
is calculated based on the Bayesian information criterion
(BIC) for pseudo input generation and global optimization
for Gaussian process hyperparameter optimization.



III. OUR APPROACH

The developed approach combines the idea of preventing
model overfitting and global optimization in two stages. In
the model selection stage, the sparsing of the dataset D
using clustering and model selection is done. After that,
the optimization stage optimizes a new Gaussian process to
accomplish the constraints in equation 3 - 5. The remaining
part of this section introduces the two stages.

A. Model Selection

The idea of sparsing in this work is based on avoiding
overfitting of model selection. In this case, a finite gaussian
mixture model (fGMM) was chosen to model the data. The
optimal model dimension can be estimated using model
selection based on the BIC [11] and a f{GMM analysing
1,2, ...,n mixture components. Our approach estimates the
number of components using the BIC and estimates D™ using
the expectation maximisation (EM) algorithm based f{GMM
fitting [12]. This is achieved using

m

p(#|0*) = > meN (@i, ) ©)
k=1
where m = argmin(BICiomm (D, 7)) )
j=1mn

Where p(Z|0*) describes D* using a fGMM. 7;, ji; and ¥;
are the parameters of the j-th f{GMM component, which are
summarized in 6%. m is the optimized number of pseudo-
inputs based on the BIC analysis. Typically, the number of
relevant samples will be smaller than the raw dataset (m <
n). Note, that this assumption is based on a high number
of samples. p(f|67*) is estimated using the EM algorithm.
Shortcomings of this approach are discussed in chapter IV.

BICicmm(.) uses the original dataset D and the number of
mixing components to calculate a BIC trend. This function is
defined using the log-likelihood at the maximum likelihood
estimation, the number of used mixture components, the
sample size and the number of estimated parameters [12].
Analysing n mixing components using the BIC, the optimal
model can be chosen using the minimum BICigmm value.
The sparsing is done using the mean values fiy.,, of the
optimized fGMM. Due to that, the sparsed dataset is D* =
{fi1, s fim }. The vectors fiy.,, are called pseudo-inputs.

Note, that the discussed sparsing process tackles the
optimization of the mean function of Gaussian processes.
As a result of the BIC based dataset sparsing, the estimation
functions are going to change. To overcome this problem, the
Gaussian process hyperparameters need to be adapted. This
procedure is discussed in the remaining part of this section.
B. Gaussian Process Hyperparamter Optimization

After dataset sparsing, the new Dataset D* affects the
mean and variance function (see equations 1 and 2). To
minimize the difference between the original and sparsed
Gaussian process, global Bayesian optimization was used
to adapt the hyperparameters. Hyperparameter optimization
is critical because of high computational effort. Simultane-
ously, optimization is necessary for algorithm performance.

Bayesian optimization [13], [14], [15], [16] tackles this
problem by reformulating the optimization to a regression
problem.

Doing so, a Gaussian process again is used for this
regression formulation. The main idea of Bayesian opti-
mization is step-wise optimization based on an initialized
regression model using initial samples of the optimization
function. Based on those samples and a regression model,
functions like the expected improvement [14], [15] evaluates
the expectation and uncertainty of the regression model. The
expected improvement agy is defined as [15]:

apr(£]D*) = E [max(f* — f(&),0)] ®)

Where f* is the current maximum value of the regression
model and E is the expectation value. The function f(.)
returns the regression value of the regression model. Note,
that different implementations extend the idea of expected
improvement to control exploitation and exploration [17].
Sequential optimization is done adding an evaluation of the
model to optimize at the highest ag; value. In this work,
we use the 12 of the variance for model comparison. The
hyperparameters of the Gaussian process are optimized in
terms of optimizing the 72.

IV. EXPERIMENTAL RESULTS

Our experiments based on measurements on a mobile
robot called “Robotino”[18]. The dataset D is based on
visual odometry calculations of five experiments. We ex-
tracted the velocity (v,) and transition (Ax) based on those
measurements. Because this paper discusses the Gaussian
process sparsing, our experiments discuss the movement
model sparsing in detail. Note, that the used movement
model is trivial. From a machine learning perspective, the
model could be represented using linear regression. Even
though the model itself is simple, the Gaussian process adds
uncertainty estimation, which is needed for Bayes filters.

For the analysis of our approach, we simplified the data
using gathered movement information of the mobile robot.
The Gaussian process based transition model was used to
predict the movement of the mobile robot A, along the X-
axis at time ¢ based on the velocity v,. Additional, the imple-
mentation of our method includes data pre-processing. The
data pre-processing was done using outlier elimination and
data normalization. Based on our BIC based pseudo-input
generation, outlier detection is critical. The used implementa-
tion uses the expectation maximization algorithm to estimate
the model [12]. Due to that, implemented random cluster
initialization can result in unwanted sample elimination. This
would make the evaluation of GP;p(.) and GPyp-(.)
respectively GPs, p(.) and GPs, p«(.) impossible.

For outlier detection, hierarchical clustering was used [19].
The software implementation is based on the hierarchical
clustering functions of [20] based on euclidean distances.
The visualization of the outlier detection is shown in figure
1. The algorithm classifies 26 data elements out of 4458
data elements as outliers. For further discussion, the resulting
normalized 4432 data elements describe D. The Gaussian
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Fig. 1. Visualisation of hierarchical clustering for outlier detection

process based on D is shown in figure 2. The model sparsing
was done analysing 20 to 500 pseudo-inputs using a stepsize
of 50. The BIC based model selection is shown in figure
3. Note, that the implementation uses a BIC approximation
which leads to a maximization instead of minimization [12].
The result of the BIC model selection is a f{GMM using 170
pseudo-inputs. Those pseudo-inputs represents the dataset
D*. Note the compression of the dataset to 170 datapoints.

Our experiments showed, that the random initialization of
the f{GMM clustering is critical for further optimization. The
random initialization can result in a dataset D*, where areas
with low frequency disappear. This leads to poor results of
the sparsed Gaussian process. Currently, we can overcome
this problem by increasing the number of datapoints in D*. A
non-random initialization of the BIC based model selection
is part of our recent research. Further, the penalty term in the
function BICigmMm can be adapted for this application. The
kernel used in this paper is the so-called 'rbf” kernel [4]. The
hyperparameters of the kernel are the signal noise variance
afL and the smoothness factor w [4], [6].

The behavior of the variance function is based on the
hyperparameters of the Gaussian process, namely o2 and w.
Those hyperparameters were optimized using Bayesian opti-
mization [17]. The results of the optimization are visualized
in table I. The hyperparameters are optimized in 20 steps.
The optimum is found at 72 = 0.9625. Further, the 72 of
the Gaussian process mean values (raw and sparsed) using
the optimized hyperparameters is 0.9998. Note, that due to
the random initialization of the optimization algorithm, the
optimization results differ. The analysis of 100 optimization
procedures proves, that the exploitation/exploration tradeoff
is not optimized yet and current part of further optimization.
Further, due to processing limitations, 20 optimization steps
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Fig. 2. Gaussian process without outliers. Note, that the data is normalized.

and five initialization steps were used. A histogram of
100 optimization steps analysing the 72 of GPs p(.) and
G Ps; p-(.) is shown in figure 4.

V. SUMMARY & OUTLOOK

We introduced a novel procedure for Gaussian process
sparsing. The sparsing procedure is based on Bayesian infor-
mation criterion model selection followed by hyperparameter
optimization.

The model selection uses finite Gaussian mixture models
to find pseudo-inputs, which represent a sparsed dataset D*.
The hyperparameters are optimized using Bayesian optimiza-
tion and focus on model difference minimization.

Our results proves that the method is applicable. Limita-
tion, namely random initialization of model selection and op-
timization, are discussed. Those limitations are currently part
of ongoing research. This research focuses on non-random
algorithm initialization and BIC calculation adaption. Based
on the results of our optimized approach, Gaussian process

TABLE 1
THE OPTIMIZATION PROCEDURE IN THIS EXAMPLE.

# o w T # o2 w 72

1 3.3619 | 0.0171 | 0.7824 || 2 4.8541 | 0.0174 | 0.7306
3 4.0077 | 0.0043 | 0.7020 |[ 4 2.4200 | 0.0143 | 0.8156
5 0.0922 | 0.0086 | 0.9401 6 0.0050 [ 0.0199 | 0.7952
7 0.0050 | 0.0010 | 0.8036 8 4.7598 | 0.0087 | 0.7048
9 0.0050 | 0.0121 [ 0.7955 10 | 0.1486 | 0.0092 | 0.9625
11 | 0.3107 | 0.0041 | 0.9387 12 | 0.5753 | 0.0081 | 0.9251
13 | 0.4405 | 0.0196 | 0.9488 14 | 0.4870 | 0.0140 | 0.9407
15 [ 0.8008 [ 0.0190 | 0.9243 16 | 0.9876 | 0.0013 | 0.8275
17 | 0.3334 | 0.0081 | 0.9451 18 | 1.6964 | 0.0087 | 0.8340
19 | 2.8853 | 0.0093 | 0.7781 20 | 0.6128 | 0.0199 | 0.9378
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Histogram of 100 Optimization Steps
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Fig. 4. Histogram of 100 optimization procedures (r? of GPs p(.) and
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Fig. 3. Result of (approximated) BIC analysis of the transition model [12].

optimization approaches can be applied without the need

of

processing clouds. Currently, mobile robot localization

algorithms based on sparsed Gaussian processes are imple-
mented. This task includes the analysis of the processing
workload.

Further, the expected improvement can be used to estimate

the “completeness” of motion models as a preceding analysis
step.

The next steps include the merging of the sparsing and

optimization steps to a single optimization task. Based on
the planned method extensions, non-trivial Gaussian process
sparsing will be analysed. This will be used in further
research areas such as example generation in object recog-
nition.
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