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Abstract. Error Correcting Codes are playing a very important role in Video Watermarking technology. 
Because of very high compression rate (about 1:200) normally the watermarks can barely survive such 
massive attacks, despite very sophisticated embedding strategies. It can only work with a sufficient error 
correcting code method. In this paper, the authors compare the new developed Enhanced Hadamard Error 
Correcting Code (EHC) with well known Reed-Solomon Code regarding its ability to preserve watermarks 
in the embedded video. The main idea of this new developed multidimensional Enhanced Hadamard Error 
Correcting Code is to map the 2D basis images into a collection of one-dimensional rows and to apply a 1D 
Hadamard decoding procedure on them. After this, the image is reassembled, and the 2D decoding 
procedure can be applied more efficiently. With this approach, it is possible to overcome the theoretical 
limit of error correcting capability of (d-1)/2 bits, where d is a Hamming distance. Even better results could 
be achieved by expanding the 2D EHC to 3D. To prove the efficiency and practicability of this new 
Enhanced Hadamard Code, the method was applied to a video Watermarking Coding Scheme. The Video 
Watermarking Embedding procedure decomposes the initial video trough multi-Level Interframe Wavelet 
Transform. The low pass filtered part of the video stream is used for embedding the watermarks, which are 
protected respectively by Enhanced Hadamard or Reed-Solomon Correcting Code. The experimental results 
show that EHC performs much better than RS Code and seems to be very robust against strong MPEG 
compression. 

1 Introduction  
Many applications in telecommunication technologies 
are using Hadamard Error Correcting Code. Plotkin [1] 
was the first who discovered in 1960 error correcting 
capabilities of Hadamard matrices. Bose, Shrikhande[2] 
and Peterson [3] also have made important contributions. 
Levenshstein [4] was the first who introduced an algo-
rithm for constructing a Hadamard Error Correcting 
Code. The most famous application of Hadamard Error 
Correcting Code was the NASA space mission in 1969 
of Mariner and Voyager spacecrafts. Thanks to the pow-
erful error correcting capability of this code it was possi-
ble to decode properly high-quality pictures of Mars, 
Jupiter, Saturn, and Uranus [5].  
In this paper we introduced a new type of multidimen-
sional Hadamard Code, we called it Enhanced Hadamard 
Error Correcting Code (EHC). It can overcome the limit 
of error correcting capability of n/2-1 bits of standard 
Hadamard Code, where the codeword length and the 
Hamming distance d have the same value n. The applica-
tion of this Code in Video Watermarking gives also a 

strong prove of its effectiveness. The reason for selecting 
Video Watermarking lies in strong compression ratio, 
normally factors greater than 1:200, which are applied to 
the video sequences. For example, an uncompressed 
HDTV video stream has a data rate of 1.2Gbit/s and for 
distribution reason, it must be compressed to 6Mbit/s. 
For embedded watermarks, it is a big challenge to sur-
vive such strong compression ratio. Error correcting 
code plays a decisive role in surviving of the embedded 
Watermarks.  
This paper has followed the structure: In Chapter 2 con-
tains the introduction to the enhanced Hadamard Error 
Correcting Code and its error correcting capabilities.  
In Chapter 3, the authors explain the Video Water-
marking Scheme and the Chapter 4 presents the results 
and discussion. 

2 Enhanced Hadamard Error Correcting 
Code 

In this chapter, we will give an overview of one-
dimensional and two-dimensional Hadamard Code. Then 
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the authors explain the enhanced version. 

2.1 One-Dimensional Hadamard Code 

The Hadamard code of n-bit is a non-linear code, which 
is generated by rows of a n*n Hadamard Matrix Hn. It 
can encode k=log2(n) messages and is denoted as (n,k).
The Hamming distance is n/2, and it can correct n/2-1
errors. In the case of n=8 we obtain the following ma-
trix: 
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    (1) 

The code words are the rows of this Matrix H8. In Table 
1 the Code Book of the linear Code (8,3) is depicted. 
The Hamming distance of this code is h=4. 

Table 1. Code Book of Hadamard Code (8,3) 

The decoding procedure is based on Hadamard 
Spectrum. The spectral component with the highest 
value determines the decoding message. The received 
code word is used to build the Hadamard spectrum 
vector, which enables to determine the corresponding 
message. The spectrum vector d is calculated by 
multiplying the code vector c by the Hadamard Matrix 
H8 . 

8Hcd 
	       (2) 
Supposed we received the code word: 

� �11111111 ����	c
According to the Eq.(2), the decoded Hadamard 
Spectrum vector is: 

� �
� �00000800

11111111 8

	


����	

d

Hd

The third component of the vector d has the highest 
value in the spectrum; all others are zeroes, d(3)=8, 
d(i)=0 for i=1,..8 and i≠3. It implicates that the code 
word at the position i=3 was received. The codebook at 

that position gives us the ultimate information of the 
message (010).  
In the case of one error, the third component of the 
spectrum vector d still remains the highest one. In the 
case of a corrupted codeword c=[-1 1 -1 -1 1 1 -1 -1], the 
Hadamard spectrum vector delivers:  

� �
� �22222622

11111111 8

�������	


�����	

d

Hd

The third component is still the highest one, so the 
message can be decoded. 
In the case of two errors, it is already impossible to 
decode the message unambiguously.   
What is interesting about Hadamard Code is that in the 
case of seven and eight errors it is possible again to 
decode the codewords. In case of eight errors, our code-
word  
c=[-1- 1 1 1 -1 -1 1 1] 
is completely corrupted. In this case, the absolute value 
of the third component of the Hadamard spectrum is the 
highest one, and it has a negative sign. A negative sign 
means that the decoded code word must be inverted.

� �
� �00000800

11111111 8

�	


����	

d

Hd

In the case of seven errors, we have exactly the same 
situation as with one error, however, with one small 
difference: the third component has a negative sign, what 
means the decoded word must be inverted. 
The following figure shows the error correcting 
capability of an 8 bit Hadamard code. 

Fig. 1. Error Correcting Capability of 8 Bit Hadamard 
Code 

The 8 bit Hadamard code can correct 1,7 and 8-bit errors 
regardless where they occur within the code words. 
Generally, we can say that n bit Hadamard code can 
correct totally n/2-1 types of errors. The number of error 
bits occurring in the range  

from ��
�

��
� �1

4
,,1 n

�  to ��
�

��
� � nn ,...,1
4
3

2.2 Two-Dimensional Hadamard Error Correc-
ting Code

The 2D Hadamard Error Correcting Code uses so-called 

Message                      Code Words

0 0 0 1     1     1    1      1     1     1     1
0 0 1 1    -1     1    -1     1    -1     1    -1
0 1 0 1     1    -1    -1     1     1    -1    -1
0 1 1 1    -1    -1     1     1    -1    -1     1
1 0 0 1     1      1     1    -1    -1    -1   -1
1 0 1 1    -1     1    -1    -1     1    -1     1
1 1 0 1     1    -1    -1    -1    -1     1     1
1 1 1 1    -1    -1     1    -1     1     1    -1
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basis images instead of Hadamard vectors. The basis 
images functions are orthogonal to each other, and they 
can be generated from the Hadamard matrix by multipli-
cation of columns and rows. Generally, we can write 

:),(*)(:, mHlHA
nnml

	       (3) 
 In case of 4x4 Hadamard matrix 
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We can calculate the complete set of 16 such basis imag-
es.

Fig. 2. Basis Images of 2D Hadamard Transform (4x4) 

For instance, the pattern A31 is generated by Eq.(1) and 
has the numerical presentation
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It can be visualized as 

Fig. 3. Basis Image A31. The “1” is interpreted as 255 (White) 
and “-1” as 0 (Black)

The 2D Hadamard Spectrum of such basis images, 
which is denoted by C, delivers a matrix where only one 
coefficient differs from zero. It represents a 2D spectrum 
of the corresponding basis image. For example, the 
Hadamard spectrum matrix of the pattern A31 is  
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	 �

0000
00016
0000
0000

4314
T

HAHC (4)

The component C31=16 and all others are zero. This 

fact, identification of the basis image trough its spectral 
coefficient, can be utilized to construct error-correcting 
code. The codewords are the pattern of basis images, and 
they can be decoded unambiguously by detecting the 
highest absolute coefficient value inside of 2D Hada-
mard Spectrum according to Eq.(4).  

Table 2 : 2D Code Book constructed 
from Basic Images

Message Basis 

Image

Matrix 

Element

Pulse Stream 

(code word)

0000 C11 0000000000000000

0001 C12 0101010101010101

0010 C13 0000000011111111

0011 C14 0000111111110000

0100 C21 0000111100001111

0101 C22 01011010010111010

0110 C23 0011110000111100

0111 C24 01101001101101001

1000 C31 0011001100110011

1001 C32 0101010110101010

1010 C33 0011001111001100

1011 C34 0011110011000011

1100 C41 0110011001100110

1101 C42 0101101010100101

1110 C43 0110011010011001

1111 C44 0110100110010110
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To apply the basic images as codewords, we have to map 
their two-dimensional structure into one-dimensional 
pulse stream which will be denoted by the codeword. In 
Table, 2 such 2D Hadamard codebook is depicted. 
In case that the basis image A31 is corrupted by some 
perturbation and looks like it depicted in Figure 4

Fig. 4. Corrupted Basic Image A31

It is still possible to recover the original pattern 
completely. To understand this, let us consider this 
corrupted Basic Image: 
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The Hadamard Spectrum we obtain from 
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31
T

HAHC
   (6) 

the absolute value of │C31│=10 and it still stays the 
highest one between the other spectral coefficients of 
matrix C, hence the corresponding message word could 
be read out from the code book depicted in Table 2. It is 
“1000” (see the row for coefficient C31).

The total number of errors that can be corrected is n/2-1
and correspond completely to the one-dimensional case. 
The simple enlargement from 1D to 2D doesn’t bring 
any improvement. To overcome this limit, a new 
enhance Hadamard decoding procedure for 2D and 3D 
Hadamard Code is introduced.
 

2.3 Enhanced 2D Hadamard Error Correcting 
Code

The enhanced 2D Hadamard Code makes it possible 
to correct more errors as with the standard Hadamard 
method. With this approach is possible to overcome the 
theoretical limit of error correcting capability of n/2-1
errors. 

The basic idea is to map the 2D basis images into a 
collection of one-dimensional rows and applying them 
1D decoding procedure. After this, the image is reas-
sembled, and the 2D decoding procedure (Eq.(4)) can be 
applied more efficiently.  

To show the functionality of this method we consider 
the basis images A71 of 8x8 2D Hadamard Transform. 
This basic image (Fig.5) can be derived from Eq.(3). 
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Fig. 5. Basic Image A71 of 2D Hadamard Transform 
(8x8) and its visualization. “1” is interpreted as white 
(255), “-1” as black (0) 

This image is now corrupted by noise (Fig.6). The 
corresponding error matrix contains 17 errors. According 
to the consideration from chapter 2.1, it is not possible to 
recover this pattern because the number of errors 
exceeds the limit of n/2-1=15. 

Fig. 6. Original Basis Pattern A71, Error Mask, and the 
Corrupted Pattern 

The functionality of the enhanced Hadamard decoding 
procedure is depicted in Figure 7. 

Fig. 7. Enhanced Hadamard Decoding Procedure 
on Error Mask and on Corrupted Basis Image 

A B C D E
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The steps of the algorithm could be described as 
followes:  

� The corrupted basis image (A) is separated into its 
rows (B). 

� On each row is applied 1D Hadamard decoding pro-
cedure. Rows which contain only one error are de-
coded error free (because of each row has the length 
of n=8). Rows No. 6 and No. 8 are now without any 
errors (C). 

� Reassemble the pattern again (D). The renewed pat-
tern contains now fewer errors as before, namely 15.  

� Apply the 2D Hadamard decoding procedure accord-
ing to Eq.(4). The result will be error free pattern (E).

We simulated the error correcting performances of the 
enhanced  and standard Hadamard Error Correcting 
Codes with the codewords of the length n=64. The
results are depicted in Fig. 8. On the x-axis, we have the 
number of bit errors, on  the y-axis the number of 
corrected codewords in percentage. The enhanced 
Hadamard Code is depicted with a continuous line and 
standard Hadamard with dashed line.  As described in 
chapter 2.1 the standard Hadamard Error Correcting 
Code has the following features: It can correct 100% of 
all corrupted codewords of the length n if the number of 
error bits occurring in the range [1,.., n/4-1] to 
[3n/4+1,…,n]. In case n=64 we can see, that standard 
Hadamard Code corrects all errors if their number is 
between 1 and 15 and between 49 and 64. In the case of 
Enhanced Hadamard Correcting Code, we can correct 
beyond these limits. For example, in the case of 16
errors, we correct 92% of all possible error pattern inside 
the codeword. In the case of 17 errors, it is still 83% of 
all error pattern that can be corrected. If we have 48 
errors, in the case of Standard Hadamard Code no errors 
could be corrected on the contrary to the Enhanced 
Hadamard Code. It can correct 92% of all error pattern. 

Fig. 8. Comparison of Error Correcting Capabilities of Stand-
ard Hadamard (dashed line) with 8x8 2D Enhanced Hadamard 

Code 

2.4 Enhanced 3D Hadamard Error Correcting 
Code

The performance of Enhanced Hadamard Code can be 
improved by diluting it to three dimensions. Instead of 
using basic images, we can use basic cubes for gene-
rating a code book. 
A Hadamard cube is a basis image expanded in the third 
dimension by multiplying the pattern with Hadamard 
vectors. 

(:)
kmlmlk

HAD 
	       (7) 
where the basis image is represented by Aml and Hk(:) is 
the k Hadamard vector. For example the pattern A41
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and the Hadamard vector � �11112 ��	H generates 
the cube D412

Fig. 9. Hadamard Cube D412

The decoding procedure and the corresponding error 
correction work similar to the correcting procedure 
described in Chapter 2.3. Before it can be applied the 
cube is resolved from the front side in separate layers. 
On each layer, the enhanced 2D Hadamard decoding 
procedure is applied. The Performance of the 3D 
Hadamard Code was simulated and compared with the 
Standandard Hadamard Code of the length n=512.The 
Cubes have the dimension 8*8*8. The results are 
depicted in Figure 10. 

Fig. 10. Comparison of Error Correcting Capabilities of Sta-
nard Hadamard (a) with 3D Enhanced Hadamard Code (b).
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3 Application of Enhanced Hadamard
Code in Watermarking Technology

Digital Watermarking is a very prospective new 
technology, that offers a huge number of new 
applications [6]. Especially the challenge to protect 
intellectual properties of multimedia data against illegal 
usage or tempering can be solved by watermarking 
technologies [7]. One of the important components is an
error correcting code. Especially when watermarked 
video sequences undergo a very hard compression the 
error correcting code used in the watermarking scheme 
plays a decisive role in surviving of watermarks[8]. For
this reasons, we choose these techniques to demonstrate 
the efficiency of Enhanced Hadamard Error Correcting 
Code (EHC). To underline the performance of EHC, it 
was compared with the well known Reed-Solomon Code 
[9,10] used in the same watermarking scheme. 

3.1 Proposed Watermarking Scheme 

The proposed watermarking scheme works in the 
spectral domain and uses an Interframe Discrete Wavelet 
Transform (DWT) [11] of video sequences and an In-
traframe Discrete Cosine Transform (DCT) for embed-
ding procedure [12,13]. In the Fig. 11, the whole encod-
ing process is illustrated. The raw format of the lumi-
nance channel of the original video stream is decom-
posed by multi-level Interframe DWT with Haar Wave-
let. This low pass filtered part of the video stream under-
goes a block-wise DCT Transform. From DCT spec-
trum, special coefficients are selected and used for em-
bedding procedure with 2D Hadamard coded water-
marks. The embedding procedure itself is realized 
through QIM (Quadrature Index Modulation) techniques 
[14]. 

Fig. 11. Watermarking Encoding Process 

The decoder procedure is depicted in Fig.12. At the 
beginning of the decoding procedure, the embedded 
video sequence undergoes the same multi-level Inter-
frame DWT and Intraframe DCT transforms as on the 
encoder side.  

Fig. 12. Watermarking Decoding Process 

After the selection of the proper DCT coefficients, the 
inverse QIM (IQIM) is applied. It delivers the decoded 
code words (pulse stream). Through the help of En-
hanced Hadamard Error Correcting Code, the original 
watermark is extracted. 

3.1.1 Multi-Level DWT 

As mentioned above a multi-Level Interframe DWT 
with Haar Wavelet was used to deliver a low pass fil-
tered video. The Fig.13 illustrates the operating principle 
of this transform. In the first level, the two consecutive 
frames are averaged. In the second level, the frames 
from level one are averaged and so forth. In this water-
marking schemes, we used DWT levels from 12 
till 16. 

Fig. 13.  Multi-Level Interframe DWT. At the first 
level, the two consecutive frames are averaged. At level 
two the consecutive frames from level one are averaged 
and so forth. 

3.1.2 Selection of Embedded Coefficients 

To realize the embedding procedure, some coeffi-
cients from the DCT spectrum of DWT filtered video 
sequence must be selected. The Fig.14 shows which 
coefficients are qualified for watermarking. These are 
mostly from the yellow area. 

�     
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Fig. 14. Coefficients of DCT Spectrum which fits 
for embedding 

3.2 Investigation with 3D Enhanced Hadamard 
Error Correcting Code

The investigation was done with HDTV video se-
quence with the resolution of 1080x1920 and 25fps. The 
video was captured with an AVCHD Camera. The wa-
termarking processing was performed only for the lumi-
nance channel (after converting RGB into YCrCb color 
space) because it is more robust against distortions than 
any other channels. It was investigated how many em-
bedded watermark bits survive compression attacks 
without causing significant impairments. The degrada-
tion of the watermarked output video was measured with 
SSIM (Structural Similarity) index. SSIM is based on the 
human eye perception and so the expressiveness about 
distortion is better than in the traditional methods like 
PSNR (Peak Signal to Noise Ratio) or MSE (Mean 
Square Error) [15].

It was chosen the Enhanced 3D Hadamard Code of the 
size of 8x8x8, which means the code word length of 512 
bits. This implies the message code length of 8 bit 
(log2(n) messages). The DCT block size was 8x8 and 
from each block were selected 16 coefficients. With 
these, information is easy to calculate the total number of 
embedded watermark bits for each frame. 

Bit/Frame 911216
512
9

8
10801920
22 	





	





	 C

W

M

B

WH
E

Where H is, the height and W is the width of the 
frame. The letter B denotes the block size of DCT trans-
form; the letter M is the message code length; the letter 
W represents the code word length of the 3D Hadamard 
Code and the letter C is the number of selected spectral 
coefficients.  

In Table �, the results of capacity and robustness 
measurements are presented. The compression attacks 
were done by H.264 codec with different compression 
ratios. Because the method works in the raw video, the 
original data rate is 1.2 Gbit/s. As a watermark was used 
a chessboard pattern of the size of 30x30 Pixel. 

The watermarks were inserted successively into the 
frames. The Delta QIM gave the width of the quantiza-
tion steps and was tuned to value 11. Generally, the 
Delta value determines the noise distortion in the host 
video. 

The embedded video sequence was compressed with 
different compression ratios. In the case of compression 
to 5 Mbit/s, which correspond to a compression ratio of 
1:240 it is still possible to extract all watermarks error 
free. The quality comparison between originally com-
pressed video and embedded and compressed shows, that 
there is only slightly difference. The SSIM index Video 
is in this case 98%. 

Table �. Results for 3D Enhanced Hadamard Code 

3.3 Comparison of 3D Enhanced Hadamard with 
Reed-Solomon Code

In order to show the performance of Enhanced Hada-
mard Code, a comparison between EHC and well known 
Reed-Solomon Code was carried out. Reed-Solomon 
Code is well known as an error correcting code and it 
has a plenty of practical implementations for example in 
consumer electronics like CD, DVD, Blu-Rays, QR-
Code or in data transmission.  

To make the Reed-Solomon Code comparable to En-
hanced Hadamard Code we have to select two parame-
ters: the length of the symbol and the redundancy. The 
symbol length (block length) is equal to the message of 9 
bit. The 3D Enhance������Hadamard Code has a codebook,
where to every message of 9 bit a cube is assigned with 
codeword length of 512 bits. The Reed-Solomon Code 
has a codebook, where for each message of 9 bit a string 
of 4599 bits (512 Symbols, each symbol is 9 bit long) is 
assigned. The redundancy of Reed-Solomon Code was 
selected in such a way, that the number of correctable  
symbols should approximately correspond to the number 
of correctable bits of Hadamard Code, which is n/2. So 
we get an RS Code of [511, 255] with a codeword length 
of n=511 symbols and the message of k=255 symbols, 
where a symbol is 9 bit long. 
The comparison of the performance of both codes is
documented in Table �. At the data rate of 5Mbit/s, 
which correspond to the compression ratio of 1:240, the 
EHC Code can still recover the whole watermark with-
out errors. In contrary the RS Code shows a recovered 
watermark with 17% errors. 
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At the data rate of 3Mbit/s, the performance advantage 
of EHC is even more visible. EHC Watermark has an  
error of 1,7%. In contrary the RS Watermark is barely 
visible and has an error of 27,6%. 

Table �. Comparison of Enhanced Hadamard with Reed-
Salomon Code 

In all these considerations we should take into account, 
that concerning the capacity EHC code is superior 
against RS code because the EHC codeword length is 
much shorter (512 bits) than an RS codeword (4599 
bits). 

4 Conclusion 
In this paper a new type of multidimensional Hadamard 
Error Correcting Code, we called it Enhanced Hadamard 
Error Correcting Code (EHC) was introduced. It has 
remarkable property, it can overcome the limit of n/2-1
correctable bit errors of a standard Hadamard Code, 
where the codeword length and the Hamming distance d
have the same value n. The application of this Code in 
Video Watermarking gives also a strong prove of its 
effectiveness. 
Compared to Reed-Solomon Code the Enhanced Hada-
mard Code is much more effective. The watermarks of a 
video, protected by EHC, can survive a very strong 
compression attack, in opposite to RS-Code. 
EHC protected watermarks can be easily recovered 
error-free from a video with a compression ratio of 
1:240, which corresponds to a data rate of 5 Mbit/s.
If the same embedding process is using RS Code instead 
of EHC the error free recovery of the watermarks is not 
possible. It has an error of about 17,5% and the content 
of a watermark can barely be recognized.  
All these results are very promising, and they show that 
the new Enhanced Hadamard Code is very powerful and 
can be successfully used in video watermarking. 

Performed research was supported by National Science 

Centre, Poland, Amis project number 2015/16/Z/ST7/00559. 
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1,7 27,6

3 Mbit/s
6,8 35,3
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41,2 40,8
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