
CERN Openlab project

Implementing the network debugging
infrastructure for the new detector readout

board

Christina Quast

October 12, 2015

CERN – LHCb

Supervisor: Niko Neufeld, Rainer Schwemmer

Contents

1 Introduction 2
1.1 Detector board to userspace interface . 4
1.2 The new readout protocol . 5

2 Implementation 7
2.1 Wireshark basics . 7
2.2 Implementation of a wireshark dissector in C 7

2.2.1 Basic dissector functions and structures 7
2.2.1.1 Example code for example protocol 7

2.2.2 Important wireshark dissector functions 9

3 Conclusion 12
3.1 Accomplished tasks . 12
3.2 Known issues . 12
3.3 To be done in the future . 12

II

List of Figures

1.1 AMC40 board (left), PCIe40 board (right) 2
1.2 Readout board connection to detectors and network 3
1.3 Wireshark with filtering for http traffic and IP source address 3
1.4 MEP protocol . 6

2.1 Example protocol structure . 7
2.2 Wireshark without MEP dissector plugin 10
2.3 Wireshark with MEP dissector plugin 11

1

1 Introduction

For the next run of the LHCb experiment, new detectors are built, which use a different
protocol from the one used for the old detectors in order to send the data collected
from a collision. The data throughput will increase from the currently used 400 Gbit
per second to astonishing 40 Tbit. The LHCb upgrade team built two FPGA boards:
AMC40 and PCIe40 (see image 1.1). The AMC40 board has an Ethernet interface,
produces UDP packets and sends them over the network. The PCIe40 board sends data
over PCIe to a server, which in turn creates the network packets based on the PCIe data
received, and sends them over the network. Each board is connected to the detectors
and contains an FPGA, which does the preprocessing of the data received from the
detector. The readout system is connected to the network and sends network packets
to the backbone (see image 1.2). The readout system will operate at an overall speed of
around 40 Tbit/s. In order to have a means of debugging all this network traffic, tools
are necessary. The implementation of such a tool is the task for this Openlab Summer
Student project.
A very commonly used tool when it comes to debugging network traffic is called Wire-

shark. It can display the network packet flow and dissect protocols, creating a neat view
of the fields in the header of each layer of protocols. Furthermore, it allows for filtering
of different protocol fields (e.g. the protocol http and a certain IP address of interest,
see image 1.3). If there is an error in dissecting the packet, e.g. because the packet
is corrupted and therefore does not conform to the standard form anymore, Wireshark
will display an error message. Wireshark supports a large amount of protocols, but
also provides a means for adding custom protocol dissectors by compiling them into the
Wireshark code or adding them separately as plugins.

Figure 1.1: AMC40 board (left), PCIe40 board (right)

2

1 Introduction

Figure 1.2: Readout board connection to detectors and network

Figure 1.3: Wireshark with filtering for http traffic and IP source address

3

1 Introduction

In case of the AMC40 board, data is sent as UDP packets, and can therefore directly
be piped into Wireshark. In case of the PCIe40 board, the data is read out from the PCIe
bus and delivered to userspace through a kernel driver, which is specifically created for
this purpose. The kernel driver functions can be used through system calls. For sending
the data to wireshark, a separate userspace program has to be written, which reads
data from the kernel driver and wraps it into UDP packets before forwarding them to
Wireshark.

1.1 Detector board to userspace interface
The interface functions to access kernel driver functions are listed in 1.1 and can be
found in pcie40_driver/daq/daq.h in the lhcb−daq40−software git repository.

int p40_ctl_open(int dev);
void p40_ctl_close(int fd);

int p40_ctl_set_control(int fd, uint32_t ctl);
int p40_ctl_start(int fd);
int p40_ctl_stop(int fd);

uint32_t p40_ctl_get_status(int fd);

int p40_daq_open(int dev, void **buffer);
void p40_daq_close(int fd, void *buffer);

int p40_daq_set_read_off(int fd, uint32_t off);
uint32_t p40_daq_get_read_off(int fd);
uint32_t p40_daq_get_write_off(int fd);
uint64_t p40_daq_get_buf_size(int fd);
uint32_t p40_daq_get_msi_size(int fd);
uint64_t p40_daq_get_msi_nsecs(int fd);

Listing 1: Kernel driver interface

The function p40_meta_open returns a file descriptor and saves the pointer to the
metadata in memory in one of the function arguments passed to it. The function call
p40_daq_open works similar, but the pointer will point into the data area. The function
p40_daq_set_read_off returns the offset, from which to read the current data element.
p40_ctl_start starts data generation in the FPGA.
Only the metadata part of the kernel driver is implemented for now. The data part

will follow in the next months.

4

1 Introduction

1.2 The new readout protocol
The new detector protocol will consist of two packet sources. The metadata source
contains all the header of the data and describes which type of data of which size to
find at which offset from the beginning of the data. The data consists of consecutive
areas of payload; length of each payload fragment is defined in the metadata.
The header used for the data generating test program amc40_capchecker can be found

in amc40.hpp (see also listing 2).

struct __attribute__((__packed__)) amc40_hdr {
uint32_t seqnum;
uint16_t bytes;
uint16_t frags;
uint64_t evid;

};

Listing 2: MEP meta data structure

In each packet, what follows after the header are the fragments; each one of them
with its own sub header, containing the sequence number (BXID) and payload length
in nibbles or bytes, followed by data for each detector link (see image 1.4).
It is worth mentioning at this point, that the header structure explained is the header

structure used for the readout systems currently under research. The structure will
change in the future, in conjunction with the evolution of the readout system.

5

1 Introduction

Figure 1.4: MEP protocol

6

2 Implementation

2.1 Wireshark basics
The wireshark manpage tells us: On Unix-compatible systems, the plugins are looked for
in the following directories: the lib/wireshark/plugins/$VERSION directory under the
main installation directory (for example, /usr/local/lib/wireshark/plugins/$VERSION),
and then $HOME/.wireshark/plugins. It is possible to check whether a plugin was
loaded by opening the About dialog box in Wireshark and looking at the Plugins tab.

2.2 Implementation of a wireshark dissector in C
Because of performance reasons, also there are Python for implementing a Wireshark
dissector, the code will written in C. All the basic knowledge, how to implement the
dissector, will be explained in the following subsection.

2.2.1 Basic dissector functions and structures

2.2.1.1 Example code for example protocol

In order to understand better, how wireshark dissectors are written, we take the protocol
in image 2.1 as an example.
First, we need to register the protocol we want to use. The abbreviation can later be

used as a filter string in wireshark.

void proto_register_mep(void)
{

proto_mep = proto_register_protocol (

Figure 2.1: Example protocol structure

7

2 Implementation

"MEP Protocol" , /* name */
"MEP" , /* short name */
"mep" /* abbrev */
);

}

The protocol dissector handle is registered, in our case in conjunction with the asso-
ciated UDP port. In practice, probably any wireshark filter can be used here.

#define MEP_PORT 1234

void proto_reg_handoff_mep(void)
{

static dissector_handle_t mep_handle;

mep_handle = create_dissector_handle(dissect_mep, proto_mep);
dissector_add_uint("udp.port" , MEP_PORT, mep_handle);

}

For parsing packets, mainly the function proto_item∗ proto_tree_add_item(tree, id, tvb, start, length, encoding)
is used. The parameter id describes how the field should be presented in wireshark.
Some example values can be seen in the following source code.

void proto_register_mep(void) {
static hf_register_info hf_data[] = {

{ &hf_data_evid,
{ "MEP2 data: Event ID" , "mep.data.evid" ,
FT_UINT64, BASE_DEC,
NULL, 0x0,
"evid" , HFILL }

},
{ &hf_data_type,

{ "MEP data: Type" , "mep.data.type" ,
FT_UINT8, BASE_DEC,
VALS(data_type_names), 0x0,
"data type" , HFILL }

},
{ &hf_data_size,

{ "MEP data: Size" , "mep.data.size" ,
FT_UINT16, BASE_DEC,
NULL, 0x0,
"data size" , HFILL }

},
}

}

8

2 Implementation

In order to parse the first three fields of the protocol, we would use the following
source code.

static void dissect_mep(tvbuff_t *tvb, packet_info *pinfo,
proto_tree *tree) {
gint offset = 0;
...
proto_tree *data_tree = proto_item_add_subtree(data_root,

ett_data);
proto_tree_add_item(data_tree, hf_data_evid, tvb, offset,

8, ENC_BIG_ENDIAN); // 64bit = 8 byte
offset += 8;
proto_tree_add_item(data_tree, hf_data_type, tvb, offset,

1, ENC_BIG_ENDIAN);
offset += 1;
proto_tree_add_item(data_tree, hf_data_size, tvb, offset,

2, ENC_BIG_ENDIAN);
offset += 2;
...
}

}

Without the wireshark plugin, the data can not be parsed by wireshark and the UDP
payload looks like a binary blob (see 2.2). After copying the plugin into the respective
wireshark plugin directory, the end result looks as seen in image 2.3.

2.2.2 Important wireshark dissector functions
The argument to the function tvb_get_bits∗ defined as tvbuff_t ∗tvb is the pointer to
the buffer at that location, where the current protocol payload is stored. e.g., if UDP
is the currently selected protocol, tvb will point to the first UDP payload element, just
behind the UDP header (see code listing 2.2.2). From here, parsing of the data should
start.

guint8 tvb_get_bits8(tvbuff_t *tvb, gint bit_offset, const gint no_of_bits);
guint16 tvb_get_bits16(tvbuff_t *tvb, guint bit_offset, const gint no_of_bits, const guint encoding);
guint32 tvb_get_bits32(tvbuff_t *tvb, guint bit_offset, const gint no_of_bits, const guint encoding);
guint64 tvb_get_bits64(tvbuff_t *tvb, guint bit_offset, const gint no_of_bits, const guint encoding);

Listing 3: Important dissector functions

9

2 Implementation

Figure 2.2: Wireshark without MEP dissector plugin

10

2 Implementation

Figure 2.3: Wireshark with MEP dissector plugin

11

3 Conclusion

3.1 Accomplished tasks
A wireshark dissector was created, which can parse the MEP data provided by
lhcb-daq40-software (see https://git.cern.ch/web/lhcb-daq40-software.git).
The code for the dissector can be found on https://github.com/chrysh/
lhcb-daq40-dissector. The plugin can be compiled using make. The plugin,
which can then be found under . libs has then to be copied into the wireshark plugin
directory before wireshark is started (see also section 2.1). For more and detailed infor-
mation, refer to the wikipage https://lbdokuwiki.cern.ch/doku.php?id=upgrade:
logbook_openlab_2015.

3.2 Known issues
There are still some tasks to be done. The config file, which is provided for each detector
protocol used and defines the length of each field, is not read yet. Nevertheless, a header
file is used to define the length of the fields for each protocol for now. The length is
set in the initialization function of the dissector plugin, and can therefore be adjusted
easily.
The code is not based on the data checker to be found under https://git.cern.ch/

web/lhcb-daq40-software.git), because I needed to understand how wireshark dis-
sectors work in the first place, and then how the lhcb−daq40−software code works.
It would have been much better, if the code was actually based on the parser in
lhcb−daq40−software in a modular way. In the current state, the dissector is writ-
ten from scratch, with some inspiration taken from the amc40_capchecker code, which
can be found in lhcb−daq40−software.
Furthermore, the special case of having a data payload field, which is larger than

four bytes can not be displayed properly, while parsing the packet does not impose a
problem. Calling the function proto_tree_add_bits_item with a larger value runs into
an assertion error in proto.c (line 7604). To ensure correct parsing, a temporary solution
is found, which is merely displaying the first 64 bit of the field and continuing parsing
with the original data length value.

3.3 To be done in the future
After the functionality of the two boards, AMC40 and PCIe40, are ensured, a new
network protocol has to be created, which will unite all the protocols for the different
detector types. For that, another wireshark dissector has to be written. The dissector

12

https://git.cern.ch/web/lhcb-daq40-software.git
https://github.com/chrysh/lhcb-daq40-dissector
https://github.com/chrysh/lhcb-daq40-dissector
https://lbdokuwiki.cern.ch/doku.php?id=upgrade:logbook_openlab_2015
https://lbdokuwiki.cern.ch/doku.php?id=upgrade:logbook_openlab_2015
https://git.cern.ch/web/lhcb-daq40-software.git
https://git.cern.ch/web/lhcb-daq40-software.git

3 Conclusion

created for this project can be a good starting point for the next dissector implementa-
tion.
Reading the configuration file from a predefined directory has to be implemented in

the future. Furthermore, a solution has to be found for the special case of having data
which is larger than 64 bit.

13

	Introduction
	Detector board to userspace interface
	The new readout protocol

	Implementation
	Wireshark basics
	Implementation of a wireshark dissector in C
	Basic dissector functions and structures
	Example code for example protocol

	Important wireshark dissector functions

	Conclusion
	Accomplished tasks
	Known issues
	To be done in the future

