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Abstract

Prediction and Analysis o f Basic Gravitational Microlensing Phenomena

Robert J. Nemiroff 

Supervisor: Robert H. Koch

The phenomena of gravitational microlensing arc described, and predictions are 

made about its possible future detection. A mathematical formalism is developed 

which exploits gravitational lensing effects in terms of photometric measuring ca

pability. This formalism is then used to outline the most probable places to look 

for microlensing.

Basic microlensing induced light curves are calculated for a  variety of possible 

lens-source configurations. These configurations include that of a  single ‘-tar acting 

as a lens, and tha t of a double star acting as the lens. The light curve signatures 

of the double star lens are themselves indicators of the microlensing phenomenon. 

Light curve signatures for a single star acting on a  uniform extended source are 

presented. Analysis is described listing methods by which parameters taken from 

this light curve could be used to recover both lens and source information.

The effect of microlensing on the shape of the spectral lines originating in the 

broad line emission region (BLR) of an active galactic nucleus (AGN) is analyzed. 

For various possible dynamical models of AGN make-up, it is shown that microlens-



ing could distort the shape of a spectral emission line. Microlensing typically am

plifies the center of the BLR emission line, but, for some models, it can amplify the 

wings, or shift the  central peak instead.

A sample finding list of QSO’s is presented for observers. For the assumption 

of galaxies made up entirely of compact objects, calculations are presented for each 

QSO on the list, listing optical depth for microlensing, the average time between 

microlensing events of various amplitudes, and the expected duration of an event. 

Possible observing programs are described.

Much could be learned from the identification and analysis of microlensing in

duced photometric and spectroscopic variations. Recoverable information includes 

AGN structure a t  IQ” '1 arcsec resolution, galaxy proper motion at 10“° arcsec/year, 

and the number and mass density of lensing stars in galaxies.
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Chapter 1

Introduction

1.1) Historical Perspective

The concept of gravitational lensing - tha t objects may gravitationally affect the 

light from sources behind them - can be traced back to the early 1800’s, specifically 

to Soldncr (1801). Combining Newtonian gravitational ♦heory wi»h p^rt'rle 

theory of light, Soldncr predicted that a star could be imaged twice if another star 

lay close to the light path to the observer. One of these images would appear on 

one side of the lensing star, while the gravity of the lens would pull another image 

around the other side. No example of this was observed at the lime.

Gravitational lensing ideas gained importance when Einstein predicted that the 

Sun would noticeably deflect starlight passing ju s t  outside its limb. Einstein ac

tually made this prediction at two different times of his career. The first time 

(Einstein 1908) he incorporated a somewhat Newtonian calculation predicting the 

solar deflection would be 0” .88. Later (Einstein 1916), with the advent of General 

Relativity (GR), he predicted a solar deflection a t the limb of 1".76. The later pre

diction was roughly confirmed by expeditions to the 1919 solar eclipse (Eddington 

1919), where the results of the Newtonian calculation were definitely ruled out.

Much later, R. VV. Mandl approached Einstein and asked him to calculate the 

parameters involved in measuring gravitational lensing by stars  other than the Sun 

(Einstein 1936). Einstein did this and concluded that although it was possible for
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stars to  split, deflect, or distort the images of stars behind them, these effects were 

not measurable in practice. The main reason for this, he wrote, was the obscuring 

effect of the brightness of the star that acts as the lens.

Others soon began to think about gravitational lensing. Tikhov (1937) worked 

out many of the mathematical properties of a point lens acting on a point source. 

Zwicky (1937a, 1937b, 1957) became convinced th a t  galaxies could cclin^e each 

other and hence act as lenses. He estimated that the probability of observing this 

effect was very high. But the analysis of Einstein had cast a shadow on the search 

for lensing outside the solar system, and no major advance in the subject would 

appear for more than a decade.

The subject was revived in 1961 with the emergence of two separate works: 

Licbes (1961) and Refsdal (1961). Both worked out more of the mathematics of 

a point lens acting on a point source and applied their calculations to a  more 

modern knowledge of the Milky Wa> galaxy. Both estimated the probability of 

measuring such a gravitational lens effect for stars in our galaxy. In these works it 

was concluded tha t a gravitational lens effect caused by stars within our own galaxy 

was a relatively rare event, b u t with long and careful observations, such an event 

might be detected.

In the later 1960’s, J. and M. Barnothy tried to invoke gravitational lensing as 

the explanation for several of the outstanding astrophysical problems of the day. 

They predicted tha t stars within our own galaxy could gravitationally affect the
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light from quasars at cosmological distances. They also proposed tha t  QSO’s, N 

galaxies, and Seyfert Nuclei were anomalously bright because they were in fact 

being lensed by intermediate galaxies (Barnothy and Barnothy 1969). Another of 

their models explained pulsars as artifacts of a stellar lens in a nearby binary system 

acting to  modulate the flux from distant quasars (Barnothy 1968). Although most 

of their models have fallen out of favor today, the ideas behind them were ahead of 

their time.

In the early 1970's, papers on stellar gravitational lensing were relatively few. 

There seemed, however, to be a  growing realization th a t  gravitational lensing should 

be seen if some models of the mass distribution in the universe were correct. Press 

and Gunn (1973) showed that if the universe were uniformly populated with certain 

types of objects, and the density of such objects were comparable to the visible 

mass, several gravitational lens effects should be observable. These effects include 

a change in the number density of quasars seen in magnitude intervals of different 

redshifts, and double imaging of the background quasars.

Maeder (1973) showed how the resulting flux from a binary system could be 

altered by gravitational lensing. He calculated the amplification of a point lens on 

a circular source. He also computed light curves for various hypothetical binary 

systems. He concluded that most binary systems do not show any measurable 

gravitational lens effects. Only the systems which show eclipses and in which one 

star is compact and widely separated from another s ta r  would be expected to show
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noticeable grav itational lens effects in the  resu ltan t light curve.

The detection of the  first extra-solar system gravitational lens event came in 

1979 with the discovery by Walsh, Carswell, and Weymann (1979) of two gravi- 

tationally induced images of the same quasar 0957 + 561. The two images were 

interpreted as tha t of a  single quasar whose light is split by a galaxy along the 

line of sight. Since then, eight other gravitational lens candidates have been pul 

forward, all of them caused by lenses of galactic mass or greater. These cases have 

come to be known as macrolcnsing. They are important to the present work in 

tha t they are also quite likely to show lensing by stars within the lensing galaxy: 

microlensing. it is not the purpose of this thesis, however, to study macrolcnsing, 

and so that specific work will not be reviewed in detail.

In 1979 microlensing began to gain popularity. Chang and Refsdal (1979, 1984) 

showed that a single s tar , with the addition of the gravitational shear (discussed 

later) of the host galaxy, could split the image of a quasar into very close components 

and either magnify or diminish the flux from the original quasar image.

Gott (1981) discussed the possibility that the haloes of spiral galaxies could be 

composed of low mass stars that could themselves lens background quasars. The 

paper predicted the likelihood and time scale of such events, and suggested that 

observations of quasar 0957 -r 561 might show this microlensing phenomenon.

More recently, Paczynski (1986) calculated the effect of many stars in a galaxy 

acting at once as a lens. These effects were shown to be much more complicated
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than tha t due to each stellar lens individually. The corresponding light curves were 

calculated and displayed.

Since the discovery of macrolensing systems, the number of papers written on 

gravitational lensing has increased dramatically. Although most papers attempt to 

model the mass distribution needed for macrolens systems, there has been a major 

conspicuous a ttem pt to understand the effects of microlensing. To date, however, 

no unambiguous microlensing detection has been made.

1.2) Principles of Gravitational Lensing

According to GR, gravitation acts on light as well as upon matter. The result of 

this interaction is to deflect a photon away from a path tha t  would appear straight 

as viewed by an observer at infinity. In this way, non-uniform gravitational fields 

can act as lenses.

A particular gravitational field that merits study in the way it deflects light is 

the field of a point mass. Far from a point mass, a linear approximation to GR is 

valid. The angular deflection of a photon is very nearly i =  2R S/R> where Rs is 

the Schwarzschild radius of the point mass, and R, the impact parameter, is the 

distance of closest approach of the photon to the mass. It is a good approximation 

to assume tha t the photon is deflected discretely when it crosses the lensing plane 

(the plane containing the lensing mass perpendicular to the line connecting the 

source to the observer, see Refsdal 1964 on this point).

If the lens (assumed spherical) has a finite radius L greater than R g, a unique
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focal length can be defined. Light traveling parallel to the  axis connecting the 

observer to the  center of the lens and incident on the lensing plane at a  given b is 

deflected so th a t  it will cross this axis. Clearly, the smaller is 6, the closer to the 

lens the ray crosses the axis. At 6 =  R, the ray passes jus t outside the  surface of 

the  lensing mass. The distance between the lens and the point the ray crossed the 

axis is then a t  a minimum, hence this distance could be called the minimum focal 

length of the lens, or ju s t  the focal length F. The geometry is shown in Figure 

1.2,1. The focal length is easily shown to be

C '2' ”

Table 1.2.1 shows the focal lengths for different astronomical objects. It is evident 

th a t  an observer must be a distance greater than F  away from the lens for the lens to 

be able to deflect light so tha t a source far behind it becomes visible. Alternatively, 

the source m ust be a distance F  or greater from the lens so that an observer far 

behind the lens can see it. If these conditions are not met, light from the source 

will not be bent sufficiently around the limb of the lens to make it visible to the 

observer.

It is important to note tha t in the majority of cases that will be considered 

here, the observer-lens distances and the lens- source distances involved are all 

much greater than F. The lenses are thus incapable of blocking light by a classical 

eclipse effect. Only for objects inside the solar system and objects in close binary 

systems can light be decreased by an eclipse effect with three body alignment. All
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other three body alignments, with each body pair separated by more than the focal 

length of the intermediate body, will show a flux-increasing gravitational lens effect.

An important mathematical consequence of gravitational lensing is the  conser

vation of surface brightness (Misner, Thorne, and Wheeler 1973). This consequence 

derives directly from conservation of phase space in the bundle of rays coming to 

the observer. Continuous, uniform-brightness images of source objects seen by an 

observer have the same surface brightness after passing a gravitational lens as be

fore. What a lens docs is distort the area of the solid angle of the image as seen 

by the observer. With the same surface brightness but different angular extent, an 

unresolved object can appear to have a different overall apparent brightness to an 

observer.

For total source flux to be conserved, there must be observers who see an in

creased source flux due to gravitational lensing, and other observers who receive 

a decreased amount. For near exact observer-lens source alignment, there are ob

servers that receive a substantially greater flux from the source than without a lens. 

There are, however, no positions that would receive a substantially smaller amount 

of flux than without the lens.

To visualize this more clearly, consider a set of observers occupying a  sphere at 

infinity watching a point lens and a point source near the center. Those observers 

close to observer-lens-source alignment would see an increased flux from the source. 

The closer they are to the  source-lens line, the greater the increase of flux they
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receive. Those very few observers extremely close to this line measure a dramatically 

increased flux from the source.

There are many more observers, however, who receive a slightly reduced flux 

from the source than in the absence of lensing. If one integrates the total flux 

leaving the fictitious sphere, one finds th a t  it is the same as in the  absence of the 

lens: total flux is conserved. As expected, gravitational lensing docs not create flux, 

it merely distorts its distribution.

At perfect obscrver-lens-source alignment, a point source is distorted by a point 

lens into a circle: a thin angular ring centered on the source (Einstein 1936). At this 

configuration the flux from the source to the observer is maximized. The angular 

radius of this circle is a scale unit which is naturally defined by the problem. This 

scale unit will be referred to as the Einstein Ring Unit (ERU). The ERU is

E R U  = ^ A d - D )

where R s is the Schwarzschiid radius of the lens, D is the distance to the lens and 

d is the distance to the source. Lens variables will usually be designated in upper 

case and source variables in lower case. T he geometry is shown in Figure 1.2.2.

Note that only at perfect collinear alignment does the Einstein ring appear 

(Einstein 1936). If the alignment is not exact, two images of the source appear. 

When the alignment is close to exact, the two images are separated by nearly two 

ERU. Their exact position with respect to the source object is well defined and is



- 9 -

given by

R± = \ \ { R l  + l ) 1 /2± R o),  (1.2.3)

where R 0 is the original position of the source in the absence of lensing, and /?- 

represent the position of the two images (for a derivation, see e.g. Liebes 1964). 

These variables are given in ERU. The position of the source, lens, and lens images 

are all contained on a  single great circle on the observer’s sky. The case of a single 

lens will be discussed in more detail in Chapter 4.

There is also typically a time delay between the two images. The magnitude of 

the time delay is of the order of the time it takes light to cross the .Schwarachild 

radius of the lensing mass. The images are not precise replicas of each other. One 

image is a scaled, inverted mirror image of the other. The difference in the apparent 

brightnesses of the images is always the original apparent brightness of the source 

(l.iebes 1964).

What happens to the image character when more than one lens is present? To 

discuss this in the context of the modern mathematical language of gravitational 

lensing, it is necessary to introduce the concepts of optical depth and shear. Optical 

depth can be defined in a gravitational lensing sense as the number of lensing masses 

per ERU. If there is a distribution with lenses spaced by only a couple of ERU or 

less, the net effect on the source light will be more complex than from the linear 

addition of the individual lenses.

If the average separation between lenses is much greater than the ERU, it is
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usually a good approximation to consider the lenses one a t a  time and add their 

respective contributions. In this case however, only one lens will significantly affect 

the image flux.

If a large mass is near to a stellar lens in the lensing plane, the mass can distort 

the image characteristics of an individual lens in non-trivial ways. This can be the 

case when stars close to the center of a galaxy act on the flux from a distant quasar, 

the host galaxy of the s tar  exerts a gravitational influence distorting the lens effect 

of the individual star. This effect is called a shear effect. Shear is important when 

a  lens is within a few ERU of the near large mass. When the star is many ERU (of 

the massive object) distant, shear effects of the massive objects are minimal.

In the presence of high optical depth and shear terms, the location of the images 

and the calculation of their brightnesses become more complex. To calculate these 

one may invoke Fermat’s Principle (Biandford and Narayan 1986). Fermat's Prin

ciple stales that real images take paths where the lime of travel is an extremum, 

either maximized or minimized (or both as with a saddle point). In the absence of 

lensing, the critical path is a straight line between the source and the observer, and 

the travel time is obviously a minimum. In the  presence of lensing, time is slowed 

in the vicinity of the gravitational fields of the lenses, making the the critical paths 

more numerous and complex. Fermat’s Principle and its application to gravitational 

lensing will be discussed more specifically and in more detail in Chapter 5 when 

dealing with the lensing of two stars simultaneously.
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Focal Lengths of Astronomical Objects

Typical Radius Typical Mass_______F

1 Rq  

18 R0  
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15 km
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5 cm
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1

■10 M g

0 .2  A/©

l Mg  

l M g

10- 3.\/0  

3x10'’gA/q

10*° grn 

10 0 0  gm

4xlO~ 15 gm 

2xlO“ 24 gm

538 AU 

■1630 AU 

275 AU

0.01 AU 

•10 km

6000 AU 

15000 AU

10 pc 

30 Mpc

2600 Mpc 

650 pc
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F ig u re  C a p t io n s

F ig u re  1.2.1: The lensing geometry depicting the concept of minimum focal 

length. Collimated light rays approach the lens. Those rays with impact parameter 

6 equal to the spherical lens radius R  pass tangent to the lens surface. These rays 

pass the closest of all the rays without getting absorbed or scattered by the lens; 

hence they are deflected by the greatest angle and travel the shortest converging 

distance in order to reach the axis of the lens. Along the axis, the distance from 

the lens is defined to be F , the minimum focal length of the lens.

F ig u re  1 .2 .2 : The lensing geometry depicting the two images an observer 

would see with a single point lens and source. Two light paths lead to the observer 

from the source. It is a good approximation to assume that the light rays travel 

along a straight path until they are deflected in the lens plane. After a discrete 

change in direction, the rays then travel again on a straight path to the observer. 

The observer thus sees two images of the same source object.
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C h a p t e r  2

Definition and Use of the Lensing Ellipsoid 

When is Lensing Important?

2.1) I n t r o d u c t i o n

In this Chapter we will evaluate the probability of detecting gravitational lensing 

photometrically. As stars are the most numerous lens candidates for this type of 

lensing. we will assume stars as the lenses, unless explicitly stated otherwise. Much 

of the work in this Chapter is based on Nemiroff (1986).

For typical stellar lenses, the angular separation between images is well below 

modern angular resolution. This can be seen by inspection of the angular size of 

the ERU for stellar lens cases. Typical image separations will be of the order of two 

ERU. Even for an ’optimistic' case of a star of 10 A/© at 100 pc distance acting as 

a lens for a source much further behind it, we can see from Equation 1.2.2  that the 

ERU has an angular size of only 10~2 arcseconds. For stars in nearby galaxies, the 

situation is even less hopeful. A 10 A/© star a t  a distance of 1 Mpc has an ERU of 

about 10- 4  arcsec. Since modern optical telescopes cannot go below 0.1 arcsec at 

best, the chance of angular resolution of images due to stellar lenses is small.

Photometrically, however, the effects of stellar lensing can be well above detec

tion threshold. Image brightnesses can get measurably greater even while images 

remain unresolved. In this Chapter we therefore concentrate specifically on the 

photometric observability of stellar lensing.
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The mathematical tools defined in this section will work only under specific 

assumptions. These assumptions are: (a) a single lens acts at a given time, (b) the

considered a point.

With stellar lenses, assumption (a) is quite reasonable when there are no other

(this is demonstrated by lensing analysis a t high optical depth; on this point see 

Young 1981, Paczynski 1986a and references within). It is also a valid approximation 

when lenses are randomly distributed with average angular distances between them 

much greater than the ERU of any individual lens.

For stellar lenses, the angular radius of a s tar  is typically several orders of mag

nitude less than its corresponding ERU. In typical lens scenarios, the lens must 

come to within about an ERU of the source for lensing to be detectable photomet

rically (Liebes 1961). At that distance the photons pass, a t closest, about 1/100 of 

an ERU from the center of the lensing star. Since the typical stellar radius subtends 

an angle much smaller than this, photons will not typically intersect the surface of 

the star; hence (b) is also a valid assumption.

For circular sources, the maximum amplitude of lensing is given by (Nottale

where R  is the radius of the source in ERU. For amplifications much smaller than

lens is considered to be space singular: a point, and (c) the source is also to be

lenses within an angular distance much greater than the ERU from the original lens

1986)

(2 .1 .1 )
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the maximum amplitude, a point source is a  good approximation. Since the angular 

size of the source is typically small compared to the ERU, and the amplifications 

we will be dealing with in this section are for A  greater than b u t  approximately 

equal to a few, (c) will usually be a good assumption.

For the case of a single point lens between the observer and the source, the 

photon flux reaching the observer from the source is always greater than if the lens 

were not present. As we consider only one lens at a time, we, therefore, arc dealing 

with an increase in photometric flux from the source, never a decrease. A decreases 

in flux does become possible with multiple lenses (Chang and Refsdal 1984).

Other works investigating the general probability of stellar gravitational lens 

encounters include Liebes (1964), Refsdal (1964), and Press and Gunn (1973), and 

Gott (1981). Our treatment is more accurate in that we give a fully three dimen

sional treatment: the lens can be at any location between the observer and the 

source. Our approach also allows calculations with any amplification, not just spe

cific ones. This approach is easy enough to use that it can be invoked to indicate in 

a quick and simple manner whether or not gravitational lens effects are important.

2.2) Definition of the Lensing Ellipsoid

A point lens splits a point source into two images. As derived originally by 

Tikhov (1937), the total amplification is

a  A a  | _____
A a  a (2 .2 . 1)

where a  is the unlensed angular separation of the lens and the source in the observers



sky, and Act is the observed angular separation of the two lensed images. A  is the 

total amplification of the  source, combining the light from the two images. Note 

th a t  A  is a multiplicative factor of the original source brightness.

One can check that Equation 2 .2.1 is correct in the asymptotic limit of large 

angular separations. As a  becomes large, one of the images moves closer to the lens, 

while the other approaches the unlenscd source position. Therefore Act becomes a . 

This, in turn, from inspection of Equation 2 .2.1 causes A to become unity, which 

we expect for large separations.

Defining R  to be the distance from the lens to the source- observer line, and D 

to be the distance from the observer to the lens, we can see from Figure 1.2.1 that 

a  -  R j  D. Licbes (196*1) and Refsdal (196*1) have shown tha t

Here d is the distance from the observer to the source, and R s is the Schwarzschild 

radius of the lens. We can combine Equations 2.2.1 and 2.2.2 with a = R [ D  to give 

an expression for A in terms of distance parameters for the lens and the source:

(2 .2 .2 )

, 8RsD { d - D ) \ ' n  fl-r8/?,£>(d-£>) ] -
1 4" (2.2.3)

If we invert this equation to get R  in terms of A  we find that

R = \4RSD{1 -  D / d ) i ' ^ 2 (2.2.4)

where $  is related to A  through the equation
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The distance R  is measured perpendicular to  the optical axis connecting the 

observer to the source. Were the lens to be placed closer to the optical axis than 

R , the amplitude of lensing would be greater than  A. Similarly, were the lens to be 

placed further away, the amplification of source light is not as great.

Note tha t when $  is equal to 1/2, R  is equivalent to the ERU. R  represents a 

more general radius in the problem than the ERU, as it incorporates the amplitude 

of lensing being considered. R  will also be found to be useful in generalizing the 

concept of optical depth in a similar manner.

Plotting, in dimensionless units, the distance from the optical axis as a function 

of the distance from the lens to the observer, we obtain an ellipse for each amplitude 

A. This is shown graphically in Figure 2.2.1. By rotating the ellipse around the 

optical axis, we obtain an ellipsoid. Because the source distance is usually much 

greater than R, this ellipsoidal volume is typically a prolate spheroid. We will refer 

to this ellipsoid as the Lensing Ellipsoid, or LE.

The LE can be an instructive diagnostic and indicator of gravitational lens 

effects. Any lens of Schwarzschild radius R s th a t  falls inside the LE amplifies the 

source by the amount A  or greater. The volume inside the LE is the volume this 

lens must fall into in order to have a specific minimum photometric gravitational 

lens effect. This volume is

V  =  R fd2^ .  (2.2.6)

A simple result that can be shown immediately is the relative probability for
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lensing to occur at different amplitudes. For a homogeneous isotropic distribution 

of lensing objects, the relative probability is simply the ratio of the  volumes of the 

LE’s, which simplifies to the ratio of the $  factors. So, for example, one would find, 

by use of Equation 2.2.6, that lensing between amplitudes of A — 1.01 and 10 is 

about 1200 times more likely than lensing with A > 10.

2.3.1) Local Gravitational Lensing

An interesting use of the LE formalism is to check whether there can be no

ticeable gravitational lens effects on stars inside our own galaxy. Assume there is a 

bright s tar that can be seen a t  a distance of 1 kpc. What is the chance tha t this 

specific star will be lensed by a 1 ,\/q star to an A > 2 ? If we use A  = 2 in Equation 

2.2.5 we see that 4» =  0.155. Taking 4», d, and R s ( a  3 km) in Equation 2 .2 .6 , we 

see tha t the volume of the LE is V ss 3 .0x l0- 8 pe3. In our solar neighborhood we 

see a number density of stars equivalent to one star in every 10pe3. As the lensing 

volume is about 9 orders of magnitude smaller than the local average stellar volume 

interval, we would not expect to find this star, or any individual star inside our 

galaxy, being gravitationally amplified by a  factor of 2 or more a t any given time.

We can also take the reverse approach and ask: to what level do we expect this 

s tar to be gravitationally lensed by the known stellar distribution? To answer this 

question, we set the volume per star equal to the LE volume and solve for $ . With 

the parameters above defining the LE, we find that the average star at 1 kpc is 

lensed by the amount $  = 107 corresponding to A = 1 t  10“ 15. The detection of
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this small amplitude seems unlikely for the indefinite future because of quantum 

effects of measurement.

But if stars are always moving, won’t lensing become detectable if we wait long 

enough? To estimate this time, we will have to make several more approximations. 

We add to the uniformity of population by adding uniformity of motion: we treat 

stars  as a three-dimensional gas. We can then approach this problem with mean 

free path arguments. A static LE ’collides’ with a gas of stars.

It is a good approximation to take the mean cross section of the LE to be 

a = (rr/ifjjt/3^ ) 1̂ 2. This is derived by taking the cross section to be the area of 

the LE that has major axis d and minor axis (R sd$)*/2. If the mean free path is 

L — 1 /(no ) ,  where n is the number density of lenses, and the mean transverse speed 

of the stars is u, then the mean time between collisions is T  = L /v .  Therefore, the 

mean time between collisions is

T  = {Rsd2n2 v2* ) ~ l/ 20  (2.3.1)

where 0  is a constant th a t  depends on the geometry and is of order unity. Watching 

a source at the distance d , we expect to see it vary in brightness due to gravitational 

lensing, reaching the amplitude A every T  time units.

How long do the lensing events last? Again we employ the picture of an LE 

colliding with a star, as shown in Figure 2.3.1. Here we see that if a s ta r  ’starts’ a t 

position 1 causing a small lensing amplitude its distance to the optical axis is 

(i23d $ i ) 1/2. The stellar lens moves so that its closest approach to the optical axis is
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{Rsd $ 2 ) ^ 2 position 2, where its lensing amplitude is $ 2 - The time the observer

measures for the lens to go from position 1 to position 2 is {2R3d($\  — fv ,

where v is the transverse velocity of the lens. The duration of the lens event is twice 

this, namely,

2.3.2

Watching a source at a distance d, we expect a lensing event of amplitude A to last 

t time units.

Even the most optimistic Galactic estimates show that lensing events of a par

ticular star are rare. A typical observer would have to wait a million years to see an 

amplitude change of 1.2 over the period of a month. These results are comparable 

with those of Liebes (19G4).

The LE puls us in a good position to solve other problems just as simply. At 

what distance from the observer does one expect to see any  source lensed by an 

amount .4 or greater? Assume a uniform distribution of stars of Schwarzschild 

radius R? and number density n and a lensing amplitude A. When the sum of the 

volumes of all the LE’s of stars out to a distance 6 is equal to the average volume 

per star l / n ,  lensing becomes probable. The mathematical statement of this is

(2.3.3)

so that

(2.3.4)
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For the stellar densities assumed above, the relationship between T and A is

plotted in Figure 2.3.2. One can see from inspection of this graph that a t  distances

on the order of 1 kpc, lensing at a noticeable amplitude becomes likely.

There are, however, a t least three major confounding factors tha t would obscure 

a lensing detection, (a) The lens would probably be brighter than the source, making 

it hard even to detect the luminosity of the lensed star altogether, let alone its 

increase in brightness (Einstein 1936, Feibolman 1966,1986). (b) There arc hundreds 

of millions of stars within 1 kpc of the Sun, it would be very difficult to isolate the 

one star undergoing lensing. (c) Even if we were lucky enough to witness the 

lensing event, it could be hard to distinguish the gravitational lens variability from 

the many causes of variable light in stars and stellar systems already known. These 

confounding factors make small the chance of a local source undergoing detectable 

gravitational lensing.

What is the chance that a star inside our galaxy could lens objects outside our 

galaxy, say Q SO ’s a t cosmological distances? Paczynski (1986b) recently considered 

a similar problem of halo stars in our galaxy lensing stars in nearby galaxies. Again 

the  LE can be invoked to answer this question. Assuming d >> D, Equation 2.2.4 

simplifies to R  — (4/?3D4»)^2. By interpreting R  as the radius of a disk, we can 

integrate the areas of all the disks out to the edge of the galaxy, fi, to give a volume

of

(2.3.5)
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Even if we assume tha t our galaxy contains a uniform distribution of 0.1 M q  lenses 

out to 100 kpc with number density 0.1 pc- 3 , and th a t  we could detect amplitude 

changes of A = 1.1 , the volume of the LE is of the order of 10~ 4 pc3, five orders of 

magnitudes smaller than the average volume per s tar . Therefore only one source 

in 105 should be expected to show this lensing effect. This result is comparable to 

that of Paczynski (1986b). We conclude that the probability of detection of stars 

in our own galaxy lensing QSO ’s is small.

2 .3 .2 )  M a c r o le n s in g  P r o b a b i l i t y

Although it is out of the mainstream of this thesis to deal with lensing by 

objects other than stars, the discovery and popularity of macrolensing, the lensing 

effects of galaxies, suggests a brief digression on how the LE can be used to estimate 

the probability of the detection of this phenomenon. Gravitational lens effects by 

galaxies were predicted by Zwicky (1937).

The LE assumptions are now much cruder than with stellar lensing. To use 

the LE formalism, we must assume that galaxies are point lenses and sources, and 

this is not a good approximation in either case. Also, the LE deals implicitly with 

the photometric effects of gravitational lensing, which are the most important when 

dealing with stars at present angular resolution, while the most notable effects of 

macrolensing are angular splitting and distortion effects.

Galaxies do not make good point lenses because their typical angular size is 

larger than their corresponding ERU. A spiral galaxy a t  a' distance of 100 Mpc with
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a  massive halo of radius 50 kpc has an angular size of about 100 arcseconds. If we 

assume a  mass of lO1̂  M© , the  angular size of the ERU is, as given by Equation 

1.2.2, about 5 arcseconds.

Similarly, galaxies do not make good point sources, as they are large compared 

to their ERU. Inspection of Equation 2.1.1 shows that amplification should not be 

larger than A = 2 no matter how exact the observer-icns-source alignment. For 

angularly smaller objects, however, such as the continuum regions of quasars and 

AGN, larger amplifications can be generated.

Nevertheless, to make the LE formalism somewhat valid, we will limit our dis

cussion to lensing events where A > 2. This amplitude reflects an alignment of 

observer-lens-source that would generate two images of comparable brightnesses. 

Therefore, if one image is visible, the other should be discernible to the observer 

also. At A > 2 the two images should be separated by 2 ERU, which according to 

the above estimation, is typically about 5 arcseconds, i.e. within modern angular 

resolution. We do not expect A  > 2 since, even if the alignment is more exact, the 

angular extent of the  source object works to  diminish any amplification above this 

point.

With these constraints in mind, we ask: what is the probability of a random 

distribution of galaxies lensing quasars at cosmological distances? We assume lens

ing is detectable for A > 2, for this amplification would generally precipitate the 

creation of two, separate detectable images. Using a quasar distance of 109 pc
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being lensed by a  galaxy of 1012 A/© in a Euclidean universe, we again calculate 

the volume for the LE by Equation 2 .2 .6 . This volume is about 0.03 A/pc3. The 

average free volume associated with a single galaxy in space is about is about 30 

A/pc3. From these numbers we see tha t we would expect about one quasar per 1000 

to show significant gravitational lens effects.

At what distance must we look to see any galaxy gravitationally distorted by 

a  foreground galaxy? Again we consider that a  photometric effect of A > 2 (when 

considering the galaxy to be a point) is commensurate with coincident angular 

effects that could be seen on an extended object. Use of Equation 2.3.3 with galaxy 

parameters replacing stellar ones shows that the sum of the LE’s becomes equal to 

the average volume per galaxy a t a distance of about 100 Mpc. Galaxies at this 

distance can be seen with modern telescopes, so it is possible that a galaxy currently 

visible to us is being gravitationally distorted significantly by a foreground galaxy. 

The number of galaxies out to this distance is on the order of 100,000.

The angular size of the distortion would be about 5 arcseconds. Since the 

visible (non-halo) angular size of a galaxy at 100 Mpc can be as large as about 20 

arcseconds, we would expect the distortion to be typically within the image of the 

galaxy, not angularly removed from it. This distortion should be hard to document 

when one recollects the large number of peculiar galaxies already catalogued.
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2.3.3) Lensing of QSO’s by Stars in Intervening Galaxies: Microlens-

ing

In this section we will use the LE to estimate, under a  range of assumptions, 

the  magnitude of the gravitational lens effect of stars in nearby galaxies on quasars 

and AGN at cosmological distances. We do not assume that galaxies have massive 

halos containing lensing candidates. More specific cases, in which the effect of a 

massive halo containing lensing stars is considered, will be discussed in Chapter 3.

In microlcnsing, the assumptions of a point lens and point source arc good ones. 

T he lens is assumed to be a single s ta r  acting alone in a galaxy at 10* pc, while the 

source is a QSO behind it a t about 109 pc. The angular size of the ERU is then 10"15 

arcsec, while the size of the stellar lens is about SrlO ” 12 arcsec. So the assumption 

of a point lens is a good one. The angular size of the continuum region of quasar 

light is estimated to be on the order of 10-7  arcsec (Wiita 1985); therefore, the 

assumption of quasars as point sources is also reasonable for amplifications A < 20 .

When a quasar is seen through a galaxy, the intersection of the LE with the 

galaxy is a cylinder. We shall calculate the volume of this cylinder and compare 

it to the average volume per star in the galaxy. From Equation 2.2.4, when the 

quasar distance is much greater than that of the galaxy, one can see tha t  the radius 

of the cylinder is R  = (4R=D$)l/~. The thickness of the galaxy will be given by 

the  variable b. Therefore, in this case, the volume of the LE is

V = irR'b = 4xR s D M  (2.3.6)
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For a  quasar a t  109 pc being lensed by a 1 M© star in a galaxy at 108 pc with 

a thickness of 1 kpc to an amplitude A > 2, the  volume of the LE is 0.02 pc3. 

Assuming a s ta r  density similar to the solar neighborhood giving 10 pc3 per star, 

we see tha t one quasar in 500 being seen through a galaxy should currently be 

undergoing a measurable gravitational lens efTect.

But this calculation was static: it did not include the relative motion of the lens. 

High lens velocities, generated by the motion of the galaxy dragging the stellar lens 

across the quasar, may cause a quasar not being dctectabiy lensed now to become a 

lensed source in the future. So again we ask, what is the mean time between lensing 

events?

Again consider the cylindrical LE colliding with a gas of stars. The collision 

cross-section of the LE is a — 2Rb ~  [ \6 R ,D b * $ )l,'~, so the mean free path is 

L =  l / [na)  =  (16/?3r rD 6 24»)1/ “. The mean time between collisions is then

T = ~  = ( y  R sn 2Db2v2^ ) ~ 1̂  (2.3.7)

We add to the above assumptions by giving the host galaxy of the lens a transverse 

velocity of 500 km/sec. The time between lensing events where .4 > 2 is about 4000 

years. If 100 quasars behind galaxies are being monitored, the mean time between 

events of A > 2 is 40 years.

What are the durations of such events? We will estimate the duration of the 

event to be the  time it takes for the lens to cross the diameter of the LE. If the 

diameter of the  LE is 2R  = and the lenses move with transverse
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velocity v , then the  duration of the event is

t =
16 R 3D $

v 2

1/2
(2.3.8)

For all the assumptions above, the duration of a typical lensing event is about 

10 years. This number is comparable to tha t calculated by Gott (1981). These 

calculations will be made in more detail and for specific systems in Chapter 2.

2.4) Comments

In this Chapter we have introduced a simple formalism in order to estimate 

the probability of gravitational lensing by chance superposition of observer, lens, 

and source. The definition and use of the Lensing Ellipsoid can give a quick first 

estimate of cases when random gravitational lensing is important. As indicated in 

earlier works, we find that the chance of detecting lensing locally is small, but that 

the chances are much better on the extragalactic distance scale.

It should be stressed tha t the LE formalism assumes both a point lens and a 

point source. Only the gravitational potential field of a single point lens is considered 

in the calculations. Galaxies were not assumed to have dark, stellar halos. In later 

Chapters we will investigate the relaxation of some of these requirements. In the 

next Chapter, Chapter 3, we will reproduce some of the calculations given here 

under the assumption that galaxies are primarily made up of dark, stellar halos.
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Figure Captions

F ig u re  2 .2 .1 : Rotating each curve about the Dfd. axis creates an ellipsoidal 

volume: the Lensing Ellipsoid. Any point lens of Schwarzschild radius R s that falls 

in the volume will gravitationally amplify the background source by af least the 

amount A labelled on the enclosing curve. The observer is located at (R, D) = (0 , 0 ) 

in the lower left hand corner.

F ig u re  2 .3 .1: A plane cut of two LE’s is shown on the observer’s sky. The lens 

L moves from position 1 to position 2 while the source S, a t  the center, remains 

fixed.

F ig u re  2 .3 .2 : For an isotropic uniform distribution of point stars at 0.1 star 

pc~J out to a distance of 6, one expects to see of the order of one lensing event 

of amplitude A  to be visible at any given time. The upper curve indicates 1 A/© 

lenses, while the lower curve indicates 0.01 A/© lenses.
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C h a p t e r  3

M icro len s in g : A n a ly s is  fo r  O b se rv e rs

3.1) Q u a s a r  - G a la x y  A sso c ia t io n s

For the microlensing phenomena to  exist, a s tar  must move close to the light 

path of a quasar. There are at least three situations which will allow this to happen. 

In the first, the star is a member of a host galaxy, itself gravitalionally deflecting 

light from the background quasar. In the second, the Icnsing s tar  may be outside a 

galaxy itself housed in a cluster of galaxies. In a third situation, the eclipsing star 

may be a member of a uniform cosmological density of inlcrgalactic stars. In thus 

Chapter we will calculate, for each case, the probability of occurrence, the mean 

time between lensing events, and the duration of an event. We will apply, where 

possible, these calculations to actual systems.

Press and Gunn (1973) have previously studied the effects of a cosmological 

density of objects on background point sources. They concentrated on predicting 

the angular separations expected for the source objects. Turner, Ostriker, and Gott 

(TOG 1984) also considered a uniform density of objects in different cosmologies. 

They calculated optical depths for both compact and isothermal objects, predicting 

the number of gravitational lens pairs of objects likely to be seen per unit of angular 

separation per magnitude interval.

Gott (1981) predicted the likely effects of a halo of compact objects on back

ground quasars. He considered the time transients of these effects on the background
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emitted light, and calculated their magnitude and duration for the double quasar 

0957 +  561.

In this Chapter, we will again frequently use the LE formalism (Nemiroff 1986). 

In Chapter 2 the LE formalism was shown to be valid for stars outside the galaxy 

which lens the continuum regions of distant quasars. The term ’quasar’ here is used 

in a general sense, indicating QSO’s, BL Lac’s, and AGN’s in general. We again 

stress that it is typically the optical continuum region of quasars tha t is under 

consideration to show microlensing effects. Another frequency band tha t may be 

expected to show microlensing effects is the X-ray. Other bands, including the 

radio, are typically loo large; however some objects may indeed show structure in 

some bands.

In this first section we will work under the assumption that a star within a host 

galaxy acts gravitalionally to lens a  background quasar. We will begin by assessing 

the  probability tha t a galaxy itself would be seen in front of a quasar. We assume a 

quasar is seen at a distance of dg (in units of 10° pc) in a  flat Newtonian universe. 

We also assume the universe is filled with spherical galaxies with radii of R4 (in 

units of 104 pc). With these assumptions we ask: what volume of space must a 

galaxy fall into in order to be seen superimposed in front of this quasar?

The shape of the volume which the galaxy must fall into to be seen in front of 

the quasar is a cylinder whose axis is the line connecting the source to the observer. 

If the center of a galaxy falls within R4 of the source-observer line, the quasar will



-  38 -

be seen through the galaxy. The volume of this cylinder is

V =  *R2d  = TrRjdg =  3 .14zl017i2jdgpc3 = 0.314i2ldgMpc3. (3.1.1)

The average volume per galaxy in the vicinity of the local group is about 

lOOA/pc3 per galaxy (Lang 1980). To find the probability of a  galaxy being su

perimposed on a quasar, we divide the volume in which the galaxy must fall bv the 

average volume per galaxy. Equivalently, we define the probability P  of one of a 

class of objects, uniformly dispersed with number density n, falling into a volume 

V as P ~ nV . This probability calculation technique will be used frequently in 

this Chapter.

If a typical quasar lies a t  a distance of 10  ̂ pc, and the typical diameter of 

galaxies is 10* pc, we then see tha t better than three quasars in 1000 would be 

expected to be seen through an intermediate galaxy. If galaxies have extended 

halos out to 105 pc, as many astronomers believe, then, typically, every quasar at 

a cosmological distance has a  reasonable chance of being seen through the halo of 

an intervening galaxy.

We now begin with the premise that a galaxy is superimposed on a background 

quasar and ask: what chance is there th a t  the quasar light comes close enough to a 

star so that its brightness is significantly increased? A number created to express 

this is called the optical depth (r , Vietri and Ostriker 1983). Optical depth is 

defined as the number of stars per Einstein ring. When r  becomes of the order 

of unity, the quasar light path  is dramatically split and altered by the foreground
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distribution of stars. When r  is much less than unity, typically no stars are close 

to the light path, but if one were, it would effect the quasar light by itself.

Typical values for r will be calculated under several assumptions. First, assume 

galaxies have spherical halos, that the halos are made up solely of stars with mass 

A/, and these halos dominate the probability for microlensing in these galaxies. We 

assume these halos have a singular isothermal density distribution, with no core, so 

that their density is described by p -  a 2 /2?>Gr2. Here r signifies distance from the 

galaxy center and a denotes dispersion velocity.

We assume the halo ends abruptly at a radius r,, from the center. We also assume 

the impact parameter of the light from the center of the galaxy is R. Because the 

galaxy is small compared to the observer-quasar distance, and deflection angles are 

small compared to the angular extent of the galaxy, we assume all the stars in the 

galaxy lie in a single lens plane.

To find r, we integrate over the line-of-sight extent of the galaxy to find how 

much mass per distance squared there is in the lens plane. We then divide by 

the mass per s tar  A/ to obtain the number of stars per distance squared. Lastly 

we multiply by the area of the Einstein ring in the lensing plane. This gives us 

the number of s tars  per Einstein ring, which is defined as the optical depth. The 

analytical result of this computation is

2o2D{1 -  D /d )
r  =  -------------  arctan

c~R
r -  1/2
R 2

(3.1.2)

As before, D  is the distance to the lensing galaxy, and d is the distance to the
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quasar.

A simple and practical formula can be extracted from Equation 3.1.2. If we 

assume the lensing galaxy is relatively close {D << d), and the  halo is effectively 

infinite (not a bad assumption when the quasar and galaxy are closely aligned), the 

formula becomes

r = 0 . 0 1 p 5 a . (3.1.3)
“min

The variable 0min is the angle between the center of the galaxy and the quasar 

position measured in arcminutos. The quantity <7250 refers to the velocity dispersion 

within the galaxy in units of 250 km/scc.

We find several things surprising about the above equation. First, it is not a 

function of the mass of the lensing star. This is because of the relation between the 

size of the Einstein ring and the number density of stars along the line of sight. As 

we consider more massive lenses, the Einstein ring is larger, so one would expect 

t to increase. But also when we consider more massive lenses, fewer objects are 

needed along the line of sight to make the mass density fill out the density formula 

p = a 2/2xGr~.  These effects cancel exactly, as one is proportional to A/1/ 2, while 

the other is proportional to A /-1 / 2.

Secondly, in Equation 3.1.3, r  is not a function of the distance to the galaxy, 

the distance to the source, or the angular extent of the galaxy. Also, we should note 

that r  is typically small. It is for this reason that the approximation of a single star 

affecting the light from the quasar is usually valid.
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Neither of the last two equations incorporate cosmological effects. From Gott 

(1981) and TOG, the correct cosmological equation for optical depth is

v -3 <72 50j[i+  z ga l )

Or
r -  9 .55zl0 — (3. 1. 4)

'min

Here we define

E = l - Z u & s L ] ,  (3.1.5)
ZqsoQqto J

and
1 /2

• O r n m ^ g a l Q g a l  •

i?4 refers to the radius of the galaxy in units of 10* pc.

'I' = arctan (3.1.8)

Q is a cosmological term which converts distances to angular diameter distance 

units, and approaches unity as :  approaches zero. Q is given by

n  zqo -  fao ~ 1)|(2s9o + 1)1/2 -  1] , .
Q = --------------- ; ( 1 ---------------- • (3 1 -0

where q0 is the local deceleration parameter. Most of the galaxies that are cata

logued currently are at low z, and hence the cosmological effects are not significant 

for this discussion.

A number tha t describes the effect of the whole galactic potential on the quasar 

light is called shear. Shear, here designated 7 , is a measure of the effect of the mass 

of the host galaxy on the gravitational distortion produced by star(s) along the 

light path. Shear is the inverted square of the impact parameter (here the distance 

between the center of the galaxy and the light path), measured in the ERU of the 

host galaxy.
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To calculate the magnitude of this term we first note tha t  an (infinite, singular) 

isothermal sphere deflects light by a bending angle independent of the impact pa

rameter (Bourassa, Kantowski, and Norton 1973). The bending angle for an infinite 

isothermal galaxy is a  = 4 ^a2/ c 2. We can calculate the effective mass interior to 

the light path by also noting the effect if all the mass were concentrated in the 

center. The bending angle is then a  -  4 R 9j  R. Setting these equal for a given 

impact parameter /?, we find the mass internal to this R  which deflects the photon 

by a (small) amount a.  If we then calculate the square of the radius of the Einstein 

ring for this mass and divide it by the square of the impact parameter, we have 

the number of ERUs the light passes from the center. The inverse of this number 

squared is 7 .

For an isothermal sphere, we find that the shear is exactly equal to the optical 

depth. We will therefore not present calculations of 7  in this or the following 

sections. Since r was shown to be typically small, we conclude that r  is equally 

small, so it is a good approximation to ignore the effects of the host galaxy in these 

lensing calculations: the LE criterion is upheld.

Next we find the duration of an event of amplitude 4». We will define the time of 

duration as the time it takes for the amplitude to go from 2$  to 4> and back to 2 $ 

again. We can then generalize Equation 2.3.3 for a discrete lens distance between 

the observer and the source to find tha t

t = \16R,D^{1 -  D :d ) \ l '2lv.  (3.1.8)
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If we now add cosmological effects we find tha t the duration of an event is

t =  {I30years)zgai(l  + zgal)
•(-M / M Q)Qgal 

h

1/2 * 1/2
E  , (3 .1 .9)

u500

where M  is the mass of the lens, 1/500 's the transverse velocity of the lens in units 

of 500 km/sec, and h is the Hubble constant in units of 100 km/sec/Mpc.

When = 1/2, i is equivalent to the time it takes the lens to cross the Einstein 

ring. If we divide this time by the optical depth, we get the mean time between 

events of amplitude $  = 1/2. This is because optical depth is a measure of the 

number of stars per Einstein ring. If there is typically one star every Einstein ring, 

the time between events would be the same as the duration of the event. The fewer 

stars per Einstein ring, the lower the optical depth, and the longer the lime between 

events.

We can generalize this argument to all 4> by noting that 2r4> is the number of 

stars per ring where the least lensing amplitude is 4>. When 4» = 1/2 we recover 

the normal optical depth. As t  is also the probability of lensing at the amplitude 

$  = 1/2 or brighter, P  = 2 is then the generalized probability of lensing at the 

amplitude $  or brighter. We can then find the mean time between events T  by 

dividing t by P. The result is

T  = (6900years) —Zga/Omin { M/ Mo ) Q gat] 1/2
(3.1.10)

^250^^500

This method gives results equivalent to the mean free path arguments given in 

Chapter 2.
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As quasars are typically Brighter than galaxies, they can be seen at much greater 

distances. Quasars can presently be seen to a redshift of z =  4.0, while galaxies can 

be seen to a redshift of only z  =  1.0 . It is therefore a typical situation for a quasar 

to be seen without a discernable galaxy near the line of sight. But this is not proof 

th a t  there is no galaxy there. A good way to be sure that there is a quasar - galaxy 

superposition is to detect this observationally.

The derived equations can thus be applied to a distribution of nearby galax

ies that arc seen to be angularly close to quasars. A catalogue of such angular 

associations has been recently published by Monk ct al. (1986). The purpose of 

this catalogue was to create a finding list for observers wishing to study absorption 

lines from foreground galaxies on background quasars. Quasar - galaxy associations 

have been a topic of interest since quasars were first discovered, especially for those 

believing a real physical connection between the two. For recent discussion of such 

theories, see Burbidge (1979).

Tables 3.1.1 list galaxies taken from Monk et al. (1986) for which we have 

calculated r, t, and T. We include only those quasar - galaxy pairs which have a 

redshift measured for both the galaxy and the quasar. The galactic halo is always 

taken to extend to 100 kpc in the galaxy’s own frame. Those quasar - galaxy 

associations separated by more than 100 kpc are not included. The value of 0250 

was taken to be 1, as was the value of V500.

The table is broken up into two sections. Table 3.1.1a includes spiral and
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lenticular galaxies, while 3.1.1b includes elliptical and irregular galaxies.

In Table 3.1.1, column 1 refers to the quasar number, column 2 to the name of 

the galaxy, if it exists. Column 3 lists fau, the optical depth. Column 4 lists event 

duration time t for 0.1 magnitude events, while column 5 lists time between events 

of magnitude 0.1 of greater (T ). Column 6  and 7 list t and T  for a 1.0 magnitude 

event.

From inspection of these tables we again sec that the assumptions inherent in 

the use of the lensing ellipsoid arc validated: low optical depth and shear frequently 

occur. We feel tha t a dedicated observing program might detect the luminosity 

changes if they exist: this point will be further discussed in Chapter 7. It is also 

evident that, were a search program carried out that could identify more quasar - 

galaxy associations, a more comprehensive observing program might be possible.

Inspection of these tables also shows tha t previous detection of the microlens 

effect is not a certainty. Although it is possible, as noted above, tha t a small fraction 

of quasars currently being observed are undergoing microlensing, the effect may not 

be so easy to identify.

As speculated by Ostriker and Vietri (1985) and Barnothy (1986), it is possible 

that some BL Lacertae type objects are actually Optically Violently Variable (OVV) 

quasars whose continuum has been greatly amplified by microlensing. With the 

present results, we can limit the  mass range of the lens from the duration of the 

events, as the mass of the lens is the variable in Equation 3.1.9 tha t  has the widest
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range of possible values. If these events are quickly transient, on the order of weeks, 

as noted in Nottale (1986), the mass of the lens should be small: a  fraction of a  

solar mass. If, however, the BL Lac has maintained its current brightness over a  

baseline of 10 years or more, the mass of the lens is probably large, over 100 M@ .

3.2) Quasar - Cluster Associations

Another situation where a star could lens a background quasar is when this s tar 

is part of a cluster of galaxies. We assume here that the 'dark m atte r’ in clusters 

of galaxies is in the form of compact objects: cither small mass stars or massive 

black holes. We model clusters as 'big galaxies': isothermal spheres, except tha t 

the cluster velocity dispersion is on the order of 1000 km/sec instead of 250 km/sec. 

Also, we give clusters larger radial extent. We assume all clusters are the same and 

they all have a radius of 1 Mpc, at which point the cluster ends abruptly.

The above Equations, 3.1.4, 3.1.9, 3.1.10 can be used to find r, t,  and T  for 

microlensing in clusters. We find tha t clusters are indeed good places to look for 

microlensing. These equations become

(3.2.1)

(3.2.3)

(3.2.2)

Here the velocity dispersion of the cluster is likely to be higher than tha t of a galaxy,

of the order of 1000 km/sec. The subscript els refers to a cluster of galaxies.
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Inspection of these equations shows that, if the dark m atter that exists in clus

ters is compact in nature, they are better candidates for microlensing (per object) 

than galaxies. This is because clusters allow larger internal velocities than  galaxies, 

as well as being physically larger in both radial and angular extent. Also, there is a 

good chance tha t a galaxy (or even several) can act simultaneously in conjunction 

with the cluster to increase the chance of observing microlensing.

3.3) A Cosmological Density of Jupiters

Many cosmologists believe that the density of the universe is equal to the critical 

density needed to close it. If this is true, then much of the matter in the universe 

is not in luminous form. One hypothesis holds that this dark matter is in the form 

of compact baryonic m atter distributed uniformly throughout the cosmos. Would 

such a cosmological density express itself in the form of microlensing effects on 

background quasars?

A temporary assumption we first make to estimate the answer to this ques

tion quickly is the LE formalism. We also assume that the universe is static and 

Euclidean.

Assume a quasar is visible at dg 108 pc. The volume of the LE is

V =  \ * R 9d2i  = (2000 pc3) (A//iV/ojdgd*. (3.3.1)

T h e  critical mass density of the universe is is p = 3H ^ /S kG which means the critical 

number density is

n =  (2.83xl07 pc-  J)(M©/A/). (3.3.2)
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The probability of finding lensing a t amplitude $  is thus found to be

P  =  n V  = (5.66xl0“ 4) d\  $ .  (3.3.3)

This equation agrees with the results in TOG at low optical depth.

We see that, since the large majority of quasars is at a distance greater than 108 

pc, at least one quasar in 1800 should currently be undergoing lensing at amplitude 

4> = 1 or brighter. This number is independent of the lensing mass, and the speed 

of the lenses. Since 108 pc is a small number in a cosmological sense, and since 

cosmological effects would only act to increase the density of lenses, we see tha t 

Equation 3.3.3 is a lower limit to the  probability of gravitational lensing independent 

of cosmology. When 0  = 1/2 , P  = r and one quasar in 3600 is undergoing an event 

of magnitude increase of 0.3 or brighter (0.9 in the mean, for a true point source). 

Since of the  order of 10,000 quasars are currently known, it seems probable that, 

if fl = 1 with compact lenses, a t  least one quasar undergoing microlensing has 

been seen (but, as before in the galaxy case, not necessarily identified with the 

gravitational phenomenon).

Note tha t the shear from a uniform density of objects is, on the average, zero. 

Nityananda and Ostriker (1985) have shown that for a uniform distribution of lenses, 

the largest fluctuations of the shear come from nearby objects and will affect only 

events whose amplitude of lensing A is on the  order of of 1/ r 2 or greater. Shear 

effects are hence negligible for the calculations presented here.

Once again we will calculate the time scale of gravitational lens-induced vari
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ability. In this instance, however, we understand th a t  the variability arises not 

from random motions of the cosmological objects, bu t from large bulk motions 

with respect to the observer, source, and rest velocity as defined by the microwave 

background. Random motions thought to exist in massive, baryonic, cosmological 

objects arc thought to be small, of the order of 50 km/sec (Sandage 1972; Sandage 

and Tammann 1975). The dipole moment of the microwave background shows our 

(an observer in the Local Group) motion to be of the order of 700 km/sec (Smoot 

ct al. 1977). This alone adds an effective lens velocity of (700&m/sec)(l -  D/d)  

to the lens (see Equation 4.3.1). Furthermore, if this velocity is typical, we can 

expect bulk lens velocities of the order of 700 km/sec. These velocities, will, on the 

average, add to the effective relative motion of the lens. In our calculations, we will 

consider the typical transverse lens velocity (actually a superposition of observer, 

lens, and source velocity via Equation 4.3.2) to be 500 km/sec.

If, however, we consider our velocity of 700 km/sec to be unusual in the universe, 

and tha t  the typical transverse cosmological lens velocity is much less than this, then 

an unusual effect may arise. Quasars along our line of motion would show fewer 

transient lens effects than those perpendicular to our line of motion.

We will estimate the duration of a lensing event from the maximum duration, 

which occurs (typically) at the  most likely place for the lensing event: halfway 

between the observer and the source (D = d/2). Again we define the duration of 

an event of amplitude $  or greater as the time it takes for the amplitude to go from
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$  to 2$ , and back down again to  $ . We can thus generalize Equation 2.3.3 to read

The time between events of amplitude 4> or brighter can be calculated by the 

above method: dividing the duration by P,  the probability of lensing at «!> or 

brighter, given in Equation 3.3.3. We find this time to be

TOG have calculated r  as a function of z for several cosmological scenarios. We

the present epoch).

The most probable redshift for lensing is at half the source distance for non- 

cosmological source objects. This can be seen by noting that the LE has the largest 

cross-section at this point. For cosmologically distant objects, the  most probable 

redshift is found by TOG to be zprob = (1 -+- Zq?o)l,,i -  1. When calculating a typical

(4R3d $ y / 2/ v (3.3.4)

which in more convenient form is

I — (12 .2 y ears) 11/2 (3.3.5)
<>500

T  = (21,500 years) | (A//A/0 ) ]i/*
d'i* v1aa

(3.3.0)

generalize their calculation of r to the probability of lensing at amplitudes of all 4>.

For an empty universe, this probability is

(3.3.7)

where Q i  is the cosmological density of lenses divided by the critical density (at
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duration of a lensing event, we will place the lens at redshift zproi,. We again assume 

the duration is the time it takes the lens to  move from 2$ to $  and back to $  again. 

The duration time is calculated to be

I = (47.3years) [ (3 .3 .8 )
1 »500k ‘

A characteristic time between lensing events of amplitude 4> or brighter is

T  = l / P = (-17.3years) [W j Vej g t  e ,,,)
I 11

Z q a o ) ( l  ~  Z q a o ) * ^

L'r ‘iqaouio0^1

1/2
(3.3.9)

If the universe is filled with a cosmological density of lenses such tha t 0  =  Of, = 

1, a different r is relevant. Again generalizing from results in TOG, we find the 

probability of lensing at an amplitude $  or greater is

6 f (1 -f ZqS0) ^ ^  -v 1
r = ' */n ( l  + zq>0) -  j (3.3.10)

5 l ( l t > ) 5/ 2 - l

TOG find that when ZqS0 goes to infinity, the most probable lens distance is rela

tively close: zproi, = 0.65. zprof, is not a strong function of ZqS0 a t  large z: even at 

Zqso =  2, zprai, =  0.48. As small z cases were covered above, we will assume a high 

Zqta here and take < zprof, > ~  0.5.

For the above assumptions we then find that a characteristic duration time for 

a lens event brighter than $  is

■ ( iV / /A/© )$ l l /2
t =  (71.1 years)

v500fl
(3.3.11)

and a characteristic time between lensing events of

( M / M © )T  =  t / P  = (59.3 years)
u5 0 0 ^

1/ 2 (1 t  Zqso)5/* t  1. , , 4
< 7 7 ^ - T " (1 t  “ «

-1

(3.3.12)
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3.4) Discussion

Could microlensing be invoked to explain all or most of quasar variability? Only 

when t approaches unity, or when T  approaches the  time scale of a month, could 

microlensing produce the continual luminosity changes found in some quasars. Wc 

do not believe tha t  lensing is the dominant cause for quasar variability, bu t we find 

the hypothesis interesting enough to examine further. This hypothesis has also been 

examined by Canizares (1982), and Schneider and Weiss (1987).

Wc will consider only the case where r < <  l b u t T  is of the order of a month. 

Schneider and Weiss (1987) considered a case of higher average optical depth. The 

only range of parameter space tha t could allow such speculation is tha t of very small 

lenses which are moving very quickly. The situation calls for Jupiter- size masses or 

smaller moving transversely at 1000’s of km/sec. The smaller the lens, the smaller 

its ERU, and tin* faster it can traverse its own ERU at a given velocity. Also, given 

a fixed ERU, the faster the lens, the shorter the wait between lensing events and 

the shorter the duration of the lensing events.

Even with these unusual assumptions, there are still discrepancies between the

ory and observation that indicate microlensing is not to be credited as the dominant 

cause of quasar variability. We will place these discrepancies into three categories. 

The first category involves light curve shape, the second involves individual quasar 

variability histories, and the third discusses discrepancies involving comparative 

quasar variability histories.



-  53 -

First, the light curves of individual lens events, shown in Figure 4.3.2, are not 

typical of what is seen. No quasar variation light curve has, to date, been strongly 

indicative of one of these curves. Quasar variations are typically different and more 

complicated (for a review of quasar properties, see, for example, Wiita 1985). One 

defense against this argument is to invoke a source that is complicated and extended 

in structure. Such a  source would necessitate the production of more complicated 

light curves.

Discrepancies with individual quasar light histories may also discredit microlens

ing as an explanation of quasar variability. Why would a single quasar be highly 

variable over some period and relatively quiet over others? Shouldn’t a uniform 

density of lenses act with similar effects over a large range of time? A defense 

against this argument is to suppose that either the density along the line of sight 

can change (say a s ta r  cluster passes in front of a quasar), or that tin* size of the 

lensing region changes, so as to damp out lens-induced variability.

Individual quasars are thought to echo light variations in their small internal 

compact regions to outlying regions (Wiita 1985). If the outlying regions are spheri

cally symmetric and centered on the central regions, one would expect them to vary 

at the same time, not at a later time. If the outlying regions were not spherically 

symmetric, then lensing would predict an equal probability of the outlying region 

varying first, if not both before and after the inner region lensing event. This point 

is considered in more detail in Chapter 6 .
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Another major problem with believing tha t all quasar luminosity changes are 

due to  microlensing is that of the relative light histories of quasars. If we invoke 

a cosmological density of objects for the lenses, why do some quasars vary greatly, 

while others are relatively quiet? Again, there are two possible explanations of this. 

The first is to suppose a higher lens density along the line of sight to some quasars 

than to others. The second is to suppose that some quasars have continuum regions 

significantly larger than others.

Gravitational lensing effects would also predict variability to be a function of 

quasar distance. Wc expect this because the more distant the quasar, the higher 

the average density of lenses that would be expected along the line of sight. This 

effect is not seen. It is also difficult to explain why some nearby quasars are highly 

variable.

Canizares (1982) compared the continuum luminosity of quasars to the broad 

emission line luminosity. He argued that if microlensing were a dominant cause of 

quasar variability, and if microlensing affected the continuum emission much more 

strongly than the broad line emission, then one would expect a large scatter in the 

continuum-to-line ratio measures between quasars. Since he did not find such an 

affect from inspection of several quasar data sets, he concluded that microlensing 

was not  a dominant cause of quasar variability.

Although there are strong arguments against all or most quasar variability being 

tied to microlensing, we feel there is definitely room for some fraction of it to be
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so explained. If much of dark m atter can be explained by Jupiter-sized compact 

objects, a careful search for their gravitational lens effects could be fruitful.
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Quasar
Name

Galaxy
Name

r

T a b le  3 .1 .1a

t T  
(0.1  mag, years)

t  T 
(1.0  mag, years)

0026+129 Anon 0.0021 1.177 216. 0.295 863.
0039-256 NGC 253 0.0001 0.508 3291. 0.127 13147.
0041-261 NGC 253 0.0002 0.508 1159. 0.127 4632.
0042-248 NGC 253 0.0002 0.508 1192. 0.127 4763.
0050-253 NGC 253 0.0001 0.508 1700. 0.127 6792.
0051-253 NGC 253 0.0001 0.508 2652. 0.127 10595.
0048-396 NGC 300 0.0001 0.398 2151. 0.100 8606.
0056-363 NGC 300 0.0001 0.397 1651. 0.099 6595.
0056-394 NGC 300 0.0001 0.398 1621. 0.100 6175.
0151+015 1C 1746 0.0134 2.435 71. 0.609 284.
0219+428 UGC 1832 0.0042 2.194 2 0 1 . 0.549 816.
0219+428 NGC 891 0.0001 0.772 2537. 0.193 10135.
0336-218 NGC 1385 0.0004 1.012 1069. 0.253 4272.
0146-208 Anon 0.0643 3.864 25. 0.967 98.
0838+770 Anon 0.0050 1.741 136. 0.436 542.
0918+512 NGC 2841 0.0005 0.757 579. 0.189 2314.
0955+326 NGC 3067 0.0074 1.089 56. 0.273 226.
1019+616 NGC 3407 0.0035 2.014 2 2 1 . 0.504 884.
1103-006 NGC 3521 0.0000 0.723 6233. 0.181 24901.
1206+459 NGC 4144 0.0002 0.524 928. 0.131 3708.
1219+755 NGC 4319 0.0190 1.186 24. 0.297 96.
1254+047 NGC 4765 0.0005 0.757 534. 0.190 2133.
1327-206 Anon 0.0217 2.085 37. 0.522 149.
1341+258 Anon 0.0056 1.924 133. 0.482 531.
1425+267 Anon 0.0020 1.829 349. 0.458 1394.
1428+498 NGC 5660 0.0011 1.398 493. 0.350 1969.
1749+701 NGC 6503 0.0027 0.500 71. 0.125 284.
2020-370 Anon 0.0495 0.847 7. 0.212 26.
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Quasar
Name

Galaxy
Type

r

T ab le  3 .1 .1b

t T 
(0.1 mag, years)

t T 
(1.0 mag, years)

0112-017 E 0.0008 1.287 611. 0.322 2440.
0137+060 Anon 0.0035 -1.115 589. 1.105 2355.
0219+428 E 0.0019 2.290 •171. 0.573 1882.
1011-010 1m 0.0002 0.315 •183. 0.079 1929.
1208+322 Anon 0.0089 •1.160 221 . 1.117 885.
1233+125 E7/S0 0 .020-1 0.500 9. 0.125 37.
1216-057 E6 0.0008 0.9-17 •131. 0.237 1723.
1302-102 Anon 0.0071 3.9-15 242. 0.988 968.
1302-102 Anon 0.0102 3.795 156. 0.950 623.
1355-116 I in 0.0002 0.199 1091. 0.125 •1356.
1510-089 Anon 0.0050 3.87-1 370. 0.970 1478.
2020-370 E 0.0197 0.812 16. 0.211 66 .
2305+187 Anon 0.0227 3.310 69. 0.829 277.
2305+187 Anon 0.0015 3.315 10-16. 0.830 4180.
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Chapter 4

Single Star Light Curves

4.1) Previous Work

Single s tar  light curves have been studied previously by Liebes (1964), and 

Refsdal (1964). Liebes and Refsdal calculated analytically the basic effects of a 

single s ta r  on a point source behind it. Macdcr (1973) considered a binary system 

with one star gravitalionally lensing the light from the other s tar . Bontz (1979) 

calculated source changes tha t result from the lensing of a massive opaque lens. 

Chang and Refsdal (1979, 1984) considered the light curves of a star in a galaxy 

acting in conjunction with the gravitational field of its host galaxy (equivalent to 

working at large shear).

More recently Nottale (1986, NTL) considered the effect of a foreground star, 

acting alone on a background circular quasar of uniform brightness. NTL modeled 

a specific light increase of the quasar W0815-r234. Paczynski (1986a) calculated 

the probable effect of single stars in our own galaxy lensing stars in nearby ones. 

He calculated and displayed single-star light curves for a wide range of magnitude 

brightenings due to a single s ta r  lensing a point source.

Our main goal in this Chapter is not directed toward generating a more realistic 

library of typical microlensing events, but toward the information latent in simple 

microlensing events. We focus on a simple light curve generated under basic (but 

not improbable) assumptions, and analyse the lens and source information which



can be recovered.

The scenario requires the LE formalism to be valid so that, in general, a point 

lens acts to amplify the light emitted from a point source. Later we will relax 

this assumption to include a uniform circular source, and lastly a  uniform ellipti

cal source. These simple cases seem to us the ones which preserve the most lens 

and source information in the most easily recoverable form. Wc give a step-by-slep 

procedure to show how a photometric observer can recover this lens and source 

information from measurement of the light curve. Wc will find tha t such analysis 

leads to angular resolution at the angular scale of the ERU or smaller. This cor

responds to measurement of source size and impact parameter between lens and 

source center of the order of 10“° arcsec, and of velocity of the lens to a scale of 

10~c arcsec per year.

In section -1.2 we outline the mathematical and numerical techniques needed to 

calculate the light curves under these assumptions. Section 4.3 presents the light 

curves for a circular uniform source and discusses the information to be recovered 

from such a light curve. In section 4.4 we present and discuss the  light curves for 

an uniform elliptical source.

4.2) M athematics of Extended Source Lensing

As derived in Liebes and Refsdal, the total amplification of a point source by a
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where the amplification factor A  represents the ratio of lensed to unlensed bright

nesses, and r is the distance between the lens and the source in terms of the ERU.

Following the analyses in Maeder (1973) and NTL, we calculate the amplifica

tion of an extended source by integrating equation 4.2.1 over the source distribution, 

assumed to be of uniform surface brightness. With a polar coordinate system cen

tered on the point lens, the amplification A is

< ■

where r is the distance from the lens to a  given point on the source, and $  is the 

azimuthal angle measured in the plane of the sky. The geometry of the situation is 

depicted in Figure 4.2.1. Numerical evaluation of Equation 4.2.2 was one method 

used to generate light curves.

An alternative bu t equivalent numerical approach to recovering A for an ex

tended source, and hence generating light curves, is to use i lie property that gravi

tational lensing conserves surface brightness (Nlisner, Thorne, and Wheeler 1973). 

For a uniform source we calculated the area of the source after lensing and compared 

it to the area of the source before lensing, the ratio of the two being the amplitude 

.4. Although the mathematical and physical principles involved are equivalent to 

the above technique, the details of the numerical processes are quite different. In 

the surface brightness approach, one chooses points on the boundary of the unlensed 

source and calculates the two positions into which the lens maps each point. The 

equation for calculating the displacement is Equation 1.2.3.
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It is not numerically efficient to pick points equally spaced on the original source 

boundary when calculating the new lensed source boundary. Because of the non

linear way the lens redistributes boundary points, points equally spaced on the 

boundary before lensing will not lead to points equally spaced on the boundary 

after lensing. Indeed, the accuracy of the calculation increases when the final source 

boundary is best defined with the points equally spaced there. Starting with equally 

spaced points on the unlensed boundary creates the  need for thousands of points 

before good lensed images arc defined. A better method is to draw rays from 

the lens to the unlensed source boundary, using the intersection points to denote 

the boundaries of the unlensed source, and use these points in Equation 1.2.3 to 

calculate the position of the lensed image boundaries.

We used both numerical techniques to calculate the light curves presented here 

and find they agree very well. To calculate the light curve we moved the lens across 

the field of the source noting the lensing amplitude at many discrete points. The 

plot of the magnitude increases against the lens position (or time) designates the 

light curve. The abscissa of the light curves is given in ERU, and designates the 

distance of the lens from closest approach to the center of the unlensed source.

The numerical processes were carried out on a Leading Edge Home Computer 

using Microsoft FORTRAN, and an IBM 4341 main-frame using FORTRAN 77.

4.3) Light Curves for a Point and Circular Source

Figure 4.3.1 shows a sequence of light curves for a point lens acting on a point
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source. This graph is the same as Paczynski (1986a) and is included for completeness 

and comparison with later light curves. From the standpoint of the observer there 

are several comments that can be made about the curves. First of all, the maximum 

lensing magnitude (more precisely, the magnitude of the unlensed source minus the 

magnitude of the source when it is a t its brightest, hereafter AA/mfl3t * is a measure 

of the impact parameter in ERU. As seen in Equation 1.2.2, the ERU itself is a 

function of the mass of the lens, the distance to the lens, and the distance to the 

source.

The abscissa of Figure 4.3.1 is labelled in ERU units. Measured light curves 

would necessarily be in lime units. Therefore, the direct correlation of a measured 

light curve to a theoretical one would necessarily give a correlation between ERU 

units and time. This correlation yields directly the relative velocity of the observer, 

lens, and source.

More precisely, this relative velocity can be defined in terms of an ’effective’ 

lens velocity. If, relative to some rest frame, the lens and the source are at rest but 

the observer has some transverse (to the optic axis) velocity v0, this can be seen 

to be equivalent to a lens velocity of v„(l -  D/d).  Similarly, a source velocity v s 

relative to an observer and lens at rest is equivalent to a lens velocity of v s (D/d).  

Therefore,

Ve = v( -f v0(l -  D/d)  - r  v f {D/d) ,  (4.3.1)

where ve is the effective, combined, transverse velocity of the lens, and v/ is the real
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transverse velocity of the lens. The scalar ve is then

ve =  (ve • Ve) 1/ 2 = (vf  + v2(l -  D/d.)2 +  v2{D/d)2 -  2v[V0(l  -  D/d)cos0/o 

—2viv3(D/ d)cosO[s -  2vat/0(l  -  D/d)(D/d)cosOg0) 1̂ 2, (4.3.2)

where 0 represents the angle between the transverse velocity vectors.

Figure 4.3.2 shows a variety of half light curves for a single lens acting on 

a  uniform circular source. Only half of each light curve is given, since these light 

curves are symmetric about AAtmaz  • Figure 4,3.2a shows light curves that all have 

a A A f  muz of 1 magnitude, while those in Figures 4.3.2b and 4.3.2c have AA irnnz 

of 2 and 5 magnitudes respectively. A  At max occurs when 6, the impact parameter, 

is smallest. A A  At max of 2 magnitudes means the brightness of the source is two 

magnitudes brighter than in the absence of lensing.

For a uniform circular source, there are two input parameters needed to generate 

a light curve. One of these is AAtmaz  , the other is R,  the radius of the source. Once 

R  is specified, 6 is uniquely determined. The reverse proposition is not necessarily 

true: if A A tmat and b are specified, R might not be uniquely determined. Indeed, 

there are several values of R  tha t may fit.

From inspection of Figure 4.3.2, some conclusions may be drawn'immediately. 

For a given magnitude of lensing, there is a source radius below which the shape of 

the entire light curve becomes, effectively, independent of source size. The curve is 

then equivalent to the corresponding curve shown in Figure 4.3.1, and is identical 

to tha t of lensing a  point source. Alternatively, there is also a maximum source
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radius above which it is impossible to  obtain a given A M max ■ Inspection of Figure 

4.3.2 also shows a general rule: the larger the source radius, the broader the light 

curve.

We no%v wish to reverse the theoretical process and ask: what information could 

we recover from close scrutiny of a light curve? Wc will analyse the light curves 

correlating those parameters that can be measured from the light curve with those 

parameters generating them. Information that can be measured from the light curve 

are A  Almaz » parameters carrying information as to the intrinsic shape of the light 

curve, and parameters relating to the scale of the light curve abscissa,

A parameter relating to the scale of the abscissa is a chord across the light curve 

a t  small lensing magnitude, where the curve becomes like that of a point source. 

If the chord is drawn low enough, it will not be a strong function of light curve 

shape. One convenient such chord we will designate the ’2-ERU line’. This chord 

is particularly convenient because its length is directly related to the ERU.

For a point source and any A Almaz » the 2-ERU line lies »  0.319 magnitudes 

above the baseline of the unlensed quasar light level. The same value is also a good 

approximation for some extended sources. If the  observer notes the time between 

the two points on the graph where the magnitude brightening is 0.319 magnitudes, 

the  time between the two points corresponds to an angular distance of lens motion 

of 2-ERU. So this length of time, divided by two, is the velocity of Equation 4.3.2 in 

units of ERU per time interval. We will refer to this velocity as just v. Corrections
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to the 2-ERU line method of determining this ’proper motion’ do occur at small 

AAfmai and large R , and they will be discussed later.

One possible method for scrutinizing light curves such as those in Figure 4.3.2 

in order to obtain lens and source information is described here. In some instances, 

the angular size of the source can be found quite accurately.

In lensing situations for which the lens becomes directly projected against the 

disk of the source, the central part of the light curve, around , becomes

flattened. A convenient method of determining the degree of this flattening, and 

hence parameterizing the shape of the light curve, is to define a thickness parameter, 

h. The h we will use is defined as the distance between the inflection points of the 

light curve, as measured on the abscissa.

Using the inflection points to parameterize the light curve has several advan

tages. First, the information carried by the inflection points is invariant to the 

change in most of the other parameters, including AA/mtlx , 6, R, v, and the ERU. 

Second, inflection points are intrinsic features of a light curve; there is no theoretical 

ambiguity in their location.

Plots of R versus h for AA/Waz = 1 ,2 ,  and 5 appear in Figure 4.3.3. Two 

regimes can be seen, corresponding to  when the lens passed directly in front of the 

disk of the source, and when it did not. Large sources had the lens pass directly 

between the source and the observer, resulting in a good correlation of h with R.  

Small sources show a less striking correlation. A sample interpretation ttTbe made
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is tha t  for a lensing event with measured AM max =  1, and measured h  value of 

0.7, the-source must have an. angular extent of about 0.8 E R U . If the event had 

AA/maz =  1 and h =  0.36, then the source could have any range of angular extents, 

with 0 <  R  <  0.4 ER U and R  = 0.65 possible. The ambiguity between the first 

R  range and the second distinct R value can be broken by noting the shape of the 

light curve. The light curve with the most flattened top corresponds to the higher 

R  value.

Similarly, Figure 4.3.4 shows the correlation of 6 with h. The same two regimes 

arc indicated. From inspection of the graph, we can tell that with A.V/rmix = 1 and 

h =  0.7, the lens must have passed almost 0.4 E R U  of the center of the source.

Figure 4.3.5 shows a correlation between h 2 and (R2 -  6*). For all A.V/m,lx 

investigated, h 2 shows itself to be a direct measure of (R 2 -  b2), when the later 

quantity is positive. The reason for this correlation is clear: the inflection points 

are accurate indicators of the times when the lens enters and leaves the boundary 

of the uniform source. Since the distance the lens traverses across the source is 

2 ( R 2 -  62), h is then a direct measure of the source length along the path of the 

lens.

If the lens did not cross the source boundary, [R2 -  b2) is negative, and h2 is 

only a weak measure of source size. This situation is shown by the lower curves of 

Figure 4.3.5. From inspection of Figure 4.3.5a, we can see tha t when A M moi = 1 

and h2 = 0.5, (R2 -  b2) =  0.5, in agreement with the above mentioned values. This
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means th a t  the distance the lens traveled across the face of the source was 0.5 ERU.

For a  circular uniform source, this situation is shown graphically in Figure 4.3.6. 

The graph was computer generated, and no part of the graph was ’scaled’ to make 

the correlation between inflection point locations and source size more obvious. The 

dotted lines were added later to emphasize the effect.

A point tha t we will now address is the measuring of the thickness parameter, 

h. In observed light curves, h will be measured as a function of time. This is 

because observational light curves use time to designate the abscissa of the light 

curve instead of ERU. To determine h in ERU, one must divide this time by v, the 

extent (in time) of the 2-ERU line.

This procedure, however, has some internal error in it. The error comes about 

at large R  from the flattening of the light curve. The flattening distorts the curve 

at the height of 0.319 magnitudes, the height at whiih the 2-ERU line is drawn.

As may be seen in Figure 4.3.2, larger sources have wider light curves at 0.319 

magnitudes than do smaller sources. Therefore, light curves of larger sources will 

have u’s measured by the above method lower than the actual values. To correct 

Vor this inaccuracy, one can refer to Figure 4.3.7. From this figure one can see there 

is a direct relation between the original h measurement and the actual h in ERU. 

We present only the mapping for the studied cases A M max = 1 and 2, since for 

AAfmai =  5 the correction is less than 0.1%.

Multiplying v by the actual h value, h££[i,  and dividing by the original value,
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hoRiG'i ^  labelled in Figure 4.3.2, will give a v-value corrected for large source 

size. The actual thickness parameter, hg ju / ,  is the one we correlated with other 

variables.

4.4) Light Curves for Elliptical Sources

For an elliptical uniform source, there are 4 input variables needed to generate 

the light curve. They arc A Mmax t the maximum lensing magnitude; ae, the major 

axis of the uniform source; 6C, the minor axis; and 0 , the orientation angle of 

the major axis of the ellipse relative to the transverse velocity vector of the lens. 

Once these parameters are specified, the impact parameter of the lens is uniquely 

determined.

One method of scrutinizing the  light curves - the method we will describe here - 

will utilize 3 parameters tha t can be measured from the light curve. These param

eters are AA/mar . v: the length of the 2-ERU line, and h: the abscissa distance 

between the inflection points. The parameter v continues to be an accurate measure 

of the relative velocity, but we can find no direct relation between h and at , be, or 

0 .

In h, however, we still retain an accurate measure of source length along the 

path of the  lens, as shown in Figure 4.4.1. This figure also shows that light curves 

of uniform sources need not be symmetric about AM maz • Indeed, both curves 

shown here are somewhat asymmetric. As a general rule, the closer the lens passes 

tangent to a limb of a source, the more the light curve deviates from symmetry.



-  7 0 -

When the lens was far from the ellipse (on the  order of ae from the ellipse edge or 

more), the wings of the curve become symmetric, as even an ellipse mimics a point 

source when the lens is far from its boundary.

Figure 4.4.2 shuws a typical lensing sequence of an ellipse as seen by the observer. 

This would be the appearance of the lensed ellipse if the observer could resolve it. 

The lensing scenario corresponds to tha t depicted by the lower path of Figure *1.4.1.

It is clear that lens and source information can be recovered from a light curve 

even if the source is not circular (but still uniform). Doth source size and lens ve

locity can still be obtained. As long as the source boundary is simple, the inflection 

points give an accurate measurement of source length along the line of lens motion.

-1.5) Discussion and Comments

We have found that, in theory, much can be learned from analysis of gravita

tional lensing light c u m  ■*, We can derive information about both the lens and the 

source, although much of the information in the form obtained would be a mixture 

of both lens and source parameters.

One such datum derivable from analysis of the light curve is the relative motion 

between the observer, lens, and source, as derived in Equation 4.2.2. Light curve 

analysis recovers this parameter in units of ERU per time unit, and therefore in

volves the mass of the lens, the distance to the  lens, the distance to the source, and 

the relative velocity in standard units.

If we envision a scenario wherein a star in a nearby galaxy microlenses a back
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ground quasar, we. might assume that the distance to the galaxy and  the quasar 

are known through their redshifts. This leaves the observer with a result that is a 

coupling of lens mass and velocity.

Another datum recoverable from light curve analysis is the size of the source, 

or a limit for it. Source size is recovered in ERU, so what is measured is really 

also a function of lens mass, lens distance, and source distance. As before, in the 

microlensing scenario, if we assume prior knowledge of the distance to the lens and 

the source, wc are left with a coupling of lens mass and source size. If the lens did 

not pass in front of the source, we can determine that the source size parameter 

must be smaller than some value.

The third datum tha t can be measured from the light curve is the impact 

parameter. Once more, 6 is measured in ERU, so what is really measured is a 

function of b, lens mass, lens distance, and source distance.

We are thus left with the familiar problem of more unknown variables than 

measured parameters. In our imaginary microlensing scenario, the four unknowns 

are 6, v, R , and m, where m is the mass of the lens. The three da ta  convolve 

b and m, v and m, and R  with m.  If any of the parameters can be measured 

independently, the above relations can be used to solve for the other three. In fact, 

it should be useful to use estimates or constraints on data to find the corresponding 

estimate or constraint on the other parameters.

If we assume lenses of the order of Jupiter size masses, the angular scale we
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would obtain information on is of the order of 10~ 7 arcseconds. Angular sources, if 

not perfect black bodies, would then yield ’equivalent uniform’source sizes with an

gular resolution on tha t scale. Similarly, the impact parameters would be calculated 

on the same scale.

Relative velocity would also be a  function of the ERU. Proper motion would 

further convolve velocity with the duration of the event. If we further assume the 

relative velocity to be dominated by the proper motion of the galaxy tha t is host to 

the lens, and that the duration of the event is one year, wc would know the relative 

proper motion of the galaxy to 10-0  arcsec/ycar or better.

If a library of lens events were compiled, we could use the distribution of impact 

parameters with time to estimate the number density of lensing objects along the 

line of sight. If we have an estimate for the mass of the lenses, we could then 

calculate mass density along the line of sight as well.

The opportunity to seek out, measure, and analyse candidate light curves has 

been available since the discovery of bright compact objects at cosmological dis

tances. The photometric techniques are not new, and they are not fundamentally 

different from those used to measure variable stars. Indeed, it is possible tha t  in

spection of past light curves may lead to some gravitational lens interpretations, 

and the analysis outlined in this Chapter could be used on archival data. Future ob

servers should be careful to obtain good time coverage of an event, so tha t accurate 

determinations of h and the 2-ERU line can be made.
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Real measurements would probably not be so easy to interpret as the relatively 

’simple’ scenario covered here, although in principle the same information is recover

able. The main confounding factor would invariably be intrinsic quasar variability. 

This variability might swamp the gravitational lens - induced variability, making 

accurate da ta  recovery impossible. Decoupling these two types of variation will be 

discussed in Chapter 7.

Even relatively small errors could impede the finding of the location of the 

inflection points crucial to the above analysis. This effect is particularly bad when 

the source is much smaller than the ERU, and the lens passes directly in front of the 

source. In this situation, a small error in the slope then could cause a large error in 

the location of the inflection points. If the error in the observational photometry is 

the only source of error, determinations of the lens and source parameters should 

be relatively straight-forward and accurate.
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F ig u r e  C a p t io n s

F ig u re  4.2.1: Geometry of lensing for a point lens acting on a circular source. 

The quantity r is the distance from the lens to a  given point on the source boundary, 

R  is the radius of the source, b is the impact parameter, and is the azimuthal 

angle.

F ig u re  4.3.1: Light curves for a point lens acting on a point source. The 

abscissa coordinate x  represents the positional coordinate for the lens as it moves 

parallel to the abscissa. At x  -  0 one has the closest angular approach of the lens to 

the source. There should be a direct linear conversion from this position coordinate 

to the lime base of a measured photometric light curve.

F ig u re  4.3.2: Half light curves for a point lens and an extended uniform circular 

source. The maximum lensing magnitude, = 1 ,2 ,  and 5 are represented

in plots a, b, and c, respectively. Each curie was generated from the input data of 

AA/,nur and R,  the radius of the circular source. For the AAf,nux = 1 plot, R  is, for 

each curve, from left to right: 0.6, 0.0, 0.7, 0 .8 , 0 .868 . The R  = 0.0 curve represents 

the curve for a point source and is included here for comparison. For £ XInun =  2 

plot, we have, from left to right, the curves labelled by R =  0.23, 0.27, 0.30, 0.321. 

For the AA/mui =  5 plot, the lines correspond to R = 0.014, 0.016, 0.018, and 0.02 

respectively. All R  values are given in ERU.

F ig u re  4.3.3: Plots of R,  the circular.source radius, versus the thickness pa

rameter, h, for A Xlmax =  1,2 , and 5. For each plot, there appears two curves. The
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upper curve represents cases where the lens passed directly over the source, so that 

h  is a good measure of R.  If the  lens did not pass in front of the source the lower 

curve is applicable, and h  becomes strictly a measure of impact parameter.

F ig u r e  4.3.4: Plots of the impact parameter, 6, versus the thickness parameter, 

h , for a  circular uniform source. For each plot, two curves are again shown. For the 

upper curve the lens moved in front of the source, for the lower curve it did not. 

The (/i -  6) ambiguity at certain b values can be resolved by noting the difference 

in the shape of the light curve.

F ig u r e  4.3.5: Plots of (R 2 -  62) versus /t2 for a circular uniform source. When 

the lens passes in front of the source, there is a direct linear relation between the 

two parameters. When it does not, no linear dependance exists, and h is a measure 

of b alone.

F ig u r e  4.3.6: Paths of the  lens moving .trross a circular uniform source result

ing in the light curves shown. Note how the inflection points of the light curve are 

an accurate measure of the points of the lens crossing into and leaving the source 

boundary.

F ig u re  4.3.7: Plots of f i£R£,  the h tha t would be measured when the 2-ERU 

line really has a length of 2 ERU, versus tiQRjQ, the h originally measured when 

the 2-ERU line is drawn at a height of 0.319 magnitudes on the light curve. For 

A Mmax = 5, h o m e  is an accurate measure of h £ R £  to better than 0 .1%, and so 

this plot is not shown.
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F ig u re  4 .4 .1 : A construct similar to Figure 4.3.7, except applicable to an 

elliptical source. Note again how the inflection points of the curve are an accurate 

measure of the boundary of the uniform source.

F ig u re  4 .4 .2: A resolved lensing sequence for a point lens acting on an elliptical 

source. The lensing scenario given is depicted by the lower lens path of Figure 4.2.7. 

The x values of the lens are, from top to bottom, z = - 1.0 , -1/3, +1 /3 , and +1 

ERU respectively.
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C h a p t e r  5

Double Star Light Curves

5.1) Introduction

In this Chapter we will study the light curves that result from the relaxation of 

another of the LE requirements. Instead of a  single star acting to lens a background 

source gravitationally, two stars will provide the effect.

In the previous chapters, we have shown that the single most likely microlcnsing 

event for most sources involves a  single star as the lens. We did not include, however, 

the possibility of the superposition of stellar lenses, or tha t stars could be members 

of binaries, groups, or multiple systems. Although single stars are the most probable 

lenses to be encountered, we now consider the next most probable lens: that of two 

stars.

If the probability of a single star acting to  amplify source liglu by a given amount 

is determined by the volume of the LE and is P , then the probability of two stars 

entering the same LE volume randomly is P 2. As an example we see that if the 

probability of lensing above some amplitude is 0 .01 , then the probability of this 

event, which involves a random superposition of two stars is 0 .0001 .

But the probability is significantly enhanced if one considers the incidence of 

binary systems. Heintz (1978) has shown that, at least in our galaxy, binaries or 

multiple star systems of wide separations make up a sizable fraction of the number 

of stellar systems, of the order of 20% or more. This fact greatly enhances the
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probability of two stars entering the same LE a t one time. Therefore double star 

light curves are not so unlikely a  phenomenon, and it would be useful to know what 

they look like.

Studying double s tar light curves also serves other purposes. First, it represents 

the next most complicated lens after the single lens. It shows how light curve 

complexity can be changed by a change in the type of lens. This is in contrast to the 

last chapter, where we analyzed light curve changes due to a change in the source. 

Next, as we will sec, double star light curves can provide some characteristic light 

curve shapes that could possibly identify the gravitational microlensing phenomenon 

even if single lens identifications fail.

In our study here, we will assume that all the LE conditions hold except the 

single lens condition. We will assume a point source, and tha t no other stars affect 

the source flux except the double system under consideration. We also assume that 

shear from nearby stars, galaxies, and clusters is negligible.

As before, the specific scenario we have in mind is microlensing, although the 

results are presented in units (ERU) which allow a generic interpretation. More 

specifically, two low mass stars in a nearby galaxy are thought to enter the LE 

of a background quasar (QSO, BL Lac, or any AGN) and significantly affect the 

observed flux. In the last section this formalism will also be applied to macrolensing.

Double star lensing was first studied by Barnothy (1968), who invoked it to 

explain the then mysterious pulsar phenomenon. Bartels (1981.) derived many of



-  99 -

the  analytical properties of the two point mass lens. Schneider and Weiss (SW 

1986) have recently explored further many of the  asymmetric properties of the two 

point mass lens. SW examined both analytical and numerical aspects of the two 

point mass lens acting on an extended source over a specific range of lens and source 

parameters. SW also calculated some light curves as an extended source underwent 

image creation events. They showed that the light curves for these systems were 

not just the simple linear addition of two single star light curves.

Section 5.2 describes the mathematical and numerical calculations involved in 

generating two star light curves. In section 5.3 we display typical two star light 

curves and discuss their features. Section 5.-1 analyzes how the double star lens 

allows bright images to be separated by anomalously large amounts.

5.2) Fermat’s Principle and Time Surfaces

The main mathematical principle used to calculate image location and intensity 

is Fermat’s Principle: real images travel on paths for which the light travel time is 

a local extremum. For an example of the use of how Fermat’s Principle on a more 

general scale, see Blandford and Narayan (1986).

If the tensing stars are considered to be confined to a plane between the observer 

and the source, we can assign a number to every point on the plane describing the 

light travel time from the source to the observer passing through the given point. If 

we then consider this number to be a fictitious height above the plane, we can draw 

a relative light travel time surface. When the surface shows a local minimum, for
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example, the time it takes for light to reach the observer is at an extremum, and 

an image forms there. For the small, positive optical depths considered here, only 

minima and saddle points can occur.

Why can we consider both lenses to be in the same lens plane? In our mi- 

crolcnsing paradigm, both stars are in the same galaxy. By Equation 1.2 .1, we 

can calculate the focal length for a stellar lens a t  the radius of its ERU. We find 

this distance to be of the order of 1 Nlpc. Since the sizes of typical galaxies arc 

smaller than this, we see tha t the lens would deflect an image only a small amount 

(compared to its ERU) before it encounters the second star. We therefore find it a 

good approximation to consider the two stars to be in the same lensing plane.

Following discussions in Blandford and Narayan (1986), and Paczynski (1986a), 

we find that the equation for the relative light travel time near a double star lens 

of two equal masses is

E = r2 -  l n ^ r ? ) ,  (5.2.1)

where E is the  relative light travel time, r is the  projected distance in the lensing 

plane between the unlensed point source position (hereafter called the origin), and 

the point on the lensing plane at which E is being calculated. The quantity r, is 

the  distance from star i to the point on the lensing plane under consideration.

Images are formed when E x = E y = 0 . Subscripts, here, denote spatial deriva

tives in the lensing plane. In practice, the image positions are found numerically
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and the image amplitudes are found by the equation

A = 4 | T,xxLyy — E\y  | 1 . (5.2.2)

With no mass in the lensing plane, the time surface would consist simply of a 

paraboloid defined by the first term in Equation 5.2.1. The only critical point in 

this ’no mass’ case is the minimum a t the center. A single image a t  the unlenscd 

source position would form there. The lime delay surface depicting this situation 

is shown in Figure 5.2.1.

Stars placed in the lensing plane will distort the paraboloidal appearance of the 

lime delay surface. This happens because photons passing close to a s tar suffer a 

general relativistic time delay (Einstein 1916). The closer a photon passes to a star, 

the larger the time delay. The effect of a s tar on the time surface is to create a 

logarithmic spike centered on the  s ta r’s position. This can be seen by integrating 

the time delay along the photon path. Stellar spikes are represented by the second 

term(s) in Equation 5.2.1.

If we place the stars spike exactly in the middle of the paraboloid, the time 

delay surface displays a ring as its minimum. This situation is equivalent to placing 

the lens exactly collinear with the observer and the source. The ring that appears 

corresponds to the previously defined Einstein ring. The situation is depicted in 

Figure 5.2.2.

If, however, we place the stellar spike off center, the minimum is no longer a ring, 

but a single low point in the lensing plane. But now another point also occupies
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a critical location:- the saddle point on the far side of the logarithmic spike from 

the minimum. These two critical points represent the two images one would see 

if a point lens was placed off the axis connecting the observer to the source. This 

situation is shown in Figure 5.2.3.

In general, when a single lens acts, two images appear. One will always be a 

minimum point, and should correspond most closely to the original source image. 

As the lens is moved further from the optic axis, this minimum will move closer 

to the original source position, and the situation a t  the center will more closely 

resemble that shown in Figure 5.2.1.

If we now place a double star in the lensing plane, the time sheet displays two 

logarithmic spikes. If the lenses are close together, the two spikes appear side by 

side, as seen in Figure 5.2.4.

Typical double star lenses give three images. The particular three image sce

nario depicted in Figure 5.2.4 is somewhat reminiscent of the single star scenario of 

Figure 5.2.3. Two of the images correspond directly to the former geometry: the 

minimum at the bottom, and the saddle point opposite the minimum on the far side 

of the stellar spikes. A third image now becomes apparent, however. This image 

is between the stellar spikes, and is also a saddle point. This general image-lens 

geometry, consisting of a minimum, a saddle point between two stars, and a saddle 

point behind the combined spike of the two stars, will be referred to as configuration 

A.
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Another three image geometry is possible. Each lens could have an individual 

saddle point behind it, opposite the minimum near the center of the time sheet. 

This general lens-image configuration is shown in Figure 5.2.5 and will be referred 

to  as configuration B.

Only one distinct five-image geometry can occur. This is depicted in Figure 

5.2.6. Here the two lenses are on opposite sides of the origin. Note th a t  there are 

two minima and three saddle points. This arrangement will be called configuration 

C.

5.3) L ig h t C u rv e  S ig n a tu re s

The most dramatic differences between double s tar light curves and single star 

ones occur when the two stars are separated by a distance of the order of an ERU. 

Here the ERU refers to tha t of the combined mass of the double star lens. If the 

two stars are much closer than an ERU, such as their separation being ERU /1 0  or 

less, they typically affect the source as would a single star of combined mass. The 

resulting light curve is usually identical to those in Figure 4.3.1.

If the two stars were separated by several ERU, 2 ERU or more, they affect the 

light curve mostly individually. Typical light curves resemble the linear addition of 

two light curves in Figure 4.3.1.

Light curves were generated by a Monte Carlo technique in which the position, 

mass, and direction of motion were randomly chosen for each star in the lensing 

plane. The mass of each star.in the binary was chosen, with uniform distribution,
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randomly between zero and one,, and their sum was normalized to one ERU.

Each star was placed randomly within a  circle of one ERU radius of the point 

source a t  the center. The positions were chosen in a  uniform fashion, and no 

preference was given for placements in relative proximity to the source or the other 

star.

For some of the simulations, the stars were taken to be a bound system travers

ing the field of the source, while for other simulations each star was given the same 

magnitude of velocity but a random direction in the lensing plane. The bound 

systems always moved in a given (yet arbitrary) direction and at a given (yet nor

malizable) transverse speed.

In the  unbound systems, each star moved in a uniformly random transverse 

direction. Each star also moved with a random velocity. Each velocity was chosen 

uniformly between zero and one, and was normalized to a given value after the 

simulation was complete.

After the selection of the initial parameters of the system, time was run-off in 

the simulation until the center of mass was one ERU from the origin. The simulation 

was then run ’in reverse’ until the center of mass of the system was one ERU from 

the center. Since gravitational lensing light curves are time-symmetric, time running 

forward or backward is only a relative effect and has no entropic interpretation. The 

lenses were then allowed to move again until the center of mass was again one ERU 

from the origin.
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We have set the  time base of the light curves to 50 years, bu t this time can be 

reset by the analysis in Chapters 2 and 3. The time base derives from a combined- 

mass lens of one solar mass a t  a distance of 5x10® pc moving transversely a t  500 

km/sec in front of a point source a t 10° pc.

The light curves presented in Figure 5.3.1 arc typical of all the light curves 

generated. Since the Monte Carlo technique was not expected to sample a realistic 

pool of double s ta r  possibilities, the approximate statistics listed arc not to be 

taken loo seriously. We hope to obtain an idea of the kinds of light curves which 

are possible and typical in double star lensing, and what arc not.

Inspection of Figure 5.3.1 shows that double star light curves can be surprisingly 

complex when compared to the simple linear addition of two single star light curves. 

Figure 5.3.1a shows a typical light curve, which is, however, practically identical to 

a single star light curve. Roughly 35% of the light curves generated were of this 

character. This type of light curve has a single, symmetric peak, and occurs when 

the stars  are too close to affect the source flux individually. Light curves such as 

Figure 5.3.1a sustain a single configuration, either A or B, for the duration of the 

graph shown.

Figure 5.3.1b is another typical light curve from a double star event. No images 

were created or annihilated during this event, yet the slopes on the sides of the 

peak are asymmetrical, both close to the peak and far from it. Light curves such 

as these depict an image configuration tha t would, typically, s ta r t  in configuration
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B, change to configuration A, and then return to configuration B again. From this 

type of curve we learn that one cannot rule out microlensing for single peaks solely 

from a lack of symmetry of the light curve.

Figure 5.3.1c shows another typical light curve. Again, there were no image 

creation-annihilation events. Each peak was usually nol caused by each star individ

ually moving closest to the source in turn, bu t rather by both stars acting together 

in a more complex way. Light curves like those in Figures 5.3.1b and 5.3.1c, also 

comprised about 35% of those seen in the simulations. Here, as before, the typical 

image configuration through this event moves from an initial configuration of B to 

A, and then returns to B again.

Double s tar  light curves can exhibit numerous peaks. These additional peaks 

occur when a pair of images is created or destroyed. As there can be only 3 or 5 

images, images are created and destroyed in pairs. In the language of other authors 

(SW, for example), image number changes when the source has crossed a ’critical 

line’. As the s tar placements change, the critical lines move about, themselves being 

created and destroyed. We therefore feel it is clearer not to keep track of critical 

lines, bu t rather to concentrate on the number and configurations of images. We 

noted th a t  at no time did an image ever change from a saddle point to a minimum 

or vice-versa.

The unusual hump in Figure 5.3.Id is a single image creation- annihilation event. 

This is the most common light curve we found which involves image creation. For
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a brief period there were 5 microimages of the source instead of 3. The image 

geometry started in configuration B, then became configuration C, then went back 

to B again. Figure 5.3.le is a  similar curve demonstrating that an additional peak 

can occur during the creation-annihilation interval. Light curves with a single image 

creation event occurred roughly 25% of the time.

Light curves such as shown in Figure 5.3.If, although somewhat rare, are typical 

of two image creation events. These type light curves were found only about 5% of 

the time. Here the images s tarted in configuration B and the first image creation 

event changed the images into configuration C. Two images then annihilated causing 

configuration A. Later two images were created again in configuration C and two 

images then annihilated to restore the initial configuration B. In short, this was a 

BCACB event.

Figure 5.3.Ig was one of the few curves (out of hundreds generated) wherein 3 

separate image creation-annihilation episodes were found. The amazing complexity 

and novelty of the curve commended its inclusion here. Light curves this complex 

were found less that 1% of the time. Such a curve is not likely to be seen, but 

demonstrates the range of the complexity which the double s ta r  lens can generate. 

A scenario that would generate such a curve is BCACACB.

There are several interesting features about the image movements. Most of 

these features are generic to lensing near critical lines and are reviewed elsewhere 

(see, for example, Bourassa and Kantowski 1975, Hogan and Naravan 1984). When
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images are near each other, as-when two of them are created or annihilated together, 

they appear relatively bright, usually dominating the light of all the other images 

combined. Images created together are not annihilated together. Either one of the 

created images will merge with another previously existing image, or two previously 

existing images will merge.

The maximum lensing amplitude is dependent on the angular size of the source. 

As shown in Peacock (1982), Nityananda and Ostrikcr (1981), and Chang (1984), 

the maximum lensing amplitude is inversely related to the source size. The effect 

of considering extended sources is tha t the height and sharpness of the peaks of the 

light curves in Figure 5.3.1 will be diminished, and the events of fastest amplitude 

change spread out in lime (SW).

Two-point mass lensing is not the only way to create complicated light curves. 

Chang and R«T-><lal (1979) have shown that complicated light curves can be gen

erated by a single star and a non-negligible shear term. Alternatively, Paczynski 

(1986a) has shown tha t complicated light curves may be expected a t  high optical 

depth of single stars. Kayser, Refsdal, and Stabell (1986) have shown that one 

can expect complicated structures for various couplings of shear, optical depth, and 

source size. Each of these scenarios has its own light curve signatures.

We consider an important aspect of the light curves in Figure 5.3.1 to be tha t 

they are prototypical signatures of microlensing. The features of these light curves 

might be easier to distinguish from those due to intrinsic quasar luminosity changes
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than would be possible for the single star case (see Chapter 7 for discussion of this 

point).

5.4) Large Separation Image Geometries

An interesting gravitational lens effect came to light during the development of 

the foregoing simulations. It involved the transition from configuration A to B (and 

also from B to A). When the lenses were far from the origin, the images usually 

situated themselves in configuration B. But sometimes they would leave (enter) the 

field of the origin in configuration A. We therefore found that sometimes, when the 

lenses were close together and moving together, tha t the transition from A to B 

would occur far from the origin. A transition from A to B is usually accompanied 

by an increase in lensing amplitude, or at least a drop off slower than would be 

expected if either configuration held throughout the event. Many times a transition 

from A to B is also accompanied by an image creation event such as ACB.

A common assumption in gravitational lensing is that images of comparable 

brightnesses can occur only when a single lens is close to the origin. The two bright 

images then created would be separated by very nearly 2 ERU. But now we find that 

a double lens can create images of comparable brightnesses with image separation 

much greater than 2 ERU. The separation of the images is theoretically unlimited. 

We will refer to this situation as ’lensing outside the Einstein ring.’

One effect tha t  derives from lensing outside the Einstein ring is that image 

separation can now be somewhat divorced from the mass of the lens. This can
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allow large image separations to be created by lenses of lesser mass. This may turn 

out to be relevant, not only in our microlensing paradigm, but in a  macrolensing 

one as well.

The statistical probability of lensing outside the Einstein ring is actually very 

small, the more distant the separation of the images, the smaller is the probability. 

The configuration of the lenses has to be nearly exact. It is not the purpose of this 

section, however, to estimate this probability, as it depends critically on the number 

density of objects, their tendency to congregate in pairs, and the strength of the 

selection bias favoring distant images. We merely wish to show th a t  these effects 

arc possible and to predict observational consequences of such a scenario.

For a single point lens, we always have two images. If we reduce the angular 

separation of the lens from the unlensed source position to a fraction of an ERU, 

we get two images of comparable brightness. As we now move the lens far from 

the origin, we get two images of increasingly different brightness. The magnitude 

difference between the images is shown as a  function of image separation by the 

upper curve in Figure 5.4.1. One image is the  relatively undistorted quasar image 

(hereafter referred to as the ’original’ source image), while the other is seen closer 

to the lens, but on the far side of the original image (hereafter referred to as the 

’far’ image). The situation is as described in the previous section and is shown 

graphically in Figure 5.2.3.

If we have a double lens, we typically get three images instead of two. Assume
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- the lens to s tar t  close to the  origin in configuration A.-If we now increase the 

angular separation from the lens to the origin, we again begin to find a situation 

quite similar to the one point mass lens case: one image is near the origin and is 

relatively unaffected by the lens, while now the combined brightness of the images 

in configuration A have approximately the same brightness as the far image in the 

single lens case.

At a certain distance, however, unlike the single lens case, and only for specific 

arrangements of the two masses, the far image conglomeration will become anoma

lously bright. This is shown by the lower, more complicated curve in Figure 5 .1.1. 

This may cause the set of images far from the original image to be of magnitude 

comparable to or brighter than the original image.

T he far images, near the lensing masses, can never consist of only a single image 

(in the absence of strong, superimposed, high- shear, microlensing effects; Chang 

and Refsdal 1984). On the contrary, sufficient resolution of this region should show 

two or four images, with mean separation of the same order as the separation of 

the double lens. All images in this close image group would be on the opposite 

side of the lensing masses (if the lenses are visible) from the original image. The 

magnitude difference between and among these two or four images may, however, 

be very great, and it depends on the exact angular placement of the lens and the 

source.

These results were generated numerically and found to be consistent with the
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analytical treatment of SW. This effect is strongly influenced by the angular size of 

the source. If the source size became of the order of the lens separation or larger, 

we would not expect strong amplifications, thus negating the effect.

One macrolensing system in which this effect might prove to be im portant is 

the unusual candidate gravitational lens system Hazard 1146-flll  B,C. Paczyn- 

ski (1986b) suggested tha t this system, with candidate images separated by 157 

arcseconds, is created by a  massive black hole lens of the order of 1015 M q  . Re

cent observations have failed to confirm this hypothesis (Lawrence, Rcadhead, and 

Moffet 1986), and there is now some doubt that this system can be explained by 

gravitational lensing.

With the double star effect, however, the mass of the lens can be reduced to 

the range of 108 -  10*“ A/© . The double lens makes some predictions th a t  can be 

tested. One of the images of Hazard ll*16-f 111 B, C must be multiple: consisting 

of either two or four images with separation(s) of the order of 0.001 arcsecond. All 

of these images would be on the same side of the lens, and on the opposite side of 

the lens from the original quasar image. One of the  images would not be expected 

to show extended structure, as the double lens would image only small regions.
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F ig u r e  C a p t io n s

-F igu re  5.2.1: T he time delay surface for a lensing plane of no mass. The x 

and y axes represent axes in the lensing plane. The z axis represents the relative 

time to travel from the source to the observer while passing a given point in the 

lensing plane. The minimum at the center shows that the path of minimum travel 

time from source to observer is a  straight line.

F ig u r e  5.2.2: The time surface for perfect obscrvcr-lens-sourcc alignment. The 

surface shows a minimum as a circle around the logarithmic spike of the lens. This 

circle is the Einstein ring, and the radius of the circle is, by definition 1 ERU.

F ig u re  5.2.3: T he lime surface for a single lens not on the optic axis. Note 

that here there are only two images, one near the original unlensed quasar position, 

and one on the opposite side of the lens spike.

F ig u re  5.2.4: A time surface for a double lens. The three ci iiical points on 

the surface correspond to the image locations by Fermat’s Principle. One image is 

the minimum at the bottom of the time surface, another is a saddle point of the 

far side of the lens spikes from the minimum image, while the third is between the 

logarithmic spikes. This geometry defines configuration A.

F ig u re  5.2.5: The other three-image time surface possible for a double lens. 

One image corresponds to the minimum near the center, while again the other two 

are saddle points. Here each stellar spike creates a source image on the opposite 

side of the spike from the minimum. This configuration is labelled B.
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F ig u r e  5.2.6: The five image geometry time surface is shown. Here there are 

two minima evident and three saddle points. This image configuration is labelled 

C.

F ig u r e  5.3.1: Microlensing light curves for double s tar lenses. The magnitude 

of brightening is plotted against time in years. The graphs represent prototypical 

double star lensing events.

F ig u r e  5.4.1: The magnitude difference between two image groups as a  func

tion of the angular distance between them. The top curve results from a single mass 

lens while the bottom curve depicts a double star lens with projected separation of 

0.44 ERU. Note tha t the double s tar case allows large separations with comparable 

magnitude differences.



• 1.0

F ig u r e  5 . 2 . 1

116 -



* <£RU)



m

o
i / n

kH

N

2

X  °  
r\l

Figure 5 .2 .3

-  118 -





Figure 5 . 2 . 5

-  120  -

i



O f t

V p

>

- i . o
3.0

o

F ig u te  5 . 2 . 6

_ 121



-  122 -
1.31

.(o)
1.13

M
0.73

1.77 . (b)
1.32

M
0.00

2 6 0

1.95
M

1.30

0  63

326
M

2.17

1.08

305

229
M

1.32

076

3.71

M
183

0 9 2

M
3.16

1.58

12.5 25.0  37.5 50.0
T I M E  IN Y E A R S
Figure 5 . 3 . 1  j



5.
50

IM
A

G
E 

SE
PA

R
A

T
IO

N
 

(E
R

U
)



-  124 -  

C h a p te r  6

S p ec tro sco p ic  E ffects

6 .1 ) Q u a s a r  B ro a d  L ine R eg io n s

The microlensing analysis of the previous chapters concerned itself with the 

lensing of AGN continuum radiation. This was because such radiation is thought 

to be emitted from one of the smallest regions of the AGN, and hence the point 

source approximation would best apply. In this Chapter wc will discuss a region 

thought to be much larger: tha t directly outside the ’continuum region’. The point 

source approximation is usually not valid here, as hypothesized sizes for this region 

run from less than a tenth of a parscc to greater than a parsec. We will therefore 

expand our analysis to include the main distinguishing feature of this region: broad 

emission lines. The region itself is frequently referred to as the broad emission line 

region, or ju s t  BLR. For a good review of AGN properties, see Wiita (1985) or 

Weedman (1986), and references therein; much of the current discussion is based 

on these reviews.

There are many theories of the  structure of the BLR region, and no general 

consensus of its physical composition has come forward. Most of these theories 

involve the motion of many small mass clouds. Each of these clouds is supposed to 

be small; small enough to be considered a point source in the gravitational lensing 

sense, being only 1 AU or so in extent. With about 1010 clouds of about 10- 9M©, 

the whole BLR region is thought to contain between 1 and 100 A/® .
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The major kinematic feature which BLR theories strive to explain is the shape 

of the BLR spectral emission lines. The lines are seen to have logarithmic shapes 

away from their peaks, with widths tha t imply motions of the order of 104 km/sec. 

Most theories use the macroscopic motion of the clouds to explain these velocities. 

The Doppler shifting of the clouds causes an cumulative emission line tha t is much 

broader than the temperature of the individual clouds would imply. It is for this 

reason th a t  each cloud is modeled as emitting a single frequency in contributing to 

the overall spectral line.

We wish to discuss these regions with regard to the effects tha t  gravitational 

lenses can have on them. We will consider a standard paradigm: a stellar lens of 

0.01 A/© in a galaxy at IQ8 pc acts to lens a BLR in a  quasar much further in the 

distance than the lens. Specifically, we will assume distances in the lens plane to 

be 10 times that of distances in the source plane. The exact distance to the source 

is then a function of cosmology. For a flat Euclidean universe, the quasar would be 

found a t a distance of 109 pc.

Distances intrinsic to the BLR will be given in two convenient units. The first 

is that of parsecs (pc) in the source plane, while the second will be the Einstein 

ring unit (ERU) of the lens. The parsec is an accepted unit of QSO analysis. The 

ERU is angular (see Equation 1.2 .2) and given to make our analysis of the problem 

more general. This generality allows our analysis to be applied to a wider range 

- of lensing scenarios than the specific lensing paradigm cited above. The conversion



-  1 2 6  -

factor between the two systems of units in our current paradigm is 230 ERU/pc.

In the following analysis, we will see tha t ,  if some dynamic theories of cloud 

movements are correct and if some specific parameters of their movements fall in a 

given region, microlensing effects may be evident. Such effects were hypothesized 

briefly and in a qualitative manner by Canizares (1982) and VVcedman (1986). In 

other theories, and in some regimes of the former theories, no microlensing effects 

are to be expected. When microlensing effects are evident, they act to change the 

shape of the spectral emission line.

0.2) Theories and Predictions

In the following analysis we will concentrate on five basic models of the move

ments of the BLR clouds. These models are l) random motions, 2 ) constant acceler

ation, radial outflow, 3) constant velocity, radial outflow, 4 ) gravitational infaJI, and 

5) Keplerian disks. We will predict and discuss possible characteristic emission line 

changes of the BLR region due to gravitational lensing for each of these scenarios.

All of the following models were calculated numerically. For each model, typi

cally 106 clouds were placed randomly. For models involving acceleration, the time 

of movement for a cloud to go from starting point to finishing point was calculated 

first. The clouds were then placed by assuming a uniformly random time for each 

in this interval, and then calculating its resulting position and velocity. All regions 

of the QSO were assumed to remain optically thin.

The numerical simulations were-run on both an IBM 4341 mainframe and an
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Leading Edge PC  with similar results. The graphs presented have been smoothed 

with polynomial interpolation techniques.

6.2.1) Random M otions

The first model we will consider is that of random cloud movements. Models 

involving random cloud movements have been discussed by others including Capri- 

otti, Foltz, and Byard (CFB, 1980) and Osterbrock (1978). In generating the BLR 

spectral lines with this model, several assumptions were made. All clouds were 

considered to have the same brightness. The position of each was assumed to be 

random and uniform inside a sphere of radius rmax = 1 pc. Velocities were as

sumed random, following a Gaussian distribution for which the dispersion velocity 

was 2000 km/sec.

A typical BLR emission line generated with these assumptions is shown in Fig

ure 6 .2 .1. The ordinate has been scaled to an arbitrary luminosity. For present 

purposes, its exact maximum value is not important, since it is strictly a function 

of the number and brightness of the individual clouds. Similarly the  abscissa is 

scale invariant; we could have scaled the cloud velocities to any dispersion.

The shape of the spectral line was not greatly altered by the placement of a 

foreground lens anywhere in the field. When rmax was placed at 1 pc, no lensing 

effects were evident. Even when rmax was reduced to 0.1  pc, as depicted by the 

Figure 6.2.1, gravitational distortions of the emission line increased but were still 

very small, of the order of 1%. This slight effect is visible as an enhancement of
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the central peak of the spectral line. Figure 6 .2.1 shows a emission line generated 

with the above model. The numerical error in the luminosity was about 0.02 of the 

normalized luminosity units used in the graph.

6.2.2) Constant Acceleration Radial Outflow

Some of the leading theories of BLR structure involve radial outflow. Blu- 

mcnthal and Mathews (1975) consider theories of outflow generated by radiative 

emission from the continuum region, and show tha t such a theory can successfully 

account for the logarithmic shape of the spectral lines away from the peak. Another 

theory predicts that the outflow is caused by a radial wind of particles emitted by 

the continuum region (Wcymann et at. 1982). Both of these models hypothesize 

the acceleration of the clouds in a radial direction, away from the continuum region. 

Many dynamical variations of these themes that have been considered (CFB).

T he calculations below will involve the following assumptions that are part of 

many of the outflow theories. We will assume spherical symmetry about the origin 

of the BLR. We will not include the luminosity of the continuum region at the center 

of the BLR in the lensing calculations. The clouds will be created at a characteristic 

radius rrntn. They start with zero velocity and maintain constant luminosity. They 

will undergo constant acceleration until they reach rmax, where they will abruptly 

become dark. All clouds are assumed identical to each other.

We found tha t the lens can affect the shape of the spectral line under certain 

conditions. A typical lens distortion of a  fiducial BLR spectral emission is depicted
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in Figure 6 .2 .2 . Here r ^ a j  was assigned to be 1 pc and rmin was equal to 10~3 pc 

(0.23 ERU). The lens was placed 1 ERU from the center of the BLR.

Inspection  o f  Figure 6 .2 .2  sh ow s the center o f  th e  spectral line increased, w h ile  

th e  rest of th e  spectral line  rem ained essentially  unchanged. T his  is the typical effect  

o f  a single gravitational lens in an accelerated outflow m odel.  T he lens  affects th e  

center  of th e  spectral line the m ost strongly  b ecau se  small rcdshifts predom inantly  

orig inate  in the central region of th e  BLR , which  also has th e  highest concentration  

o f  source po in ts .  Here the numerical error in the lum inosity  calculation  was less  

than 0.01 o f  the normalized lum inosity  units.

The line distortion effect is extremely sensitive to the value of rw m , for a given 

r mar. The smaller is r min, the greater is the lens effect. Current theories do not 

usually speculate on the value of rnun. VViita (1987) suggests tha t its size can be as 

small as several Schwarzschild radii of the central black hole. This would put the 

value of rmin at roughly 10-5  pc (0.0023 ERU) for a IQ7 A/© black hole. Weymann 

et al. (1982) consider scenarios with rmax between 0.15 and 0.96 pc, while rmin is 

of the order of 0.03 pc (6.8 ERU), but state these assumed values of rmm are only 

an assumption. If Weymann et al. (1982) are correct in this assumption, no lens 

distortion of the BLR spectral line is to be expected.

The lens effect is also sensitive to the value of rmax. For a given rmin, the 

greatest lens effects arise from the smallest rmax.

For the BLR line distortion to take place, r nim must be of the order of a few
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ERU or smaller, and the lens must occupy a  region extending from the center of 

the BLR to within a  few ERU outside of the  projected r mtn. If the  lens is outside 

this region, it will no t distort the spectral line significantly. As we are dealing with 

a single lens, the lens can never act to de-amplify portions of the spectral line, only 

to amplify it. Also, the lens will always affect both sides of the spectral line by the 

same amount. This follows from the assumption of spherical symmetry.

6 .2 .3 )  C o n s t a n t  V eloc ity  R a d i a l  O u tf lo w

The other type of radial outflow which will be considered is tha t of constant 

velocity of the clouds (sec CFB). In this model the clouds are created and given a 

specific velocity (104 km/sec or so) a t rmin and allowed them to coast out to r ^ x  

where they turn off. Here the clouds do not maintain constant brightness as they 

leave the center, bu t rather the brightness drops ofT inversely with distance from 

the u  nter. This decrease in cloud luminosity is necessary to create the observed 

logarithmic shapes of the wings of the spectral lines.

The lens affects the constant velocity model qualitatively much the same as for 

the constant acceleration model. A sample line distortion is shown in Figure 6.2.3 

for the same lens and source parameters tha t generated Figure 6.2.2. As before, the 

lensing effects are extremely sensitive to the assumed value of rmin and the location 

of the lens with respect to the BLR center. Again the observed distortion of the 

spectral lines that can be generated is tha t of an increase in the strength of the 

central part of the line.
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6.2.4) Gravitational Infall

Probably the most interesting effects were generated with a  gravitational infall 

model. This model, discussed in CFB, involves clouds falling radially from some 

radius rmax. The model closely resembles one discussed by Kwan and Carroll 

(1982), with the clouds following parabolic orbits about the central region . Wc did 

not allow the clouds to get any closer than rmin. The clouds, maintaining constant 

luminosity over their trajectory, were dropped from rest al a radius of rmaz and 

allowed to fall to a radius of rm n , where they abruptly turned off. The mass of the 

central object was tha t necessary to cause a velocity of 10'1 km/sec a t  r„un .

The gravitational lens effects were typically greatest on the wings of the lines, 

rather than near the center. The lens effects were sensitive to the values of both 

rmax and rmin, particularly rmax• For r„wx of 1 pc, and r mm of 10~3 pc, the lens 

effect could be quite dramatic. For a lens perfectly centered, the maximum lens 

effect produced wings of the line typically increased by several times their original 

luminosity, while the center changed much less than this, of the order of 10% or 

less.

Dramatically different lens effects were generated depending on where the lens 

was located. If the lens was superimposed on the central region of the BLR, the 

wings were amplified greatly, as shown in Figure 6.2.4. If the lens was several ERU 

away from the central region, its effects were weaker but concentrated on the central 

region, as shown in Figure 6.2.5. When the lens was between these two regions, the
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portion of the line between the wings and the center was most greatly enhanced, as 

is shown in Figure 6.2.6.

Were a lens to move across a BLR region of this character and dimension, the 

first effects noticeable would be an enhancement of the  central pa r t  of the emission 

line. As the lens moved toward the center, the line distortion would increase and 

move outward from the center of the line. Finally, as the lens approached the 

center, the wings of the line would be the most enhanced by the gravitational 

distortion. Then, as the lens exiled the BLR region, the whole procedure would 

reverse. Equivalently, in time order, we would see Figures 6.2.5, 6 .2 .6 , 6.2.4, 6 .2.6 , 

and back to 6.2.5 again. The time scale for these observations is the same as those 

discussed in Chapter 3.

The emission line generated with this analysis docs not have a logarithmic profile 

(as discussed by CFB). To generate a profile of this type, one must dt-mand that 

cloud brightness drop off as the square of its distance from the center. Our attempts 

to model the BLR in this way with the numerical methods outlined above proved 

too time consuming for the computers being used. We hypothesize that dimming 

clouds far from the center would only strengthen the effects outlined above, which 

predominantly result from the lensing of the central region.

The numerical error of the  gravitational infall simulation was greater than in 

all of the  other simulations. The error was greatest near the wings of the lines, 

where there were the fewest clouds, and also behind the lens, where small numerical
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•errors in cloud placement were greatly amplified by the lens. The error in lensed 

luminosity was on the order of the (additional) lensed luminosity itself. Away from 

the lens and the error was comparatively small, less than 1% of the (additional) 

lensed luminosity.

6 .2 .5 )  K e p le r i a n  D isk s

There arc many theoretical disk models currently considered as possible progen

itors of the emission lines generated in the BLR. Some of these theories have been 

put forward by Osterbrock (1978), CFB and others. The main problem with the 

disk models is that they usually fail to reproduce the observed shape of the spectral 

lines. Without specific assumptions, many of these models would create spectral 

lines with two peaks or non-logarithmic wing profiles. Thus some of these models 

are somewhat ad-hoc.

In 11 ds section we will concentrate on a model similar to the original one put 

forth by Osterbrock (1978). We will assume a Keplerian disk with rmax (outer 

radius) of 0.1 pc. Again, rmtn will be assumed to be r„,ax/l000. The exact value 

of rmtn is not so important as it was in previous models, as we will consider neither 

the density of clouds nor their brightness to be enhanced in the central region.

The disk will involve Keplerian revolution of clouds around the center in circular 

orbits, the clouds being too small to block each other (the disk is assumed to be 

optically thin). The height of the disk will be assumed to be 2/5 the value of rmax.

A typical simulation yielded the spectral line shown in Figure 6.2.7. In this
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-simulation, we also made the following assumptions. The disk is seen tilted 45 

degrees to our line of sight. The velocity of rotation was 2 x l 04 km/sec at rTOn. 

The value of rmax was 0.2  pc and rmin was rmai/ 1000.

Superimposed on the circular motion is random motion 2/5 that of the cloud 

velocities at rmin. The random motion was assumed Gaussian in nature.

Line distortion effects arc again most evident in the center of the line, but for 

first time in any of our simulations, the distortions were typically not symmetric. 

In Figure 6.2.7, the lens was 0.7 ERU from the center and superimposed on a region 

away from the projected axes of the projected ellipse. Mere the lens afTected one side 

of the spectral line, near the center, stronger than the other side. These distortions 

were typically small, showing the most asymmetry when the lens was closest to the 

central region.

The re.i^on for the distortion asymmetry in the lensed emission line derives from 

the fact that the lens is superimposed on a region with bulk motion with respect to 

the observer. The lens acts to amplify the light from the region of bulk motion more 

than the rest of the BLR, and hence creates an abnormally high contribution from 

this region toward the complete spectral line. This abnormal contribution results 

in the observed line asymmetry.

The lens distortions of Keplerian disks can act to change the central redshift of 

the BLR line, but only to a small degree. For the  simulation described above, the 

lens could cause the center of the line to ’sway’ of the order of hundreds of km/sec



-  135 -

to  either side, bu t not more. Figure 6 .2.8 depicts the same scenario described above 

bu t with the exception tha t -the lens was projected onto the  opposite side of the 

BLR region. Close inspection of the two graphs will show the redshift change of the 

magnitude described.

The numerical error in the luminosity was on the order of 0.01 in the given 

luminosity units. The error in the ’sway’ of the line was less than 10 km/sec.

This line shift may be important in identifying QSO's with multiple macroim

ages. Were microlcnsing effects strong, they could cause a difference in the rcdshifts 

between images by as much as 0.01. One might then not rule out close QSO’s with a 

redshift discrepancy in this range, bu t consider them candidates for both macrolens- 

ing and microlcnsing. These candidates should then be monitored to see if their 

redshifts change in the way indicated here.

When rmax was of the order of or larger than 1 pc. ilje lens effects were small, 

of the order of 1% or less.

6 .3 )  D is c u s s io n

The analysis in this chapter is aimed a t opening a new window through which 

gravitational lensingmay be detected. The gravitational distortion of spectral lines 

in the BLR may give us a  tool to explore many popular phenomena in astrophysics. 

Information on the size, make-up, geometry, and dynamics of the BLR region may 

be recoverable. Similarly, BLR lensing may tell us about dynamics, number, and 

mass density of the lenses involved.
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• The analysis invokes several assumptions. The weakest assumptions probably 

involve the estimation of the angular sizes of the lenses’ ERU compared to the QSO’s 

• BLR region. A change in any of a number of parameters will result in a  change of 

the relative sizes of the regions. These changes could involve parameters such as the 

mass of the lens, the distances to the lens and the source, the actual size of the BLR 

region, and the cosmology of the universe. Change in these assumptions would not 

necessarily negate the above analysis, but would result in a different realization of 

parameter space than the paradigm investigated here.

Another important assumption which the analysis incorporates is the assumed 

size of the inner radius where the BLR starts: rmin. Most of the spectral distortion 

effects come from the lensing of this inner region because it usually houses the 

highest density of clouds. As the current models do not typically make strong 

predictions on the value of rmm, its assumed value is uncertain by several orders 

of magnitude. Nonetheless, if r nwn is large compared to the ERU and a reasonable 

fraction of rmax, no distortions of BLR emission lines are to be expected.

Yet another assumption that is important to the accuracy of our analysis is that 

of the spherical symmetry of the BLR region. Any large geometric asymmetries or 

asymmetries in the brightness distribution may end up as asymmetries in the shape 

of the spectral line. These asymmetries are sure to affect the way a lens would 

distort a BLR line.

It-is important to realize that in many scenarios of BLR structure, these line
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distortion effects are no t improbable to measure; relative to  continuum enhancement 

effects. The probability of spectral line distortion is usually equal to the probability 

of amplification of the inner continuum region and in some cases can even slightly 

exceed it. That the BLR region maps spatial regions onto a spectral line can help 

in distinguishing regions tha t are gravitationally amplified from those tha t are not.

The above analysis is predictive in at least two aspects. First, one can compare 

those QSO’s tha t are candidates for gravitational lensing with those which are 

not, looking for comparative differences in the shapes of their broad emission lines. 

One might investigate the shapes of the transient emission lines of the current BL 

Lac’s tha t are thought to be lensed (Nottale 1986, Ostriker and Vietri 1985). One 

might also investigate those currently known macrolensed systems for anomalous 

line shapes, as they are also prime candidates for microlensing. We speculate tha t 

amplifications due to critical lines, common at higher optical depths, would not 

significantly affect the shape of the spectral lines differently than the single stars 

investigated here, at low optical depths, but this needs further investigation.

Secondly, one might look for time variability of the broad line phenomenon to 

see if it conforms to any of the models with the analysis outlined above. The time 

scale for change in these lines should match the timescales discussed in Chapters 2 

and 3. One would expect not only changes, but a specific pattern in the changes to 

characterize specific microlensing scenarios.
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F ig u r e  C a p t i o n s

F ig u re  6.2.1: The broad emission line profile generated from random (Gaus

sian) cloud motions. See the text for a more complete description of cloud motions 

and microlensing paradigm assumed. The dispersion of the velocity distribution 

is 2000 km/sec. The effects of a lens 0.1 ERU away from the BLR center do not 

strongly affect the shape of the line. Only a  small (1%) effect of the brightening of 

the central peak is noticeable. The region was assumed to be 0.1 pc in radius.

F ig u re  6 .2 .2 : Constant radial acceleration outflow model of BLR emission line 

generation. A lens 1 ERU distant from the BLR center increases the emission from 

the central peak. T he excess emission due to  gravitational lensing is denoted on the 

graph by the hatched area. The parameters that define the size of the BLR region 

are rmax = 1 pc, r,mn = 10~3 pc.

F ig u re  6.2.3: Constant radial velocity outflow model of IJf.R emission line 

generation. A lens 1 ERU distant from the BLR center increases the emission from 

the central peak. The size of the BLR region is the same as tha t in the constant 

acceleration model above.

F ig u re  6.2.4: Radial gravitational infall model of BLR emission line genera

tion. The region was modeled with rmax =  1 pc and rm n̂ =  10- 3  pc. A lens 2.3 

ERU distant from the center of the region creates the line distortion shown. Note 

tha t the lens primarily affects the  peak of the line.

F ig u re  6.2.5: Radial gravitational infall model of BLR emission line genera
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tion. The BLR parameters are the same as before, bu t here a lens is 0.11 ERU from 

the region center. Note tha t  the lens effects are greatest in the wings of the  line.

F ig u r e  6 .2 .6 : Radial gravitational infall model of BLR emission line genera

tion. Again the BLR parameters are the same as before, except tha t the lens is 0.68 

ERU from the region center. Note that the lens effects are most prominent between 

the peak and the wings.

F ig u r e  6 .2 .7: Keplcrian disk model of BLR emission line generation. Here the 

disk is tilted >15 degrees to the line of sight, and has rmaz = 0.1 pc and rmm = 10""1 

pc, and a height of 0.01 pc. Part of the cloud motion is turbulent: a (Gaussian) 

random distribution with a dispersion velocity of of 2000 km/scc. The rest of the 

cloud motion is ordered: a  circular Keplcrian orbit about the BLR center, with 

v = 2X10-1 krn/sec a t rmm. Here the lens was placed 0.7 ERU from the center and 

situated so that it would affect one side of the line differently from tin* other. This 

effect is not large, but a slight bias of the line toward smaller redshifts is discernable.

F ig u r e  6 .2 .8 : Keplerian disk model of BLR emission line generation. The BLR 

model is the same as in the one used to generate Figure 6.2.7, except that the lens 

is superimposed on the opposite side of the BLR disk region. This causes the line to 

tilt in the opposite direction from the previous line, resulting in a redshift difference 

between the two of the order of hundreds of km/sec.
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Chapter 7

Microlensing Diagnostics and the Realistic Observer

7.1) Individual Diagnostics

There are many possible methods an observer can hope to use to detect mi

crolensing. In the first section of this Chapter \vc will briefly discuss each technique 

that has come to our attention. Most of these methods did not originate with us, 

and so much of this section is a review. In the second section we will discuss the 

possibility of using one or more of these methods in a manner that could isolate 

microlensing effects. Finally, in the third section, we discuss possible realistic ob

serving programs that may be used to measure these effects. All of the methods 

discussed will involve a standard microlensing paradigm: a star (or stars) in a galaxy 

acts to amplify gravitationally the background light from a distant AGN.

T he best studied effects involving microlensing involve the prediction of photo

metric variations for a high optical depth of lenses (r  > 0.4). Some notable works 

include Paczynski (1986a), and Schneider and Weiss (1987). High optical depth 

light curves can be quite complex. When the optical depth is near to or greater 

than one, the amplification can be very high, but few easily discernable structures 

are obvious in the light curve.

T he  study of microlensing in the lower end of the high optical depth range 

(0.1 <  r  < 0.4) does reveal recognizable features (Paczynski 1986a). Light curves 

at these optical depths tend to show image creation and annihilation peaks which
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are more easily identifiable.

Some of the aforesaid authors have also studied negative optical depth. Negative 

optical depth is said to occur when the uniform mass density in the lens plane is high 

enough so that Tuni j orm > 1. When one considers a  strong uniform component, 

such as weakly interacting massive particles (Press and Spergel 1985) or massive 

neutrinos (Bond, Efstathiou, and Silk 1980), one must define two optical depths: 

one due to the compact objects and one due to the uniform component. As shown 

by Paczynski (1986a), negative optical depth lensing can also have distinguishing 

light curve signatures when Tcornpact/{  1 -  rum f orm) is small. A significant feature of 

these analyses is the prediction of deamplification of source flux (Chang and Rofsdal 

1981).

In Chapter 3, we have assumed that runiy orm is much less than unity. Even if 

the uniform component is the dominant m atter in galaxies this is usually a  valid 

assumption. This can be seen by noting that the optical depths quoted in Table 

3.1.1 were computed using the  dynamical mass of galaxies, not the visible mass. 

Under the uniform matter assumption column 3 would then list Tu n x f o r m  instead of 

Tcompact• 1° these cases Tcompact would be lower than the values listed in this table.

Incorporating the shear effects of the host galaxy into microlensing effects has 

also been looked a t in some detail. Chang and Refsdal (1979, 1984) computed light 

curves for a single star in the presence of high shear effects. Kayser, Refsdal, and 

_• Stabell (1986) have computed light curves at high optical depths and shear.
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Other photometric effects involve low optical depth and shear scenarios (0 < r  < 

0.1). Such analysis goes back to Liebes (1964) and Refsdal (1964a). As discussed 

in Chapter 5, double s ta r  systems would create interesting light curve signatures 

tha t  could help to identify microlensing. Single star systems, studied for example 

in Chapter 4, provide the simplest light curves and contain a great amount of 

recoverable information.

Another feature th a t  might identify microlensing is a polarization signature. 

Schneider and Wagoner (1987) have predicted a  microlensing-induccd polarization 

signature on distant supcrnovac. The effect is based on the expansion of the super

nova image behind the field of the lens.

Some AGN are known to emit polarized light. One might expect that mi

crolensing of these AGN would result in not only a amplification signature but a 

polarization signature as well. To the best of our knowledge, no published work has 

appeared on this subject.

Schneider and Wagoner (1987) also raise an interesting point about the time 

scale of observations required to detect the microlensing of supernovae. Supernovae 

provide a smaller time base over which a detection signature could occur. A su

pernova goes from the realm of a point source to an extended source over about a 

month, whereas lensing events which rely on the relative motions of stars have a 

time base of years.

Yet another indicator of microlensing might be a diffraction effect a t radio wave
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lengths (Deguchi and Watson 1986). When the observed radiation from a point 

source has a wavelength in the. radio region, one would expect stellar lensing to 

create diffraction rings. A specific light curve signature might again be expected as 

the observer passes through successive diffraction maxima and minima.

Spectral line changes  induced  by m icrolensing m ay result from m any theories o f  

cloud m ovem en ts  in the broad line regions (B L R ) of A G N . This effect was discussed  

in detail in C hapter 6.

Saslaw, Narasimha, and Chitre (1985) estimate th a t  it may become possible in 

the near future to discern 'gravity rings’ around local stars with VLBI and future 

planned high resolution radio instrumentation. If the angular scale of brightness 

change behind a nearby stellar lens is less than both the angular scale of the ERU 

and the angular scale of resolution of an imaging device, one expects the lens to 

imliu e ring-like distortions (gravity rings) in the measurements of this background 

image. Gravity rings, caused by local stars, may be found on the images of galaxies, 

galactic nebulae, or even meandering isophotes of the background sky.

Paczynski (1986b) has calculated the time distortion effects microlensing would 

have on time-singular background events. In some ways this effect is analogous 

to the work of Saslaw, Narasimha, and Chitre (1985), in that it deals with time 

resolution in a similar manner to their work with spatial resolution. Here if the 

time scale of brightness change behind a stellar lens(es) is less than both the time 

delay between microimages and the time scale of-resolution of the detection device,
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o n e  ex p ec ts  th e  lens(es) to  produce tim e-like d istortions in the m easurem ents  o f  

th is  background im age. For certain  stellar d istr ibutions in other ga la x ies ,  Paczynski  

makes predictions o n  the effects o f  different m icrolensing optical d ep th s  on a  t im e-  

s ingular recurrent gam m a-ray  ev en t  behind them .

7.2) Cumulative Diagnostics

A major problem  in th e  detection  o f  microlensing variations o f  background A G N  

is d is t ingu ish ing  th em  from intrinsic A G N  variations. There is a  danger th a t  a 

s ingle d iagn ostic  m ay be identified as intrinsic variability. T h is  sec tion  will describe  

m eth o d s  specifically form ulated to d istinguish  the two types of variations.

The first method was originally discussed by Gott (1981). Gott suggested that 

the simultaneous observation of multiple macroimages of the same AGN could help 

separate the two types of variability. Specifically, if the time delay between images 

is known, one can compare the images and assume th a t  intrinsic AGN variations 

occur in all images, while microlensing effects occur in each image individually. The 

subtraction of one image brightness from another (including the time delay) should 

therefore isolate microlensing variations (more accurately: isolate those effects that 

occur along the line-of-sight) and cancel intrinsic effects.

One problem with this analysis is that the optical depth to a t least one of the 

images must be high (Gott 1981). The rapid variations at high optical depth would 

therefore make it difficult, in practice, to find the time delay and recover information 

about the  source or lenses.
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Another clever method was suggested in Greiger, Stabell, and Refsdal (1986). 

They suggested tha t multiple observers might be of use in distinguishing between 

the two sources of variability. If several observers were separated by 0.1 AU of 

more, they should all measure the same intrinsic variations but observe different 

microlensing variations. Microlensing effects would make themselves known through 

a relative time delay in the variability measured by the different observers. This 

would be caused by the slightly different alignments among observers, lens, and 

source.

One problem with this method stems from not having the ability to create 

such a multiple observer scenario easily. We understand th a t  this group is cur

rently investigating the possibility of using a Voyager spacecraft to help make these 

measurements (Refsdal 1986). Another confounding factor is tha t one needs short 

events on which to measure short lime delays; AGN do not usually vary on a time 

scale much shorter than hours.

A less fancy method of distinguishing intrinsic variability from microlensing 

variability involves monitoring both the BLR emission lines and the continuum 

simultaneously. Since the center of the BLR is usually the larger contributor to line 

changes, and since the center of the BLR is hypothesized to be coincident with the 

continuum region, an observer might expect to see microlensing -induced variations 

occur in both the lines and the BLR a t  the same time. Intrinsic changes in AGN 

brightness might be expected to be seen first in the continuum region, and later
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propagate through the BLR (see, for example, Ulrich et al. 1984). The time scale 

for continuum variations to propagate outward through to the BLR is of the order 

of days to weeks.

A mostly subjective method for discerning microlensing variations is to inspect 

AGN light curves for microlensing signatures. If candidates for low optical depth 

microlensing arc investigated, one should have a good idea, from the record of 

theoretical research, what microlensing light curve signatures are to be expected. A 

major confounding factor with this method is observer bias. It is possible that any 

light curve with a hump would look like a microlcnsing event to an observer eager 

enough for discovery.

Finally, if we could combine all the cumulative diagnostics at once, we may get 

a single reliable diagnostic. Unfortunately, only a  single event has been put forward 

to date, and this event was the result of a single diagnostic (Nottale 1986).

7.3) Towards a Realistic Observing Program

Armed with the preceding analysis on detection methods and variability indi

cators, what observational program might one embark upon in order to measure 

microlensing? In this section we briefly outline a few possible observing programs 

tha t might result in a microlensing detection. T he first part of this section focuses 

on preferentially detect lensing at high optical depth, while the second part of the 

section is geared toward finding microlensing events at low optical depth.
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7.3.1) Detection o f High Optical Depth Events

Our first suggested observing program is based on the analysis of Gott (1981) 

discussed above. Observers should keep a  close watch on the variability of each 

macroimage of a multiply-imaged AGN. Searches should be made for variations 

in one image that arc repeated, after some time delay, in another image. Such 

variations would be indicators of intrinsic variations. Refsdal (1964b) has indicated 

th a t  the measurement of such a time delay could give a measurement of the Hubble 

constant.

Once events were seen to be repeated from image to image, and the time delay 

between images found, analysis of the discrepancies between the variations could be 

made in terms of line-of-sight effects. One such line-of-sight effect is microlensing. 

Discrepancies between images might be great and highly variable, as the optical 

depth along the light paths could be near unity.

Observations of the first candidate gravitational (macro-) lens system 0957 -f 

561 A,B have been made since the discovery of the object. Schild and Cholfin (1986) 

have claimed measuring a time delay of 1.03 years between the two known images, 

bu t this claim is based only the repetition of a few photometric events and has 

not yet been independently verified. Their observational program, however, can be 

considered a model for future programs looking for high optical depth events.

If the two images cannot be completely resolved, one might look for repeated 

structures in their combined light curve. These repetitions could be the intrinsic
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variations of the  AGN occurring sequentially in each of the unresolved images. The 

light curve could then be processed to eliminate these intrinsic variations, leaving 

only the sum of the line-of-sight variations, from which microlensing effects might 

be identified.

7.3.2) Detection of Low Optical Depth Events

It is our view that microlensing variations in AGN arc the exception rather 

than the rule. The rule is intrinsic variability. Unfortunately, most AGN studied 

are highly variable. This docs not mean, however, that most AGN are highly 

variable. In fact, studies indicate tha t more than half are not (Wiita 1985, Hamuy 

and Maza 1987). Observers have historically found the highly variable AGN more 

interesting, and hence studied them more intensely. We therefore feel there is a need 

to compile a list of stable AGN: ones with little intrinsic variation. These AGN may, 

by definition, be less likely to undergo intrinsic variations, but, as a cla*s, equally 

likely to undergo microlensing variations.

Finding stable AGN does not require much telescope time. In fact, it may not 

indicate the need for any telescope time. This is because quiet AGN can probably 

be found in the same surveys tha t located the highly variable ones. What is needed 

is a  search of archival records and the compilation of a list.

Once such a  list is compiled, some analysis can be done immediately. A statisti

cal analysis should be carried out to find whether stable AGN inhabit any preferred 

position with respect to foreground galaxies. One might expect that AGN angu
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larly close to galaxies, or those containing strong metal lines indicative of being 

seen through a galaxy, to have higher variability than those angularly distant from 

galaxies. One could then attribute excess variability, if found, to effects including 

microlensing, peculiar to the foreground galaxies,.

Another list that would be useful is a subset of the prior list: one that isolates 

those AGN angularly close to foreground galaxies. A list that includes close AGN- 

galaxy angular associations has already been compiled for other purposes (Monk et 

al. 1986). This list has over 100 members. A supplementary list, possibly including 

thousands of AGN would be even more useful statistically.

Next, one might want to fragment our hypothetical list even further by including 

only those AGN behind galaxies that are likely to have high transverse velocities. 

If we are to observe transient events, the higher the relative observer-lens-source 

speed, the shorter the duration of these events will be, and the less observing time 

is necessary. Those galaxies that are thought to be in clusters, or have anomalously 

high redshifts are excellent candidates, as they are likely to have high transverse 

velocities.

If we assume that our motion with respect to the microwave background is 

peculiar, one might suspect that galaxies outside our local supercluster would not 

share this peculiar motion. These galaxies would then be likely to exhibit high rel

ative transverse motions. Therefore, AGN behind more distant foreground galaxies 

would be the better candidates for successful observation.
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The next step would be to observe the galaxies on a  final list on a regular '

basis. One would then regularly inspect the light curves for signature indicative of 

microlensing. To define a  more precise observing program, we must first make some 

generalizations and assumptions. We first assume, from the analysis in Chapter 3, 

tha t (conservatively) a given AGN on this list would undergo a  microlens variation 

greater than 0.3 magnitudes to be ’observable’. Next we generalize all microlensing 

variations (based on the assumptions in Chapter 3) to say that a given quasar 

would be expected to undergo an observable microlensing event every 1000 years.

We further assume th a t  this variation would last of the order of a few years, and 

that of the order of 100 photometric observations are needed to define the light 

curve sufficiently to be able to identify it as microlensing. We can now estimate the 

time needed in our observing program.

If our list contains 100 candidate AGN, then observing each member of the list 

once a week for 10 years should ’catch1 an observable lensing event. Alternatively, 

if a list can be made containing 1000 AGN candidates, then a one year observing 

program of each AGN, once a week, would be warranted to record at least one 

event. During the observational period, those AGN that are known to vary greatly 

should be excluded as intrinsically variable.

If these observations were to be done on a medium sized optical telescope, 

such as the 1-meter telescope at Cerro-Tololo, one might expect each photometric 

integration to take up about a minute (Hamuy and Maza 1987). A list containing
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1000 source objects might then take on the order of 50 nights. A similar program, ‘ 

designed to detect AGN-variability,-was ca r r ied o u t  by Hamuy and Maza. They 

observed 91 AGN in 35 nights obtaining 693 observations primarily using the Cerro* 

Tololo 1 meter telescope. The accuracy of the measurements would be on the order 

of 0.05 magnitudes.

Having to spend 50 nights to obtain a single photometric measurement of 1000 

candidate AGN is prohibitive. Only if the time scale for microlensing was long, on 

the order of tens of years, would such a program yield sufficient time coverage for 

a microlensing detection. The total observing time needed to catch a lensing event 

is on the order of tens of years.

These observations might take less time were many AGN found on the same 

photographic plate. Koo and Kron (1982) find evidence for more than 10 QSOs per 

square degree brighter than 20th magnitude. A wide-field photograph might then 

catch many AGN in a single exposure.

A telescope capable of catching many AGN on a single plate is the 48-inch 

Schmidt. These telescopes have fields typically as large as 6  square degrees, and the 

ability to image 20th magnitude objects in a 1 hour exposure (Minkowski and Abell 

1963). One might then be able to image 1000 AGN on a single night. Once this is 

done, computing techniques would enable the observer to record and remember the 

AGN positions and magnitudes. Subsequent observations with image processing 

techniques should be able to analyse a plate and record AGN changes to within an
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error of 0.2  magnitudes per. observation (Weedman 1986). '

A problem with this is the original tedious task of discriminating the stellar 

images from the AGN images on the plate (Weedman 1986). This formidable 

preliminary project could be attempted with a discriminating technique involving 

color-color comparisons discussed by Koo and Kron (1982).

Those objects that are thought to be undergoing a microlensing event might be 

investigated spectroscopically to see if the broad emission lines arc simultaneously 

undergoing a change that might be identified with microlensing. It is here that 

future telescopes might be of value.

The Hubble Space Telescope (HST), as well as the future large ground based 

telescopes, may be able to monitor candidate microlensing objects with high spatial 

and frequency resolutions. In particular, the High Resolution Spectrograph and the 

Faint Object Spectrograph on board HST may prove to be um-IiiI, as they expands 

the possible number of observable objects for which spectroscopic microlensing ef

fects may be observed.

We point ou t that the Wide Field /Planetary Camera on board HST, as well as 

the Faint Object Camera are not good survey instruments with which to look for 

microlensing photometrically. The reason for this is that the number of AGN visible 

per field of view is less than for ground based Schmidt telescopes. Once an object 

is identified as a candidate microlensing source, however, the superior abilities of 

-  these instruments is useful in future observations of the candidate object.
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Only one program which involves constant monitoring of stable AGN has come ' 

to our attention. Fiedler et al. (1987) have observed several QSO’s in different radio 

frequencies on a  daily basis over the time base of years. The QSO’s they investi

gated were not known to be rapidly variable. They arc, on the other hand, too few 

in number and too large in angular size (in the radio band observed) to be expected 

to undergo a microlensing variation during the observing program described. They 

found occasional dips in the light curve, which they claim is occultalions by clouds 

inside our galaxy. Although these observations have brought forth no obvious mi

crolensing candidate events, we believe it is these types of observations that are 

necessary to find microlensing phenomenon.

7.4) C o n c lu s io n s

The physical basis on which the prediction of the gravitational microlensing 

phenomenon -'lands is well founded. There is no ’mysterious physics’ that goes into 

the equations which result in microlensing predictions. T hat gravity affects light 

is not only a theoretical prediction but an experimental fact. Experiments that 

confirm the  gravitational bending of light have been done repeatedly both on and 

off the Earth , verifying the predicted effect.

The astronomical tenets on which microlensing stands are also well founded. 

Stars are known to exist, and are known to have the ability to bend light. Galaxies 

are known to be made up of stars. The placement of AGN at cosmological distances 

has become accepted also. The number of dim stars in galaxies and the universe
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is-the unknown. But even in the  most conservative case, with bright stars the ' 

dominant form of candidate microlenses, the microlensing phenomenon may still be 

sought.

The observational techniques needed to detect microlensing also exist already. 

Photometric and spectroscopic evaluation are the tools needed to detect microlens

ing, and they have been the proven work-horses of astronomy since the beginning 

of the modern era. No new technology need await development.

The positive detection of a microlensing event would be of general interest to 

astronomy. The information it could tell us about the number, motions, and masses 

of compact lenses, and the structure and dynamics of AGN might revolutionize our 

understanding of everything from the cosmology of the universe to power source of 

QSO’s. Among the possible results it might yield are direct detection of the form 

of dark m atter in galaxies and the universe.

Why, then, has microlensing not been actively sought and detected? What, in 

the past, has prohibited the detection of microlensing is at least two impediments. 

First and foremost are the amounts of time and resources that would be needed 

to undertake a program tha t would have at least a reasonable chance of making a 

microlensing detection. The second prohibitive factor is a general lack of knowledge 

as to what to look for.

It is hoped that this thesis can bring closer the night of a microlensing detection.

We feel our research helps reduce the barriers against microlensing detection in at
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least 5 ways. 1) We have outlined the most probable places to look for microlens

ing. This was done in Chapters 2 and 3. 2) We have added reasons an observer 

might want to search for microlensing. This was shown in Chapter 4 by outlining 

how important lens and source information could be recovered from a microlensing 

detection. 3) We added to the ability of the observer to distinguish microlensing 

photometrically. This was accomplished in Chapter 5 by the presentation and dis

cussion of double-star light curve signatures. 4) Wc have added another feature of 

microlensing that an observer can look for. This was done in Chapter 6 by the intro

duction of possible emission line changes tha t might be expected by microlensing. 5) 

We have also outlined possible observing programs tha t might yield a microlensing 

detection. This has been done in the present Chapter.

Microlensing can be an important tool to the informed observer. There is much 

information it can tell us, and many ways it could manifest itself. If delected, 

microlensing could prove to be an valuable resource in the quest to understand the 

universe around us.
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